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Abstract—The problem of modeling and control for Home consumption according to the customer’s preference asseppo
Energy Management (HEM) is considered. A first order thermal  allowing the utility directly controls the air conditiorgror the
dynamic model is considered and its parameters are extracte refrigerator unit.

using real measurements over a period of three summer months L A
The identified model is validated using separate data setsHE ex- 1 N€ Power limit that serves as the key constraint in HEM

tracted model shows certain nonstationarity and non-Gausanity. ~ can be signaled directly by the utility either at a time of pow
However, local approximations using a stationary model are shortage or as part of a long term energy saving plan. Alterna
shown to have relatively small modeling and prediction erres.  tively, the power limit can also be the result of market dasig

The extracted model is then used for developing a multi-scal |, the context of a hierarchical demand side management
multi-stage stochastic optimization framework for the corirol of

the Heating, Ventilation, and Air Conditioning (HVAC) unit , the (D_SM) SySt_em' for_ example' an energy aggregator interfaces
charging of Plug-in Hybrid Electric Vehicle (PHEV), and the With a Retail Electric Provider (REP) and a pool of customers

scheduling of deferrable load such as washer/dryer operatns. In a hypothetical DSM operation, as illustrated in Fig. I th
A two time scale Model Predictive Control (MPC) strategy is aggregator secures a contract with the REP and promises an
proposed that minimizes the discomfort level subject to poer aggregated load profile among its customers. The aggregator

and budget constraints: at the slow time scale, a power budge . Vi it ¢ b tai .. h ifol
is allocated across different appliances at the hourly levgat the incentivizes Its customers by a cenain pricing scheme u

fast time scale, sensor measurements are used for the schiéidg  the promised load profile. The result is that each customer
and control of different loads. Using parameters extractedirom  provides the aggregator with its own load profile that spesifi

the real data, the proposed approach is compared with the siple  the maximum power consumption. In the event of required
rule based control strategy typically used in HVAC controllers. load shifting, the aggregator may send requests of changes i

Index Terms—Home energy management, model predictive . . . - .
control, smart grid, demand response, HVAC control, stochatic individual load profiles, and the HEM device of the customer

optimization. can respond accordingly.
E consider the problem of managing residential energy

Provider (REP)
consumption as part of the future smart grid through

a Home Energy Manage (HEM) device. While there is not [Enerav DD [E"efsv ]

I. INTRODUCTION

aggregated load profile

—

yet a well defined smart grid architecture at the distributio md‘wdua”oa;io?n’zjlsmit
network level, there seems to be a consensus that demand side / W
response will be an essential feature. In particular, secéife HEM HEM
demand response should include the ability to shift loadsnwh
possible, to react to dynamic price changes, and save moneyFig. 1: A hierarchical demand side management
while maintaining the preferred comfort level of the reside. system

A HEM device plays the role of an in-house control center
that collects sensor measurements, schedules various applaAn essential function of an HEM device is to manage
ances and loads, and interacts with the energy infrastieiCtenergy consumption based on the load profile promised to
outside the residential home. We consider in this paper a pgife aggregator, the pricing signal from the aggregator, the
ticular form of interaction in which the HEM device is givensensing devices that measure the home environment, the
the power limit, the hourly maximum power consumption foglesired comfort level, and budget constraints. The custome
example, by which the HEM device must schedule the in hOUﬁﬁy specify a certain monthly energy expenditure and expect

appliances so that the total power consumption is below tfie HEM device to optimize intelligently energy usage that
prescribed limit. The main advantage of using such poweit linfits the customer’s specific lifestyle.

as the interface is that it allows the HEM device to manage the
A. Summary of results

Aggregat: Aggregat

t

fZ. Yu, L. Mclaughlin, L. Jia, and L. Tong are with the School &flectri- : : :
cal and Computer Engineering, Cornell University, Ithabl 14853, USA. Email: This paper contains two parts. FII’St, we present results of

{zy73,1nnB6, | j 92,1 t 35}@or nel | . edu. *A. Pratt and M. Murphy-Hoye and the modeling of the thermal dynamics of a residential house
are with the Intel Corp., USA. based on real data collected during a three month period in

