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Inter-Decadal Climate Variability in the Edwards Aquifer: Regional 

Impacts of DCV on Crop Yields and Water Use 

 

Abstract: Agricultural production and water resources are sensitive to climate variability and 

change. Decadal climate variability (DCV) phenomena are in the early stages of being explored. 

This paper investigates the economic value of DCV information in the Edwards Aquifer region 

of Texas as well as possible adaptation to that information. To do this we first do an econometric 

estimate of the impacts of DCV phase combinations on crop yields in the EA region, then we 

alter regional model to include DCV information. We find that the average economic value of 

perfect DCV information forecast is $40.76 million per year. And for a less perfect forecast in 

terms of knowing DCV information under transition probability, the average economic value is 

around $1.52 million per year. 

1 Introduction 

Natural climate variability and change involves droughts, heavy precipitation, heat waves 

and other extremes. Such variability can affect agricultural production. Inter-seasonal to inter-

annual climate variability, i.e., El Niño-Southern Oscillation (ENSO), has been analyzed by a 

variety of studies (Wolter and Timlin, 1993, 1998; Solow et al., 1998; Wolter et al., 1999; 

Adams et al., 1999; Chen et al., 2005; Wang et al., 2012). A related longer term phenomenon 

called decadal climate variability (DCV) has recently attracted attention (Mehta, Rosenberg, and 

Mendoza, 2011, 2012; Fernandez, 2013), but investigation on agricultural implications has only 

been done in select regions. Here an analysis will be done on the economic effects of DCV 



3 

 

phenomena in the Texas Edwards Aquifer region near San Antonio. The specific DCV 

phenomena analyzed here are the Pacific Decadal Oscillation (PDO), the Tropical Atlantic 

Gradient (TAG), and the West Pacific Warm Pool (WPWP). 

This paper investigates the economic value of DCV information in the Edwards Aquifer 

region of Texas considering the effects on crop production, water use, and land conversion as 

well as possible adaptation to that information. To carry out this study, first we use econometric 

methods to estimate the impacts of DCV phases on EA region crop yields, then we update and 

improve the Edwards Aquifer Simulation Model (EDSIM) (McCarl et al., 1999) to incorporate 

DCV phases and in turn study the value of DCV information. 

2 Background on DCV phenomena 

Here we discuss the nature of the DCV phenomena to be analyzed. Specifically, three 

DCV phenomena are considered, the Pacific Decadal Oscillation (PDO), the Tropical Atlantic 

Gradient (TAG), and the West Pacific Warm Pool (WPWP). Each of these DCV phenomenon 

has a positive phase and a negative phase. Below the DCV phase combinations are ordered as 

PDO, TAG and WPWP with a positive sign for a positive phase and a negative sign for a 

negative phase, for example PDO-TAG-WPWP- denotes negative phases of PDO, TAG and 

WPWP. Jointly there are 8 DCV phase combinations. 

The PDO is decadal persistent pattern of change in sea surface temperatures (SSTs) over 

the North Pacific. In the past century there were two full PDO cycles, a positive phase prevailed 

from 1925 to 1946 and from 1977 through the mid-1990s; while the negative PDO dominated 

from 1890 to 1924 and from 1947 to 1976 (Mantua et al., 1997; Minobe, 1997). The PDO is 

sometimes regarded as a long-term ElNiño/LaNiña-like climate variability (Mantua and Hare, 
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2002) and the PDO-ENSO system helps explain decreases in rainfall in southwestern U.S. 

(Asmerom et al., 2013). 

The TAG phases are known to persist for a period of 12-13 years and are associated with 

alterations in rainfall in the southern, central, and mid-western U.S. (Murphy et al., 2010; Mehta, 

Rosenberg, and Mendoza, 2012). 

The WPWP is a phenomenon in the western pacific again associated with SSTs (Yan et 

al., 1992; Wang and Mehta, 2008). It has been found to be correlated with the temperature and 

precipitation anomalies in the U.S plus water availability (Wang and Mehta,2008). 

