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Abstract—The problem of modeling and control for Home
Energy Management (HEM) is considered. A first order thermal
dynamic model is considered and its parameters are extracted
using real measurements over a period of three summer months.
The identified model is validated using separate data sets. The ex-
tracted model shows certain nonstationarity and non-Gaussianity.
However, local approximations using a stationary model are
shown to have relatively small modeling and prediction errors.
The extracted model is then used for developing a multi-scale
multi-stage stochastic optimization framework for the control of
the Heating, Ventilation, and Air Conditioning (HVAC) unit , the
charging of Plug-in Hybrid Electric Vehicle (PHEV), and the
scheduling of deferrable load such as washer/dryer operations.
A two time scale Model Predictive Control (MPC) strategy is
proposed that minimizes the discomfort level subject to power
and budget constraints: at the slow time scale, a power budget
is allocated across different appliances at the hourly level; at the
fast time scale, sensor measurements are used for the scheduling
and control of different loads. Using parameters extractedfrom
the real data, the proposed approach is compared with the simple
rule based control strategy typically used in HVAC controllers.

Index Terms—Home energy management, model predictive
control, smart grid, demand response, HVAC control, stochastic
optimization.

I. I NTRODUCTION

W E consider the problem of managing residential energy
consumption as part of the future smart grid through

a Home Energy Manage (HEM) device. While there is not
yet a well defined smart grid architecture at the distribution
network level, there seems to be a consensus that demand side
response will be an essential feature. In particular, an effective
demand response should include the ability to shift loads when
possible, to react to dynamic price changes, and save money
while maintaining the preferred comfort level of the residence.

A HEM device plays the role of an in-house control center
that collects sensor measurements, schedules various appli-
ances and loads, and interacts with the energy infrastructure
outside the residential home. We consider in this paper a par-
ticular form of interaction in which the HEM device is given
the power limit, the hourly maximum power consumption for
example, by which the HEM device must schedule the in house
appliances so that the total power consumption is below the
prescribed limit. The main advantage of using such power limit
as the interface is that it allows the HEM device to manage the
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consumption according to the customer’s preference as oppose
allowing the utility directly controls the air conditioning or the
refrigerator unit.

The power limit that serves as the key constraint in HEM
can be signaled directly by the utility either at a time of power
shortage or as part of a long term energy saving plan. Alterna-
tively, the power limit can also be the result of market design.
In the context of a hierarchical demand side management
(DSM) system, for example, an energy aggregator interfaces
with a Retail Electric Provider (REP) and a pool of customers.
In a hypothetical DSM operation, as illustrated in Fig. 1, the
aggregator secures a contract with the REP and promises an
aggregated load profile among its customers. The aggregator
incentivizes its customers by a certain pricing scheme to fulfill
the promised load profile. The result is that each customer
provides the aggregator with its own load profile that specifies
the maximum power consumption. In the event of required
load shifting, the aggregator may send requests of changes in
individual load profiles, and the HEM device of the customer
can respond accordingly.
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Energy
Aggregator

power limit
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aggregated load profile

individual load profile
Energy
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t
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Fig. 1: A hierarchical demand side management
system

An essential function of an HEM device is to manage
energy consumption based on the load profile promised to
the aggregator, the pricing signal from the aggregator, the
sensing devices that measure the home environment, the
desired comfort level, and budget constraints. The customer
may specify a certain monthly energy expenditure and expect
the HEM device to optimize intelligently energy usage that
fits the customer’s specific lifestyle.

A. Summary of results

This paper contains two parts. First, we present results of
the modeling of the thermal dynamics of a residential house
based on real data collected during a three month period in
Arizona. We use a physics-based model, leading to a first
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order approximation. Our investigation reported in Section III
includes both model identification and validation.