This work is supported in part by the National Science Fotiodaunder Grant CNS- i ; . X
1135844 and the Intel Fellowship Program. Arizona. We use a physics-based model, leading to a first



YU, MCLAUGHLIN, JIA, MURPHY-HOYE, PRATT, TONG. SUBMISSIONTO PES'12. 11/28/11 2

order approximation. Our investigation reported in Sectib B. Related work

includes both model identification and validation. ) ) )
The literature on home energy management is extensive and

The use of simple first order linear dynamic model allows ysypanding. We focus here related work on the modeling and
to develop stochastic control algorithms, capable of setiegl  control aspects of HEM. The literature on thermal dynamics
not only the HVAC but also other types of loads. Our daigdels dates from 1978. The work reported in [2] used a
analysis shows that, although the thermal dynamic modgjyenient set of equivalent thermal parameters for resiale
appears to b(_a nonstationary, the Iinegr '_[ime invariant LT{ownhouse. Our approach is mostly closely related to [3]
model approximates reasonably well within the time windoyhere a dynamic model of the response of a single residential
of 24 hours. The real data also shows the weaknessesapfconditioner load to weather conditions is developeds Th
the LTI model. In particular, the modeling residue error igpproach uses estimation techniques and an air conditioner
showr_1 to be_no_n-Gaussmn and non-white; its power spectryydqd model based upon equations for energy balance and
contains periodic components. mass balance for the air inside a customer’s residence. In

The second part is a computationally tractable multi-scal¢], an identification algorithm for load models have been
multi-stage optimization framework that integrates vasio proposed exploiting the alternating renewal nature of the
functionalities of HEM. The multi-scale multi-stage natwf thermostat switching process. The author in [5] propose a
the problem arises naturally in home energy management. Fegthod for estimation of continuos-time models using the
example, the thermal dynamics of a residential home may B@ximum likelihood method and a kalman filter to calculate
modeled at the minute level, the load profile for the maximuife likelihood function.
power consumption is specified at the hourly level, and the There is also substantial literature on temperature chntro
targeted energy expenditure is given at weekly or monthbut few published work provides an integrated approach to
level. The scheduling of various devices also involves iplelt loads of different types, addressing design tradeoffs gmon
stages as information required for scheduling arrivesfégrdi comfort requirements and peak power and budget constraints
ent time, which affects the time when scheduling decisioas aAuthors of [6] proposed a three-layer control mechanism and
made. Unfortunately, finding the optimal scheduling polidy use Tabu search to find a feasible solution. In [7], particle
a multi-scale multi-stage stochastic program is intraetalp swarm optimization is used to find the optimal solution for
general. coordinately scheduling multiple energy resources. Tlagse

We propose a suboptimal but computationally tractab oaches require accurate prediction of the energy usage of

approach based on the principle of Model Predictive Contr ture. !n .[8]'. uncertainty conS|der_at|0n Is incorporatetb
(MPC) [1]. The HEM device collects sensor data based (5 c opt|m|;at|0n, but the control is an open loop strategy
which it predicts the energy state of the physical plant infg'tho_ut using t_he_ real-time measurement.The authors (.)f [9]
the future and makes tentative future decisions optima nsidered a5|m||ar_sc_hedul|_ng problem as one treatedsn th
based on such forecasts. The key of MPC is to exercise o %ger. I_he te_mphass m|t'[9r1 'S on tt?_e tr;_ar(:]eoff bEtween iozt
the immediate tentative decision and refine its forecast as © Waling |tmet|nfa mufti-home setling. The wor prtesenbtla
collects more information. MPC does not lead to the optim fre, In contrast, Tocuses on energy management problemn
solution in general, but the strategy is widely used in peact within a single home with a design tradeoff between cost and

it is computationally tractable and often offers satisbagt comfo_rt I_e_vel subject to budget_ and power cons_tralnts_._ Itis
performance also significant that the scheduling problem considerediim t