3 Background on the Edwards Aquifer 

The Edwards Aquifer (EA) is the major water source for more than 2 million people in 

south central Texas around San Antonio and provides much of the base flow to the Guadalupe 

River. EA recharge mainly depends on precipitation. DCV phases can affect regional 

precipitation, in turn influencing EA recharge. Figure 1 shows average monthly EA recharge 

under positive and negative phases of ENSO and DCV. There we see higher monthly recharge 

occurs under a positive PDO phase, which persists for a number of years  

EA recharge is also affected by the other DCV phenomena. In particular more monthly 

recharge occurs during January to September under a positive TAG phase while more recharge 

appears from December this year to June in the next year under a negative WPWP phase. DCV 

phases also alter temperature and precipitation plus their variability (Mehta, Rosenberg, and 

Mendoza, 2012; Jithitikulchai, 2014). 
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Figure 1 Monthly Recharge under ENSO and DCV 

4 Literature Review of Climate Variability 

4.1 Regional Analysis of Climate Variability 

Climate variability has been shown to be highly correlated with the anomalies in 

temperature and precipitation (Pavia et al., 2006; Canon et al., 2007; Asmeron et al., 2007; Zhou 

et al., 2006; Wang et al., 2008; Azuz, 2012). Ropelewski and Halpert (1986) showed that in 

southeastern United States ENSO was associated with above normal precipitation and below 

normal temperature. Extremely dry conditions have been found to be likely to occur in La Niña 

years, while in years of El Niño, both dry and wet extremes are probable (Canon et al., 2007). 

Drought and wetness in the western U.S. has been linked to ENSO and PDO (Cook et al., 2004). 
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Gershunov and Barnett (1998) pointed out that in the contiguous United States ENSO and PDO 

can enhance or weaken each other depending on their phases. Zhou et al. (2006) found that when 

PDO and ENSO are in common phases, subsurface ocean connections in midlatitude-to-tropical 

are reinforced, while when PDO and ENSO are out of phase the connections are weak. 

In terms of other climate variability, about 52% of the temporal and spatial variance in 

drought frequency in the contiguous United States can be explained by variations in the PDO and 

the Atlantic Multidecadal Oscillation (AMO) (McCabe, 2004). Mehta, Rosenberg, and Mendoza 

(2012) found that decadal variability in surface air temperature and precipitation was 

significantly correlated with PDO, TAG, and WPWP. 

4.2 Effects of Climate Variability on Agriculture 

Climate variability is associated with changes in temperature, precipitation, droughts, 

floods, heat waves, frost, and other extremes. These weather and climate conditions affect 

agricultural performance. DCV patterns of climate variability can be partially or wholly 

predictable and such predictions may provide farmers crucial information on likely crop yields 

and water availability. 

National studies have also been done.  Solow et al. (1998) estimated the economic value 

of ENSO information in the context of U.S. agriculture. They examined the value of information 

on three different ENSO phases (El Niño, Neutral, and La Niña) using simulated results on the 

effects of ENSO phases on crop yields developed through a biophysical model called the Erosion 

Productivity Impact Calculator (EPIC). They modelled the value of improved decision-making 

given ENSO information and estimated the annual economic value of perfect ENSO prediction 

to U.S. agriculture as $323 million. Adams et al. (1999) also used a similar approach to examine 
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the results of ENSO phases finding that El Niño phase caused a $1.5 to $1.7 billion loss and that 

La Niña resulted in a $2.2 to $6.5 billion loss in agriculture. Chen, McCarl, and Hill (2002) 

evaluated the agricultural value of more detailed information on ENSO phase definition, 

specifically the Stone and Auliciems five ENSO phases, and found that the more detailed ENSO 

information nearly doubled the value of information. 

Regional assessments of ENSO information on agriculture have also been done. Chen et 

al. (2005) assessed the value of ENSO information in terms of water and cropping management 

in the Edwards Aquifer finding adaptation to ENSO impacts involved changes in agricultural 

crop mixes. Their estimation results indicated that the value of ENSO information was $1.1 

million to $3.5 million per year, depending on the initial water elevation in the aquifer. Hansen et 

al. (1998) studied ENSO impacts on agriculture in Alabama, Florida, Georgia, and South 

Carolina and found that ENSO phase considerably influenced the values of soybean, peanut, 

corn, and tobacco, the yields of corn and tobacco, and the harvested acres of soybean and cotton. 