The use of simple first order linear dynamic model allows us
to develop stochastic control algorithms, capable of scheduling
not only the HVAC but also other types of loads. Our data
analysis shows that, although the thermal dynamic model
appears to be nonstationary, the linear time invariant (LTI)
model approximates reasonably well within the time window
of 24 hours. The real data also shows the weaknesses of
the LTI model. In particular, the modeling residue error is
shown to be non-Gaussian and non-white; its power spectrum
contains periodic components.

The second part is a computationally tractable multi-scale
multi-stage optimization framework that integrates various
functionalities of HEM. The multi-scale multi-stage nature of
the problem arises naturally in home energy management. For
example, the thermal dynamics of a residential home may be
modeled at the minute level, the load profile for the maximum
power consumption is specified at the hourly level, and the
targeted energy expenditure is given at weekly or monthly
level. The scheduling of various devices also involves multiple
stages as information required for scheduling arrives at differ-
ent time, which affects the time when scheduling decisions are
made. Unfortunately, finding the optimal scheduling policyof
a multi-scale multi-stage stochastic program is intractable in
general.

We propose a suboptimal but computationally tractable
approach based on the principle of Model Predictive Control
(MPC) [1]. The HEM device collects sensor data based on
which it predicts the energy state of the physical plant into
the future and makes tentative future decisions optimally
based on such forecasts. The key of MPC is to exercise only
the immediate tentative decision and refine its forecast as it
collects more information. MPC does not lead to the optimal
solution in general, but the strategy is widely used in practice;
it is computationally tractable and often offers satisfactory
performance.

We propose a hierarchical structure that separates the prob-
lem into slow and fast scale optimizations; the former provides
the hourly power (energy) budget for different devices whereas
the latter determines control signals at the time scale that
matches to that of the thermal dynamics (minute level). The
proposed approach also separates continuous variable from
integer variable optimizations. To provide power allocation at
the slow time scale, the optimization involves a quadratic op-
timization with linear constraints, which can be solved easily
using standard numerical techniques. At the fast time scale,
because of the on-off nature of HVAC control, the problem
becomes a stochastic integer program where a suboptimal
heuristic approach is proposed.

Real data is used in evaluating the performance of the
proposed approach based on both stationary and non-stationary
models. Numerical results show gains at different levels over
the standard rule-based HVAC control strategy.

B. Related work

The literature on home energy management is extensive and
expanding. We focus here related work on the modeling and
control aspects of HEM. The literature on thermal dynamics
models dates from 1978. The work reported in [2] used a
convenient set of equivalent thermal parameters for residential
townhouse. Our approach is mostly closely related to [3]
where a dynamic model of the response of a single residential
air conditioner load to weather conditions is developed. This
approach uses estimation techniques and an air conditioner
load model based upon equations for energy balance and
mass balance for the air inside a customer’s residence. In
[4], an identification algorithm for load models have been
proposed exploiting the alternating renewal nature of the
thermostat switching process. The author in [5] propose a
method for estimation of continuos-time models using the
maximum likelihood method and a kalman filter to calculate
the likelihood function.

There is also substantial literature on temperature control,
but few published work provides an integrated approach to
loads of different types, addressing design tradeoffs among
comfort requirements and peak power and budget constraints.
Authors of [6] proposed a three-layer control mechanism and
use Tabu search to find a feasible solution. In [7], particle
swarm optimization is used to find the optimal solution for
coordinately scheduling multiple energy resources. Theseap-
proaches require accurate prediction of the energy usage of
future. In [8], uncertainty consideration is incorporatedinto
the optimization, but the control is an open loop strategy
without using the real-time measurement.The authors of [9]
considered a similar scheduling problem as one treated in this
paper. The emphasis in [9] is on the tradeoff between cost
and waiting time in a multi-home setting. The work presented
here, in contrast, focuses on energy management problem
within a single home with a design tradeoff between cost and
comfort level subject to budget and power constraints. It is
also significant that the scheduling problem considered in this
paper involves thermal dynamics that dictates the formulation
of multi-stage stochastic dynamic optimization. The thermal
dynamics is not modeled in [9] and the optimization involved
is considerably simpler. The thermal dynamics are includedin
the HEM proposed for a single home in [10], using a direct
search optimization. It is a single stage optimization which sets
the thermostat set points, whereas this work includes direct
control of the HVAC system.