paper involves thermal dynamics that dictates the forrrarat

We propose a hierarchical structure that separates the prgpbmulti-stage stochastic dynamic optimization. The tharm
lem into slow and fast scale optimizations; the former pilegi dynamics is not modeled in [9] and the optimization involved
the hourly power (energy) budget for different devices veasr s considerably simpler. The thermal dynamics are included
the latter determines control signals at the time scale thak HEM proposed for a single home in [10], using a direct
matches to that of the thermal dynamics (minute level). TRearch optimization. It is a single stage optimization \utsets
proposed approach also separates continuous variable fi@@ thermostat set points, whereas this work includes irec
integer variable optimizations. To provide power allooatat control of the HVAC system.
the slow time scale, the optimization involves a quadraic 0 The MPC strategy adopted in this paper goes back to
timization with linear constraints, which can be solvedilgas 11], [12], [13]. In [11], an algorithm referred to as LQG-
using standard numerical techniques. At the fast time SCalgpc was proposed to deal with the state and control linear
because of the on-off nature of HVAC control, the problermequamy constraints. In [12], [13], the Quadratic Dyriam

becomes a stochastic integer program where a suboptim@lirix Control is used to solve nonlinear process optiniiat
heuristic approach is proposed. with state estimation.

Real data is used in evaluating the performance of theln [14] we proposed a preliminary algorithm based on
proposed approach based on both stationary and non-stgtiothe MPC method. Simulations were carried out using virtual
models. Numerical results show gains at different levelsrovparameters. In this paper, modeling part is included and
the standard rule-based HVAC control strategy. comparison with real HVAC performance is presented.
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C. Organization and Notations
in __ ouf in HVAC

This paper is organized as follows. Section Il introduces day = a(a}" — op)dt + Rp;"*dt + odv, @
a stochastic optimization framework. Section Ill presehts \yhereq is the average thermal resistance per thermal capacity
thermal dynamic model identification and validation based ¢ the dwelling in watts/joulesR is the power rating per
real measurements. In Section IV, we propose a multi-stagrmal capacity of the dwelling in watts, and/ is a wiener
multi-scale approach to HEM followed by numerical resultgrocess with intensity. The wiener process accounts for heat
n SeCt'Q” V. o gain or heat loss such as fluctuating number of people in

Notations used in this paper are standard. Because multigje residence, doors and windows being opened and closed,
time scales are involved, we adopt the notation thgi refrigerators and cooking, etc

denotes the fast scale signal (say in minutes scale)sand The discrete-time equivalent equation for the continuous
stands for the signal at the slow scale (hourly variables). physical model in equation (1) is given by

[I. A STOCHASTIC OPTIMIZATION FRAMEWORK FORHEM  2"[t+1] = 2"[t] + a(x[t]*" — 2"[t]) + Gp™C[t] + c + w[t] (2)

In this section we present the basic residential model, ithere
cluding different load classes, the thermal dynamic maated, [t + 1] is the temperature at timg + 1)
performance measure. We then formulate the HEM schedulipg] is the indoor temperature at tinte
problem as one of stochastic program. z[t]*" is the outdoor temperature at time
a, G, c are the essential parameters to estimate
p™e[t] is power consumed by the HVAC
Three types of loads are considered in this paper: Thet] is the noise modeling
first is the HVAC units, which are scheduled by the HEM In a state space form with the possibility including mukipl
device to control the indoor temperaturg[t] for comfort. HAVC units and multiple sensors, we have
The HEM device collects sensor m_easureme_nts, obtains model B(A,G,C): alt +1] = Azlt] + Gp™e[t] + o[t]
parameters, and schedules appliances using the algorithms _
: . y[t] = Cz[t] + wlt].
presented in Section IV.
The second load type is th@eferrable and interruptible where the state vectar{t + 1]  (z"[¢], z°*[t]) consists of the
load. The specific example considered in this paper is tliedoor temperature[t] and outdoor temperature™[¢]. The
charging of PHEV for which the earliest starting and thenultiple HVAC are controlled via vectop™<|t]. y[t] is the
latest completion times are specified; the actual charging t measurement and the model includes the process nffisas
and the amount of charging are part of the optimization. Weell as measurement noisgt].
assume that the charging can be suspended temporarily and .
resumed at a later time. The strategy of charging affects the Performance measure and constraints
customer comfort level indirectly through the peak power A control/scheduling policyr is a power allocation to the
constraints and available budget. PHEV is required to baree types of load$py,. [t], ph.e[t] pou[t]) at the fast time
charged to a certain level by the deadline, which stands fegale (minute intervals) using measuremafit,, up tot.
a higher priority over the comfort level. This is similar to Let & be the set ofadmissible policieghat satisfy the
the approach used in [10], which takes into account only tiséheduling constraints including the required start-éne for
cost of charging the battery and not the equivalent cost @farging and start time for deferrable loads. Of particirtar
battery degradation. A method to include battery degradatiportance is the the vector of aggregated hourly load cdnssra
is presented in [15] (Py,---, Pp,). Specifically, given a control policyr € 22,
The third type of load iddeferrable and non-interruptible let p™ [t]ép,’}VAC [t] + prelt] + pE[t] be the aggregated power
load. The scheduling of a dryer is considered as an exammensumption in intervak. The hourly power consumption
in this paper. Based on the power consumption and the pricaits mandates that
information, the starting time of the load can be moved withi . . )
the earliest start tim&r and the latest start tim&,. We by = Z il <P, i=0,1,--, Th.
assume the HEM knows the load characteristics (power drawn imhours
from the grid over time). As with the control of charging, Given the price signat[t] and the time interval’, the cost
the schedule of the deferrable load affects the comfort lev a policy  is give by