From the viewpoint of economic analysis of DCV impacts on agriculture, Kim and 

McCarl (2005) investigated the information value of the North Atlantic Oscillation (NAO) in the 

United States and Europe. They found that welfare gains from early NAO phase announcements 

ranged from $0.6 billion to $1.2 billion per year. Fernandez (2013) examined the value of DCV 

information (including PDO, TAG, and WPWP) on agricultural, residential, and industrial water 

users in the Missouri river basin (MRB) and estimated the value for case of perfect information 

to be $5.2 billion per year. 
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4.3 DCV Effects on Crop Yields 

In assessing the agricultural value of DCV information, it is important to estimate the 

effects of DCV phases on crop yields. Mehta, Rosenberg, and Mendoza (2012) applied EPIC to 

simulate the impact of three DCV phenomena (PDO, TAG, and WPWP) on dryland corn and 

wheat yields in the Missouri river basin. They found that the DCV impacts on crop yields could 

be as much as 40%-50% of average yield with the impacts depending on DCV phenomena and 

location. Kim and McCarl (2005) used an econometric model with historical data to estimate 

NAO effects on crop yields for five US crops (wheat, corn, soybean, rice, and sorghum) and four 

European crops(wheat, corn, rice, and sorghum). Their estimation results showed that NAO was 

associated with variations in crop yields both in U.S. and Europe and the effects of NAO phases 

on crop yields were of a size with the ENSO effects on yields. Jithitikulchai (2014) used skew-

normal regression to estimate the direct and indirect effects of PDO, TAG, and WPWP phases on 

yields of five crops in U.S. and found significant and regionally varying DCV effects on crop 

yield means, variances, and skewness. 

4.4 DCV Effects on Water Resources 

Climate variability can increase water competition between agriculture and non-

agriculture users (Motha and Baier, 2005). Mehta, Rosenberg, and Mendoza (2011) used the Soil 

and Water Assessment Tool (SWAT) model with the Hydrologic Unit Model of the U.S. 

(HUMUS) data set to simulate impacts of PDO, TAG, and WPWP phases on water yields in the 

MRB. They found that the impacts from PDO and TAG ranged as much as ±20% of average 

water yield in some areas. Fernandez (2013) analyzed the DCV impact on water use and water 

allocation among agricultural, residential, and industrial sectors in the MRB region and found 
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5.1 Econometric Model 

Decadal climate variability can directly impact crop yields and likely will have differing 

impacts across different crops and regions (Kim and McCarl, 2005; Mehta, Rosenburg, and 

Mendoza, 2012; Jithitikulchai, 2014). Also there exist associations between DCV phenomena 

and precipitation and temperature anomalies (Mehta, Rosenburg, and Mendoza, 2011), and these 

precipitation and temperature anomalies in turn affect crop yields. Based on the above 

considerations, we first examine how the climate is influenced by DCV phase combinations then 

we estimate the crop yield as a function of time, climate variables, DCV phase combination, and 

ENSO dummies. Then, we can calculate the direct and indirect DCV phase combination effects 

on crop yields. 

For DCV phase combination impacts on weather, we follow Jithitikulchai (2014) and use 

the following linear functional form, 

(1) 1 2 3 4* * *Climate b b Time b DCV b ENSO       

where Climate  includes monthly mean temperature, total precipitation, and Palmer Drought 

Severity Index (PDSI). Time  denotes time trend as a proxy for technological progress. DCV  are 

dummy variables for 8 DCV phase combinations, and ENSO  are the dummy variables for ENSO 

phases. We assume that   is normally distributed with zero mean. 

Precipitation and temperature are the major two climate factors that have been used when 

analyzing the climate effects on crop production (Chen, McCarl, and Schimmelpfennig, 2004; 

Kim and McCarl, 2005; McCarl, Villavicencio, and Wu, 2008; Cai, 2009). Besides precipitation 

and temperature, we also consider PDSI as an index for drought and wetness. Time is added to 

remove systematic factors like technical advancement. Moreover we use ENSO and DCV as the 
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proxy variables for climate variability, with ENSO as short-term variability and DCV as 

medium-term variability. Note DCV impacts are the key points we are going to study, however, 

we also add ENSO variables in the regression function to remove its short-term effects. 

Many studies show there is a nonlinear relationship between crop yield and climate 

factors (McCarl, Villavicencio, and Wu, 2008; Schlenker and Roberts, 2009; Cai, 2009). 

Consequently, we use a log-linear model. Logarithmic transformation is also a good way to 

transform a highly skewed variable into one that is more approximately normal (Benoit, 2011). 

Thus, the regression function for crop yields is as below, 

(2) 1 2 3 5log( ) * * 4* *Yield a a Time a Climate a DCV a ENSO        

where Yield  denotes the crop yields. We also assume that   is normally distributed with zero 

mean.  