The MPC strategy adopted in this paper goes back to
[11], [12], [13]. In [11], an algorithm referred to as LQG-
MPC was proposed to deal with the state and control linear
inequality constraints. In [12], [13], the Quadratic Dynamic
Matrix Control is used to solve nonlinear process optimization
with state estimation.

In [14] we proposed a preliminary algorithm based on
the MPC method. Simulations were carried out using virtual
parameters. In this paper, modeling part is included and
comparison with real HVAC performance is presented.
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C. Organization and Notations

This paper is organized as follows. Section II introduces
a stochastic optimization framework. Section III presentsthe
thermal dynamic model identification and validation based on
real measurements. In Section IV, we propose a multi-stage
multi-scale approach to HEM followed by numerical results
in Section V.

Notations used in this paper are standard. Because multiple
time scales are involved, we adopt the notation thatx[t]
denotes the fast scale signal (say in minutes scale) andxt

stands for the signal at the slow scale (hourly variables).

II. A STOCHASTIC OPTIMIZATION FRAMEWORK FORHEM

In this section we present the basic residential model, in-
cluding different load classes, the thermal dynamic model,and
performance measure. We then formulate the HEM scheduling
problem as one of stochastic program.

A. Load classes and characteristics

Three types of loads are considered in this paper: The
first is the HVAC units, which are scheduled by the HEM
device to control the indoor temperaturexin[t] for comfort.
The HEM device collects sensor measurements, obtains model
parameters, and schedules appliances using the algorithms
presented in Section IV.

The second load type is thedeferrable and interruptible
load. The specific example considered in this paper is the
charging of PHEV for which the earliest starting and the
latest completion times are specified; the actual charging time
and the amount of charging are part of the optimization. We
assume that the charging can be suspended temporarily and
resumed at a later time. The strategy of charging affects the
customer comfort level indirectly through the peak power
constraints and available budget. PHEV is required to be
charged to a certain level by the deadline, which stands for
a higher priority over the comfort level. This is similar to
the approach used in [10], which takes into account only the
cost of charging the battery and not the equivalent cost of
battery degradation. A method to include battery degradation
is presented in [15]

The third type of load isdeferrable and non-interruptible
load. The scheduling of a dryer is considered as an example
in this paper. Based on the power consumption and the price
information, the starting time of the load can be moved within
the earliest start timeTE and the latest start timeTL. We
assume the HEM knows the load characteristics (power drawn
from the grid over time). As with the control of charging,
the schedule of the deferrable load affects the comfort level
indirectly and it is a hard requirement.

B. Thermal dynamic model

An electric heating-cooling thermal dynamic based upon
the energy balance analysis is used, as discussed in [4] and
[16]. The first-order stochastic differential equation of the
continuous temperature statext is stated as following:

dxin
t = a(xout

t − xin
t )dt+RpHVAC

t dt+ σdvt (1)

Wherea is the average thermal resistance per thermal capacity
of the dwelling in watts/joules,R is the power rating per
thermal capacity of the dwelling in watts, andσv′t is a wiener
process with intensityσ. The wiener process accounts for heat
gain or heat loss such as fluctuating number of people in
the residence, doors and windows being opened and closed,
refrigerators and cooking, etc

The discrete-time equivalent equation for the continuous
physical model in equation (1) is given by

xin[t+1] = xin[t]+α(x[t]
out
−xin[t])+GpHVAC [t]+c+w[t] (2)

where
xin[t+ 1] is the temperature at time(t+ 1)
xin[t] is the indoor temperature at timet
x[t]

out is the outdoor temperature at timet
α,G, c are the essential parameters to estimate
pHVAC[t] is power consumed by the HVAC
w[t] is the noise modeling

In a state space form with the possibility including multiple
HAVC units and multiple sensors, we have

Φ(A,G,C) : x[t+ 1] = Ax[t] +GpHVAC[t] + v[t]
y[t] = Cx[t] + w[t].