indirectly and it is a hard requirement.
y d CmA S 2ff] x Ty [, )

B. Thermal dynamic model t

An electric heating-cooling thermal dynamic based upon We n;ea;slure Itge (lack of) quality of a poliaye & by the
the energy balance analysis is used, as discussed in [4] gh%com ort level by
[16]. The first-order stochastic differential equation bkt D(vr)éE,,(ZHa:i"[t] —d]|?) (5)
continuous temperature state is stated as following: p ’

A. Load classes and characteristics

3)
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where z"[t] is the indoor temperature and(¢] the desired obtained from one data set, we test the accuracy of the model
temperature settings. Given a daily budget constr&inthe using a different data set based on the one step prediction

optimal policy is the solution of the following constrained . . _ .
puma policy g B+ 1) = 2] + &) — 2[1) + Cplt] + & (9)

optimization
min D(r) (6) The mean squareBrediction Error (PE) is given by
TEP
[1l. M ODEL IDENTIFICATION AND VALIDATION
A. Data collection and measurements

The data used for this work includes indoor and outdoor Table | shows the mean squared modeling error (ME) and
temperatures as well as HVAC power usage measurementean squared prediction error (PE) for the case when 24
The data was collected eveiyp minutes during August to hour of data are used in parameter estimation. More extensiv
November2010. Fig. 2 shows the floor plan of the housegesults can be found in [17]. It was observed that both ME
where the data was obtained. The house ha®ors and and PE are reasonably small with less tHah degree of
uses3 HVACs as shown in Fig. 2. The measurements werandard deviation, comparing with the average temperatur
collected from7 different rooms including the living room, of around 80 degrees. One particular anomaly is the model
dining room, kitchen, family room, extra room, afdt floor fitting for the extra room, which showed very large prediatio
bedroom. On the second floor, we have data available for thesor. One of the reasons for this anomaly may be that this
bedroom located on the left side and master bathroom.  room was controlled manually, a factor we did not consider
in our model.

subjectto C(w) < B.

1oL, v
b= LIl o)

CExra roomd o
T-otics(cs56) O

"T-Mffce(coec) o

S e TABLE |I: Mean Squared Modeling and Prediction
D e Tt errors
Room T, (°F) I ,in €m ep
Living Room 79.1244 1.8073 0.0103 0.0116
Family Room  80.5193 2.5919 0.0249 0.0282
Kitchen 81.8173 2.1409 0.0247 0.0281
Dining Room  79.0615 14.0744 0.1355 0.1480
Office Room  79.8312 9.6645 0.0879 0.0956
o Hall 79.2099 1.1447 0.0182 0.0212
e Extra Room 83.0398 48.2190 0.4122 29.8200
. i . . Ups. Office 78.2068 1.1281 0.0184 0.0199
Flg' 2: Floor plan of a residential home Ups. bath 77.8422 2.6523 0.0372 0.0412

B. Model identification and validation Table Il shows the thermal parameters for every room. The

The parameters in model equation (2) can be obtained usistgndard deviation is relatively large comparing to the mea
the method of least squares: value, indicating that the confidence interval is not tight.