From equations (1) and (2), we know that the total DCV effect on crop yields involves 

the direct DCV impact on crop yields plus the indirect effect of DCV information on crop yields 

through climate variables. Let the crop yield function denoted as f  and the climate function as 

g , then we have the following total DCV effect on log crop yields. 

(3) 
ˆ ˆ ˆlog( )

*
Climate

Yield f f g

DCV DCV Climate DCV

   
 

   
  

Note here 
f̂

DCV




 is the direct DCV impact on log crop yield, 

ˆ ˆ
*

Climate

f g

Climate DCV

 

 
  

is the indirect effect of DCV information on log crop yield. With the estimation results, we know 

that 
4 3 3

log( ) ˆˆ ˆ
Yield

a a b
DCV


 


. But this marginal effect is on log crop yield. In terms of crop yield 
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itself, we can say that switching from DCV=1 to DCV=0, we expect an  4 3 3
ˆˆ ˆ

1 *100
a a b

e


  

increase in the mean of crop yields (the derivation is in the Appendix). 

Since equation (1) and equation (2) have the same regressors, that is, time, DCV and 

ENSO, and Climate  also enters as a regressor in equation (2), the error terms   and   would be 

highly correlated. Due to this consideration, we need to estimate these equations as a system. 

First, we transform the equations to reduced form as in equation (4), where   is a linear 

combination of   and  . Then we estimate the equations in a system to get the marginal effect 

of DCV phases on crop yields. Similarly, we also can know that the total effect of ENSO 

information on log crop yields, 
5 3 4

log( ) ˆˆ ˆ
Yield

a a b
ENSO


 


. After some algebraic transformation, we 

have the percentage change of crop yields when ENSO=1 relative to the case when ENSO=0. 

(4)

       1 3 1 2 3 2 4 3 3 5 3 4

1 2 3 4

log( ) * * *

* * *

Yield a a b a a b Time a a b DCV a a b ENSO

Climate b b Time b DCV b ENSO





        


    
 

5.2 Data Specification 

The data used here are in the form of a panel at the county level for the years ranging 

from 1968 to 2012. Six EA region counties (Kinney, Uvalde, Medina, Bexar, Comal, and Hays) 

are included in the analysis. For the crop yields, data are drawn from Quick Stats (NASS, 

USDA) for 5 crops: corn, cotton, oats, sorghum, and winter wheat. Sorghum and winter wheat 

yields will be separately estimated for irrigated and non-irrigated (dry) production. For corn, 

cotton, and oats, due to limited observations, they can only be analyzed as an aggregate with the 

results used for both irrigated and dry production. 
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In terms of independent variables, there are two basic types: climate data and information 

on ENSO and DCV. For the climate we assembled monthly temperature, precipitation, and PDSI 

data from the National Climate Data Center, National Oceanic and Atmospheric Administration 

(NCDC-NOAA). 

Data on monthly mean temperature and total precipitation are at the county-level. The 

choice of station to get the temperature and precipitation follows the choices used by the 

Edwards Aquifer Authority (EAA) as they appear on their website
1
, with the choices detailed in 

Appendix Table A1. When data were missing for some station, stations nearby were chosen as a 

proxy. Note since monthly mean temperature data in Uvalde is only available from 1968-2004, 

then the estimation for that county only covers that period. 

The monthly PDSI data are only available at the NOAA climate division level. In the EA 

region Kinney and Uvalde fall into Texas Division 6, and the remaining four counties are in 

Texas Division 7. 

In addition, we also consider possible seasonal effects of climate. We divide the monthly 

climate data into four seasons, that is, March, April, and May in Spring, June, July, and August 

in Summer, September, October, and November in Fall, and the rest in Winter. 

DCV data are obtained from Fernandez (2013) and Jithitikulchai (2014). The DCV phase 

combinations are ordered as PDO, TAG and WPWP with a positive sign for a positive phase and 

a negative sign for a negative phase. Data on the years in each DCV phase combination can be 

seen from Table 1. In this table, we can find that 1950s drought years are mainly included in 

PDO-TAG+WPWP+. Recharge of the Edwards aquifer was also very low in these drought years. 