(3)

where the state vectorx[t+1] , (xin[t], xout[t]) consists of the
indoor temperaturexin[t] and outdoor temperaturexout[t]. The
multiple HVAC are controlled via vectorpHVAC[t]. y[t] is the
measurement and the model includes the process noisev[t] as
well as measurement noisew[t].

C. Performance measure and constraints

A control/scheduling policyπ is a power allocation to the
three types of loads(pπHVAC[t], p

π
PHEV[t], p

π
Def[t]) at the fast time

scale (minute intervals) using measurementY[0:t) up to t.
Let P be the set ofadmissible policiesthat satisfy the

scheduling constraints including the required start-end time for
charging and start time for deferrable loads. Of particularim-
portance is the the vector of aggregated hourly load constraints
(P1, · · · , PTh

). Specifically, given a control policyπ ∈ P,

let pπ[t]
∆
=pπHVAC[t] + pπPHEV[t] + pπDef[t] be the aggregated power

consumption in intervalt. The hourly power consumption
limits mandates that

pπi =
∑

t in hour i

pπ[t] ≤ Pi, i = 0, 1, · · · , Th.

Given the price signalz[t] and the time intervalT , the cost
of a policyπ is give by

C(π)
∆
=
∑

t

z[t]× Tpπ[t]. (4)

We measure the (lack of) quality of a policyπ ∈ P by the
discomfort level by

D(π)
∆
=Eπ(

∑

t

‖xin[t]− d[t]‖2), (5)
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where xin[t] is the indoor temperature andd[t] the desired
temperature settings. Given a daily budget constraintB, the
optimal policy is the solution of the following constrained
optimization

min
π∈P

D(π) subject to C(π) ≤ B. (6)

III. M ODEL IDENTIFICATION AND VALIDATION

A. Data collection and measurements

The data used for this work includes indoor and outdoor
temperatures as well as HVAC power usage measurements.
The data was collected every15 minutes during August to
November2010. Fig. 2 shows the floor plan of the house
where the data was obtained. The house has2 floors and
uses3 HVACs as shown in Fig. 2. The measurements were
collected from7 different rooms including the living room,
dining room, kitchen, family room, extra room, and1st floor
bedroom. On the second floor, we have data available for the
bedroom located on the left side and master bathroom.

Fig. 2: Floor plan of a residential home

B. Model identification and validation

The parameters in model equation (2) can be obtained using
the method of least squares:

(ĉ, α̂, Ĝ) = argmin
c,α,G

(

N∑

t=1

||(xin[t+ 1]− xin[t])

−(c+ α(xout[t]− xin[t]) +Gp[t])||2), (7)

where N is the number of observations used in the parameter
estimation. For time varying models,N should be large
enough to obtain reliable estimates but small enough for
the model remains stationary. In our study, we considered
the cases whereN corresponds to1, 7, and 14 days of
measurements.

The accuracy of the model can be measured by the mean
squaredModeling Error (ME)

εm =
1

N

N∑

t=1

||(xin[t+1]−xin[t])−(ĉ+α̂(xout[t]−xin[t])+Ĝp[t])||2.

(8)
The model extracted from the data needs to be validated

using different data sets. With the estimated parametersα̂, Ĝ, ĉ

obtained from one data set, we test the accuracy of the model
using a different data set based on the one step prediction

x̂in[t+ 1] = xin[t] + α̂(xout[t]− xin[t]) + Ĝp[t] + ĉ, (9)

The mean squaredPrediction Error (PE) is given by

εp =
1

N

N∑

t=1

||x̂in[t+ 1]− xin[t+ 1]||2. (10)

Table I shows the mean squared modeling error (ME) and
mean squared prediction error (PE) for the case when 24
hour of data are used in parameter estimation. More extensive
results can be found in [17]. It was observed that both ME
and PE are reasonably small with less than0.1 degree of
standard deviation, comparing with the average temperature
of around 80 degrees. One particular anomaly is the model
fitting for the extra room, which showed very large prediction
error. One of the reasons for this anomaly may be that this
room was controlled manually, a factor we did not consider
in our model.