N
(6a,G) = aggfgn(z I(z"[t +1] = 2"[¢]) TABLE II: Thermal Parameters
e
o outl ] _ pinft Gplt 2 , 7 Room a+ o, G + o (°FIkWh) ¢+ o.(°F)
(C + a(x [ ] t [ ]) + p[ ])H ) ( ) Living Room 0.0083 £ 0.0046 —0.2076 £ 0.1211 0.0216 £+ 0.0552

0.0127 £ 0.0046
0.0121 £ 0.0048
0.0209 £+ 0.0127

—0.1798 £ 0.1608
—0.1997 £ 0.1901
—0.5438 £ 0.1768

0.0062 £ 0.0908
0.0324 £ 0.0894
—0.0047 £ 0.1201

where N is the number of observations used in the paramet@amily Room
estimation. For time varying modelsy should be large Kitchen
enough to obtain reliable estimates but small enough foPining Room

the model remains stationary. In our study, we considereffice Room
the cases whereV corresponds tol, 7, and 14 days of Hall
measurements. Extra Ro-om
The accuracy of the model can be measured by the meaff 9™
squaredModeling Error (ME) Ups. bath

0.0168 £+ 0.0120
0.0101 £ 0.0051
0.0474 £+ 0.0388
0.0107 £ 0.0048
0.0152 £ 0.0070

—0.5095 £+ 0.2337
—0.3314 £ 0.1787

—5.8284 + 24.6484

—0.2990 £+ 0.1214
—0.4435 £ 0.6012

0.0176 £ 0.0802
0.0264 £ 0.0669
0.0709 £ 0.3141
0.0631 £ 0.0521
0.0417 £ 0.0820

N
Em = %Z (2" t41]—a"[t]) — (e+a(a™[t] —"[t])+Gp[t])| .

Fig. 3 below shows plots for parameter, prediction errod, an
temperatures evolution, respectively. The estimatednpaiers
(8) were shown to be time varying, indicating model nonstation-

The model extracted from the data needs to be validatadty. Fig. 4 shows the predicted and actual temperaturedbas

using different data sets. With the estimated paramémés ¢

on the proposed LTI approximation using parameters exdact
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CDF of Prediction Error

CDF Modeling Error

1 1 1 ‘ —— CDF of G —— CDF of G i
from data in the previous 24 hours. It is apparent that the LTI . Sonmey 1 Ao
model gave a reasonably accurate approximation. 0s 0

08 0.8
Thermal Parameters 07 07
05 T T T
0.6 0.6
S ——— ~ — = = g
— |\ o5 & 05
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Time(days) 04 0.4
. Modelling Errors.
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Time(days)

Fig. 6: CDF of ME and PE

Fig. 3: Parameter expansion over time, prediction

error and temperature evolution for iving room o cpfF of the residue sequence appeared to be close to
Gaussian, a careful examination using the Q-Q plots and
Kolgomorov-smirnov test indicated that the residue ersor i
Predcie Terpaatue] \ ‘ non-Gaussian. See [17] for details.

Actual Temperature

IV. A MODEL PREDICTIVE CONTROL APPROACH TC(HEM
A. Stochastic programming formulation

With thermal parameters abstracted from the measurement,
we formulate the HEM control as a multi-stage stochastic
optimization problem [18]. The goal is to minimize the user’

Temperature(F)

. . = L discomfort level subject to budget constraints and peakepow
e limit:
Fig. 4. Temperature prediction using estimated thermal minimize ZtTLH Bzl — dy)|2
parameters subject to (x¢,y:) ~ ®(A4,G,C)

0 < p?VAC < PHVAC
One way to validate the model is to examine the residue - -

error sequence. The power spectral density of the modeling Tp < s<Tj
and prediction error are shown in Fig. 5. The spikes in the oot P ifs<t<s+d
estimated power spectral density indicated the presence of =1 0 0.W. (11)
harmonics. 0< piHEV < Prs;xEv
t=Tp—1 Tp;HEV =Q