TABLE I: Mean Squared Modeling and Prediction
errors

Room xin
t (◦F) σ

xin
t

εm εp

Living Room 79.1244 1.8073 0.0103 0.0116

Family Room 80.5193 2.5919 0.0249 0.0282

Kitchen 81.8173 2.1409 0.0247 0.0281

Dining Room 79.0615 14.0744 0.1355 0.1480

Office Room 79.8312 9.6645 0.0879 0.0956

Hall 79.2099 1.1447 0.0182 0.0212

Extra Room 83.0398 48.2190 0.4122 29.8200

Ups. Office 78.2068 1.1281 0.0184 0.0199

Ups. bath 77.8422 2.6523 0.0372 0.0412

Table II shows the thermal parameters for every room. The
standard deviation is relatively large comparing to the mean
value, indicating that the confidence interval is not tight.

TABLE II: Thermal Parameters

Room ᾱ ± σα Ḡ± σG(◦F/kWh) c̄ ± σc(◦F)

Living Room 0.0083 ± 0.0046 −0.2076 ± 0.1211 0.0216 ± 0.0552

Family Room 0.0127 ± 0.0046 −0.1798 ± 0.1608 0.0062 ± 0.0908

Kitchen 0.0121 ± 0.0048 −0.1997 ± 0.1901 0.0324 ± 0.0894

Dining Room 0.0209 ± 0.0127 −0.5438 ± 0.1768 −0.0047 ± 0.1201

Office Room 0.0168 ± 0.0120 −0.5095 ± 0.2337 0.0176 ± 0.0802

Hall 0.0101 ± 0.0051 −0.3314 ± 0.1787 0.0264 ± 0.0669

Extra Room 0.0474 ± 0.0388 −5.8284 ± 24.6484 0.0709 ± 0.3141

Ups. Office 0.0107 ± 0.0048 −0.2990 ± 0.1214 0.0631 ± 0.0521

Ups. bath 0.0152 ± 0.0070 −0.4435 ± 0.6012 0.0417 ± 0.0820

Fig. 3 below shows plots for parameter, prediction error, and
temperatures evolution, respectively. The estimated parameters
were shown to be time varying, indicating model nonstation-
arity. Fig. 4 shows the predicted and actual temperature based
on the proposed LTI approximation using parameters extracted
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from data in the previous 24 hours. It is apparent that the LTI
model gave a reasonably accurate approximation.
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Fig. 3: Parameter expansion over time, prediction
error and temperature evolution for living room
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One way to validate the model is to examine the residue
error sequence. The power spectral density of the modeling
and prediction error are shown in Fig. 5. The spikes in the
estimated power spectral density indicated the presence of
harmonics.
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Fig. 5: FFT of Autocorrelation of ME and PE

Another important factor in model validation is the Gaus-
sianity of the residue error. Fig. 6 shows the cumulative
distribution functions (CDF) for both modeling and prediction
errors, respectively, plotted against the Gaussian CDF. While
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Fig. 6: CDF of ME and PE

the CDF of the residue sequence appeared to be close to
Gaussian, a careful examination using the Q-Q plots and
Kolgomorov-smirnov test indicated that the residue error is
non-Gaussian. See [17] for details.

IV. A MODEL PREDICTIVE CONTROL APPROACH TOHEM

A. Stochastic programming formulation

With thermal parameters abstracted from the measurement,
we formulate the HEM control as a multi-stage stochastic
optimization problem [18]. The goal is to minimize the user’s
discomfort level subject to budget constraints and peak power
limit:

minimize
∑Th+1

t=1 Eπ‖x
in
t − dt‖

2

subject to (xt, yt) ∼ Φ(A,G,C)
0 ≤ pHVAC

t ≤ P HVAC
max

TE ≤ s ≤ TL

pDef
t = {

P Def
rate if s ≤ t < s+ d

0 o.w.

0 ≤ pPHEV
t ≤ P PHEV

max∑t=Th−1
t=0 TpPHEV

t = Q
pPHEV
t = 0 if t < TA or t > TD

0 ≤ pHVAC
t + pPHEV

t + pDef
t ≤ Pt∑Th−1

t=0 ztT (p
HVAC
t + pPHEV

t + pDef
t ) ≤ B

(11)

where the indoor temperature vectorxin
t is part of the state

evolution (xt, yt) ∼ Φ(A,G,C) specified by the stochastic
thermal dynamic equation (3).

A control policy π maps the measurementsY0,n =
{yn, yn−1, · · · , y0} to decision variables(pHVAC

n , pPHEV
n , s),

wheres is the start time of the deferrable and non-interruptible
load. Note that once the start time is decided, the detailed
power allocation is determined.

The stochastic comes from the modeling error as well as
the measurement noise, which make the optimization not
computationally tractable.

B. Stochastic optimization for HEM

We propose a multi-scale control architecture of HEM
shown in Fig. 7 based on the principle of model predictive
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control (MPC). The detailed optimization functions of slow
and fast time scale are stated in Sections IV-D and IV-E.

The measurements (indoor and outdoor temperatures)y[t]
is taken at fast time scale. Thermal parameters are obtained
by the modeling fitting using the past measurements. With
estimated parameters and temperature states data the Kalman
filter predict the thermal dynamic stateŝx[t + k|t] into the
future. Both states prediction and the pricing signalz[t] are
used in slow time scale MPC to distribute the power budget
to different loads. The detailed power allocation is controlled
in the fast time scale problem.

Slow time 
scale MPC

Fast time 
scale MPC

Kalman
Prediction

predictionmeasurement

current time current time

pricing

sensor
measurement

pDef
n

pHVAC
n , pPHEV

n

pHVAC [t]
pPHEV[t]
pDef[t]

t
t

x̂[t + k|t]

y[t]

y[t]

pHVAC
n (slow scale)

pHVAC [t]

z[t]

Fig. 7: Multi-scale HEM architecture

C. Weekly Budget Allocation

Given the weekly or monthly total budget, the HEM will
distribute the money to everyday according to the predicted
ambient temperature. Two different methods are considered
in this paper. One direct way is to allocate the budget in
proportion to the daily average outdoor temperature. The
other is known as water filling in wireless communication.
The problem is to allocate power to multi channels.Here, we
allocate the budget similarly. The money is distributed to every
particular day by solving the following optimization problem.

maximize
∑T

d=t log(1 + Bd

Td
)

subject to
∑T

d=t Bd = B
(12)

whereB is the total budget,Bd is the daily budget andTd is
the predicted daily average ambience temperature. If the daily
budget is not used up, the rest part will be put back to the
total budget pool and the HEM will reallocate the budget for
future with latest weather prediction. The solution is to fill the
daily temperature curve by the budget as in Fig. 8

D. Slow Time Scale Stochastic Optimization

We propose a MPC based suboptimal solution to the HEM
stochastic problem detail described in Table III, whereT is
the time interval (one hour in this paper). At the slow time
scale, the HEM predicts to the future based on the estimation
using Kalman filter with the measurement from the fast time
scale and optimizes the hourly power allocation and take
only the first step to implement. While solving the stochastic
optimization, the noise is replaced by the expectation to reduce
the complexity of the computation.