FFT magnitude of Autocorrelation Model Error t=0

P =0 ift<Taort>Tp

i
a
=3

=

o

S
T

0 § p;iVAC + p;’HEV + pltDSf § Pt
| t 0t AT (P + p*= + pp*) < B
Ulloidolio bl ll]

000 ey iy 15000 where the indoor temperature vecte} is part of the state
FFT magnitude of Autocorrelation of Prediction Error evolution (z¢,y:) ~ ®(A,G,C) specified by the stochastic
thermal dynamic equation (3).
100 ] A control policy = maps the measurements;, =
{Yn,Yn-1,"-+,y0} to decision variables(pc p’r= s),
1" ; Ll wheres is the start time of the deferrable and non-interruptible
ot ™ 15000 load. Note th_at once the _start time is decided, the detailed
power allocation is determined.
The stochastic comes from the modeling error as well as
Fig. 5: FFT of Autocorrelation of ME and PE the measurement noise, which make the optimization not
computationally tractable.
Another important factor in model validation is the Gaus- _ o
sianity of the residue error. Fig. 6 shows the cumulati/@: Stochastic optimization for HEM
distribution functions (CDF) for both modeling and prediot We propose a multi-scale control architecture of HEM
errors, respectively, plotted against the Gaussian CDRIéWhshown in Fig. 7 based on the principle of model predictive

FFT Magnitude

@
=}

o
o

150

50

FFT Magnitude

o
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control (MPC). The detailed optimization functions of slow L

and fast time scale are stated in Sections IV-D and IV-E. §
The measurements (indoor and outdoor temperatufies)
is taken at fast time scale. Thermal parameters are obtained
by the modeling fitting using the past measurements. With
estimated parameters and temperature states data the riKalma
filter predict the thermal dynamic statés$t + k|t] into the
future. Both states prediction and the pricing signgl are
used in slow time scale MPC to distribute the power budget Day
to different loads. The detailed power allocation is coltih
in the fast time scale problem. Fig. 8: Water Filling Budget Allocation
z[t] prictng O L TABLE IIl: Model Predictive Control in Slow and
Kaiman | o[t 4 k[fSlowtime | pHVAC L PHEY oy | p::‘fv[t] Fast Time Scales
@' Prediction T—L scale MPC PO scale MPC I;Def{t][t] Model Predictive Control in Slow Time Scale o
f::asmmem r 1 At ho_urt, compute Kalman state Df_edlc¥l9|ﬁ$+k\t using y¢.
2 Obtain the optimal startTtlme by m|n|m|2|n.g thel cgst gf deferrable load
y[t]  messurement predll:tlon p,;VAC (slow scale) 3 Solve for (p}¥A¢, pPHEV) "1 by the quadratic optimization:

MO% ? P e minimize ST (11, - di)?)
?MH TS t > subject 0 Sl THTE! = (Q — SOEZ) TRl

t pqE*() ifi<Tqaori>Tp

current time current Ume 7 0< pHVAC + pPHEV + pDef < PL7 i=t,-,Th
\ % T(ﬁHVAC + ﬁPHEV + p7 ef) .
. . . HVAC PHEV Def
Fig. 7: Multi-scale HEM architecture 8 < (Bd = 22 TR + Y + PR ))
9 Setplt'lVAC — pHVAC and pPHEV pPHEV.

10 t — t + 1, go to line 1 untilt = T,
C. Weekly BUdget Allocation Model Predictive Control in Fast Time Scale )
Given the weekly or monthly total budget the HEM will 11 At minutet, compute Kalman state predictions' [t + k|¢] usingyq.
- e . éz Solve fora[i] by the quadratic optimization:
distribute the money to everyday according to the predicte . ,
. . . 7 inimi m mnr. -
ambient temperature. Two different methods are considered'® Mnimizequpy 32,2 l@7[i[t] = dli|

. . . . 14 bject t z[i], y[i]) ~ ®(Am, Gm,Cm
in this paper. One direct way is to allocate the budget in 5 e ;Huc[‘é]”:)u”égyf, uli] e?{o 1}
proportion to the daily average outdoor temperature. The 16 S uli] = Ne = 3527 uldl-

other is known as water filling in wireless communication|:7 setu[s] = a[4.