1
Td

1
Td

Day

Bd

Fig. 8: Water Filling Budget Allocation

TABLE III: Model Predictive Control in Slow and
Fast Time Scales

Model Predictive Control in Slow Time Scale
1 At hour t, compute Kalman state predictionŝxt+k|t usingyt.
2 Obtain the optimal start times∗ by minimizing the cost of deferrable load.
3 Solve for(p̂HVAC

i , p̂PHEV
i )

Th
i=t by the quadratic optimization:

4 minimize
∑Th+1

i=t+1

(

‖xin
i|t − di‖

2
)

5 subject to
∑Th

i=t T p̂PHEV
i = (Q −

∑t−1
k=1 TpPHEV

k )+

6 p̂PHEV
i = 0 if i < TA or i > TD

7 0 ≤ p̂HVAC
i + p̂PHEV

i + p̂Def
i ≤ Pi, i = t, · · · , Th

∑Th
i=t ziT (p̂HVAC

i + p̂PHEV
i + p̂Def

i )

8 ≤
(

Bd −
∑t−1

k=1 zkT (pHVAC
k + pPHEV

k + pDef
k )

)+

9 SetpHVAC
t = p̂HVAC

t andpPHEV
t = p̂PHEV

t .
10 t → t + 1, go to line 1 untilt = Th

Model Predictive Control in Fast Time Scale
11 At minutet, compute Kalman state predictionŝxin[t + k|t] usingyt.
12 Solve forû[i] by the quadratic optimization:

13 minimize{u[i]}

∑Tm+1
i=t+1 ‖xin[i|t] − d[i]‖2

14 subject to (x[i], y[i]) ∼ Φ(Am, Gm, Cm)

15 pHVAC [i] = u[i]PHVAC
rate , u[i] ∈ {0, 1}

16
∑Tm

i=t u[i] = Nk −
∑t−1

j=1 u[j].

17 Setu[t] = û[t].
18 t → t + 1, go to line 11 untilt = Tm

For simplicity, we will assume in the simulation that the
deferrable and non-interruptible load draws constant rated
powerP Def

rate.

E. Fast Time Scale Stochastic Optimization

The similar MPC principle applies to the fast time scale
problem as well, except for some loads we are dealing with
integer decision variables.

Considering the control problem for various loads is de-
composed by the slow time scale problem, we focus on the
control of HVAC at the fast time scale. The most widely used
control strategy of the HVAC is the on-off rule based control
(RBC), where the heating and the air conditioning is turned
on or off by the thermostat according to the actual temperature
measurement and the set point [19]. In practice, the length of
the interval between HVAC on-off states switching may be an
additional constraint as it influences the longevity.

Within the class of integer optimization, we formulate the
problem as choosing the on periods to minimize the discomfort
level meeting the slow time scale power allocation. Once the
switching time is determined, the HEM can implement the
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control of HVAC by artificially changing the set point without
actually installing a different controller.

Table III shows the outline of a model predictive control
strategy of fast time scale control of HVAC. Assuming that
the HVAC system works on the same power level during
the working periods, the number of on periods within each
hour can be calculated byNk = [pHVAC

k /P HVAC
rate ] with given

the total power budgetpHVAC
k in the kth hour. The allocation

of the on periods is formulated as a stochastic programming
with a binary action space. Since different kinds of loads are
decomposed in slow time scale problem, other loads can be
managed in the similar way. In this paper, the electricity price
is assumed constant over one hour, so we omit the fast time
scale problem for dryer and PHEV.

V. SIMULATION AND PERFORMANCE RESULTS

Three types of loads were considered in the simulation. As a
deferrable and non-interruptible load, the dryer was assumed
to start no earlier than 4PM and no later than 8PM, whose
working time will last two hours. A PHEV was assumed to
be at home from 8PM to 8AM. The charging rate was set to
be nonnegative which implied it could not supply power back
to the grid. An hourly peak power constraint, simply assumed
to be a sinusoid curve, was applied to the HEM as well as the
daily budget constraint.
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Fig. 9: Power Policy Example: Indoor Temp, Dryer and
PHEV Charing, HVAC, Total Power and Peak
constraints, Price

The control policy result is illustrated in Fig. 9. Taking the
price advantage, the PHEV charging was shifted to the price
valley. The dryer, with a tighter schedule deadline, took a
relatively low price. Note that the peak power constraint is
bounded in some periods. As a consequence, power allocated
to HVAC is limited , which caused the indoor temperature
deviation from the desired.

To show the impact of MPC approach, we compared the
MPC algorithm with a benchmark solution using fabricated

thermal parameters and desired temperature. Since the three
kinds of loads are combined only in the peak power constraints
and the daily budget, we just compare the control of the
HVAC, removing other loads from these two constraints. In
the simulation, we present the power strategy of the proposed
approach and compare it with the performance bound (PB)
and the rule based control strategy (RBC) used in the HVAC
nowadays. In Fig. 10 we draw the discomfort level comparing
with an strategy mixing the MPC and the LQG (thus referred
to as MPC-LQG) originally proposed in [11], whose perfor-
mance will be close to open loop when the constraints are tight
and be close to LQG when the constraints are not bounded.
The performance bound is obtained by assuming knowing the
future weather and system noise perfectly.
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Fig. 10: 1 day performance comparison between Multi-scale
Algorithm (MPC), MPC-LQG, PB and RBC

A theoretical simulation was carried out where the outdoor
temperature was assumed to follow a auto-regression model.
The plot of discomfort level (a measure based on the Predicted
Mean Vote (PMV) [20]) against energy cost is shown in
Fig. 10. At the PMV level of 1.5, the saving of the proposed
approach comparing with MPC-LQG was about 20%. While
the MPC spent 8% more than the performance bound. At the
same discomfort level, the multi-scale algorithm spent 30%
less than RBC. Note that when the budget constraint was tight,
the difference among the three approaches was small, which
can be explained by the fact that all strategies have limited
power available for scheduling.

Fig. 11: Performance comparison between RBC, PB and
Multi-scale Algorithm (MPC) with various ambient
temperature noises

The comparison with a variety of ambience temperature
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prediction noises is shown in Fig. 11. With the same budget,
the discomfort level with various noise amplitude are drawn.
The simulation result shows that the accuracy of the weather
report matters significantly. The gap between MPC and PB
increased sharply as the prediction being more noisy.

To make the simulation more close to the realistic, com-
parison between the proposed multi-scale algorithm (MPC)
and the real HVAC performance was carried out based on the
real measurement data. In the simulation, the daily dynamic
thermal parameters were from the model fitting. With thermal
parameters fitted from data of previous day, the HEM allocated
the power for the next day, while the indoor temperature
changes according to the dynamic equation with the real
parameters of the next day. The performance bound was
attained by assuming knowing the future weather and system
noise perfectly, as well as the dynamic thermal parameters.
To show the impact of accuracy of the parameter fitting, the
MPC knowing future parameters is plotted as a comparison.
The real power consumption of the HVAC using in the house
is plotted as one single point in Fig. 12. Because of the lack
of set points to the HVAC in the measurements, hourly indoor
temperature average is used as the desired temperature. At the
same discomfort level, the multi-scale algorithm saves about
12% comparing to the current HVAC strategy.
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Fig. 12: 10 days performance comparison between RBC ,
PB and Multi-scale Algorithm (MPC)

VI. CONCLUSION

We formulate in this paper a multi stage stochastic optimiza-
tion framework for home energy management system which
deals with various characteristic loads. As an interface with the
aggregator through real-time pricing signal and economically
incentivized power consumption profile, the HEM controls
power allocation to minimize the user discomfort level. We
propose a multi-scale computationally tractable suboptimal ap-
proach to the stochastic programming problem to decompose
the control of different types of loads. The linear thermal
dynamic model is validated and the online model parameter
estimation algorithm is proposed. The comparison with real
HVAC performance is carried out.

We have made a number of simplifying assumptions that
need to be justified and studied further for practical imple-
mentations. More detailed outdoor temperature model should

be considered in simulation. The impact of the economically
based scheduling on the life-time of appliances, especially in
the context of PHEV charging and bang-bang HVAC control,
warrants further study. Carefully analysis is needed for budget
allocation algorithm. Nonetheless, many of the modifications
required to circumvent the above simplifying assumptions can
be incorporated into the proposed optimization framework.
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