The problem is to allocate power to multi channels.Here, wg8 ¢ — ¢ + 1, go to line 11 untilt = T,
allocate the budget similarly. The money is distributedverg
particular day by solving the following optimization preioh.

For simplicity, we will assume in the simulation that the
maximize 3., log(1 + ’;—5) deferrable and non-interruptible load draws constantdrate

subjectto Y7, B, =B (12) " power P2z

where B is the total budgetB, is the daily budget and; is E. Fast Time Scale Stochastic Optimization
the predicted daily average ambience temperature. If the da The similar MPC principle applies to the fast time scale
budget is not used up, the rest part will be put back to theoblem as well, except for some loads we are dealing with
total budget pool and the HEM will reallocate the budget fanteger decision variables.
future with latest weather prediction. The solution is tbtfie Considering the control problem for various loads is de-
daily temperature curve by the budget as in Fig. 8 composed by the slow time scale problem, we focus on the
control of HVAC at the fast time scale. The most widely used
control strategy of the HVAC is the on-off rule based control
We propose a MPC based suboptimal solution to the HE{®RBC), where the heating and the air conditioning is turned
stochastic problem detail described in Table Ill, wh&rés on or off by the thermostat according to the actual tempegatu
the time interval (one hour in this paper). At the slow timeneasurement and the set point [19]. In practice, the lenfyth o
scale, the HEM predicts to the future based on the estimatitire interval between HVAC on-off states switching may be an
using Kalman filter with the measurement from the fast timadditional constraint as it influences the longevity.
scale and optimizes the hourly power allocation and takeWithin the class of integer optimization, we formulate the
only the first step to implement. While solving the stoct@stproblem as choosing the on periods to minimize the discamfor
optimization, the noise is replaced by the expectationdoice level meeting the slow time scale power allocation. Once the
the complexity of the computation. switching time is determined, the HEM can implement the

D. Slow Time Scale Stochastic Optimization
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control of HVAC by artificially changing the set point withbu thermal parameters and desired temperature. Since the thre
actually installing a different controller. kinds of loads are combined only in the peak power consgaint
Table 1l shows the outline of a model predictive controhnd the daily budget, we just compare the control of the
strategy of fast time scale control of HVAC. Assuming thatdVAC, removing other loads from these two constraints. In
the HVAC system works on the same power level durintpe simulation, we present the power strategy of the prapose
the working periods, the number of on periods within eadpproach and compare it with the performance bound (PB)
hour can be calculated by, = [pi*°/P%*°] with given and the rule based control strategy (RBC) used in the HVAC
the total power budgep}*® in the kth hour. The allocation nowadays. In Fig. 10 we draw the discomfort level comparing
of the on periods is formulated as a stochastic programmingth an strategy mixing the MPC and the LQG (thus referred
with a binary action space. Since different kinds of loads ato as MPC-LQG) originally proposed in [11], whose perfor-
decomposed in slow time scale problem, other loads can fa@nce will be close to open loop when the constraints aré tigh
managed in the similar way. In this paper, the electriciiggor and be close to LQG when the constraints are not bounded.
is assumed constant over one hour, so we omit the fast tifflee performance bound is obtained by assuming knowing the

scale problem for dryer and PHEV. future weather and system noise perfectly.
V. S|MU|_AT|ON AND PERFORMANCE RESULTS , GI=-0.2076; al=0.0083; ¢=0.0216 with Tamb Noise 0.1 degree Troom Noise 0.5 degree
. . . . —+— MPC
Three types of loads were considered in the simulation. As a o o ee-tel
O RBC

deferrable and non-interruptible load, the dryer was asslim
to start no earlier than 4PM and no later than 8PM, whose

working time will last two hours. A PHEV was assumed to

be at home from 8PM to 8AM. The charging rate was set to b
be nonnegative which implied it could not supply power back 2r
to the grid. An hourly peak power constraint, simply assumed i
to be a sinusoid curve, was applied to the HEM as well as the .
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daily budget constraint.

Fig. 10: 1 day performance comparison between Multi-scale

e Algorithm (MPC), MPC-LQG, PB and RBC

‘ ] A theoretical simulation was carried out where the outdoor

o

emperature F
NN
o
T

i
o

B ° 0 rmeouy 2 25 temperature was assumed to follow a auto-regression model.
% z ‘ ‘ igﬁfgfadt The plot of discomfort level (a measure based on the Predjiqte
Tolas f:\ e N Mean Vote (PMV) [20]) against energy cost is shown in
5 e S B Fig. 10. At the PMV level of 1.5, the saving of the proposed
g4 ; ; ; ; approach comparing with MPC-LQG was about 20%. While
g7 WWWM 1 the MPC spent 8% more than the performance bound. At the
=% s 10 oo 15 20 2 same discomfort level, the multi-scale algorithm spent 30%
10|, heakPower Consiant less than RBC. Note that when the budget constraint was tight
% st o s — the difference among the three approaches was small, which
& o) s I 5 W - can be explained by the fact that all strategies have limited

power available for scheduling.
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Fig. 9: Power Policy Example: Indoor Temp, Dryer and
PHEV Charing, HVAC, Total Power and Peak
constraints, Price
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The control policy result is illustrated in Fig. 9. Takingeth
price advantage, the PHEV charging was shifted to the price
valley. The dryer, with a tighter schedule deadline, took a . o o o o
relatively low price. Note that the peak power constraint is Outdoor temperature prediction noise amplitude
bounded in some periods. As a consequence, power allocate(?:ig 11: Performance comparison between RBC, PB and
to I-_|VAC is limited , WhICh caused the indoor temperature "7 Multioscale Algorithm (MPC) with various ambient
deviation from the desired. temperature noises

To show the impact of MPC approach, we compared the
MPC algorithm with a benchmark solution using fabricated The comparison with a variety of ambience temperature
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prediction noises is shown in Fig. 11. With the same budgéie considered in simulation. The impact of the economically
the discomfort level with various noise amplitude are drawbased scheduling on the life-time of appliances, espgdiall
The simulation result shows that the accuracy of the weatttbe context of PHEV charging and bang-bang HVAC control,
report matters significantly. The gap between MPC and Riarrants further study. Carefully analysis is needed falgat
increased sharply as the prediction being more noisy. allocation algorithm. Nonetheless, many of the modifiaadio
To make the simulation more close to the realistic, connequired to circumvent the above simplifying assumpticars ¢
parison between the proposed multi-scale algorithm (MP®# incorporated into the proposed optimization framework.
and the real HVAC performance was carried out based on the
real measurement data. In the simulation, the daily dynamic _ - _ - .
h | rameters were from the model fitting. With therma[ll] J. Rawlings, “Tutorial overview of model predictive dool,” IEEE
thermal pa ’ ) g. Control Systems Magazindune 2000.
parameters fitted from data of previous day, the HEM allatate[2] R. Sonderegger, “Diagnostic tests determining thertiz¢rresponse of

the power for the next day, while the indoor temperature i‘g@%“seflawrence Berkeley National Laboratorpp. 1 — 15, February
changes according to the dynamic equation with the regd; 5 gargiotas and J. Birddwell, “Residential air conditer dynamic

parameters of the next day. The performance bound was model for direct load controlIEEE Control Transactionsvol. 3,
attained by assuming knowing the future weather and system PP- 2119-2125, October 1988.

. fectl I the d ic th | t %1] S. El-Ferik and R. Malhame, “Identification of altermai renewal
noise periectly, as well as the dynamic thermal parameters. gjectric load models from energy measurementajtomatic Control,

To show the impact of accuracy of the parameter fitting, the IEEE Transactions anvol. 39, pp. 1184 —1196, jun 1994.

MPC knowing future parameters is plotted as a comparisorfﬁl M. Frank, “The kolmogorov-smirnov test for goodness of fLawrence
. . . Berkeley National Laboratoryol. 46, pp. 68 — 78, March 1951.

The real power consumption of the HVAC using in the housTE

) ; S D. Ha, S. Ploix, E. Zamai, and M. Jacomino, “Tabu search tfee
is plotted as one single point in Fig. 12. Because of the lack optimization of household energy consumption, 2606 IEEE Int. Conf.
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¢ ¢ . d the desired t tute At E] M. Pedrasa, T. Spooner, and I. MacGill, “Coordinated &tifling of
emperature average Is used as the desired lemperatu Residential Distributed Energy Resources to Optimize $rhome
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