                                                 
1
 See Table 3b in Edwards Aquifer Authority Hydrologic Data Report for 2011. The source is 

http://www.edwardsaquifer.org/documents/2012_Hamilton-etal_2011HydrologicData.pdf. 

http://www.edwardsaquifer.org/documents/2012_Hamilton-etal_2011HydrologicData.pdf
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For high recharge years, 1987 and 1992 are PDO+TAG+WPWP-, while 1958 and 2004 are 

PDO+TAG+WPWP+. 

 

Table 1 Years in DCV Phase Combinations 

DCV Phase 

Combinations 
Years in Each DCV Phase Combination  

PDO- TAG- WPWP- 
1949 1965 1971 1972 1974 1975 1989 1991 

1994 2008   
   

 

PDO- TAG+ WPWP- 1955 1966 1967 2001     

PDO- TAG- WPWP+ 1959 1963 1968 1973 1999 2000 2009  

PDO+ TAG+ WPWP- 
1976 1978 1979 1980 1982 1983 1987 1992 

1997 2006       

PDO- TAG+ WPWP+ 
1950 1951 1952 1953 1954 1956 1961 1962 

1964 1969 1970 1990 2007 2010 2011  

PDO+ TAG+ WPWP+ 1957 1958 1960 1981 1998 2004 2005  

PDO+ TAG- WPWP- 1977 1984 1985 1986 1993 
  

 

PDO+ TAG- WPWP+ 1988 1995 1996 2002 2003 
  

 

Source: DCV information during 1949-2010 is gotten from Fernandez (2013). 2011 DCV information is updated 

from Jithitikulchai (2014). 
 

Based on the DCV information in Table 1, we can calculate the probability of DCV phase 

combinations by calculating the relative incidence in terms of history. The historical probability 

of each DCV phase combination is shown in Table 2. Furthermore, we also want to know the 

transition probability for each DCV phase combination. For instance, if we know the initial DCV 

phase combination is PDO-TAG-WPWP-, what is the probability with which this combination 

will move to another combination next year? To do this for each of the 8 DCV phase 

combinations we count incidence of transition during the historical years to each subsequent 

phase combination. The transition probabilities are in Table 3. 
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Table 2 Historical Probability of DCV Phase Combinations 

DCV Phase Combination Historical Probability 

PDO-TAG-WPWP- 0.159 

PDO-TAG+WPWP- 0.063 

PDO-TAG-WPWP+ 0.111 

PDO+TAG+WPWP- 0.159 

PDO-TAG+WPWP+ 0.238 

PDO+TAG+WPWP+ 0.111 

PDO+TAG-WPWP- 0.079 

PDO+TAG-WPWP+ 0.079 

 

Table 3 Transition Probability of DCV Phase Combinations 
  Phase Combination Transitioned To 

  PDO- 

TAG- 

WPWP- 

PDO- 

TAG+ 

WPWP- 

PDO- 

TAG- 

WPWP+ 

PDO+ 

TAG+ 

WPWP- 

PDO- 

TAG+ 

WPWP+ 

PDO+ 

TAG+ 

WPWP+ 

PDO+ 

TAG- 

WPWP- 

PDO+ 

TAG- 

WPWP+ 

In
it

ia
l 

P
h

as
e 

C
o

m
b

in
at

io
n
 

PDO-TAG-WPWP- 0.125  0.125  0.375  0.250 0.125 

PDO-TAG+WPWP- 0.250  0.250 0.250   0.250  

PDO-TAG-WPWP+ 0.333 0.167  0.333 0.167    

PDO+TAG+WPWP- 0.286   0.143 0.286 0.286   

PDO-TAG+WPWP+   0.154 0.308 0.308 0.154  0.077 

PDO+TAG+WPWP+ 0.167  0.167 0.167 0.167 0.167 0.167  

PDO+TAG-WPWP- 0.250 0.500   0.250    

PDO+TAG-WPWP+ 0.250  0.250   0.250  0.250 

 

Following Solow et al. (1998) and Chen et al. (2005), ENSO data is drawn from the 

Japan Meteorological Agency (JMA). The ENSO index from JMA is a 5-month running average 

of mean sea surface temperatures (SSTs) anomalies over the tropical Pacific region. This region 

is defined in latitude from 4°S to 4°N, and in longitude from 150°W to 90°W. The index is 

defined based on cropping year (October this year to September next year). If values of the index 

are greater than or equal 0.5°C for consecutively 6 months (including October, November and 

December), the ENSO year is categorized as El Niño, if the index values in that period are less 

than or equal -0.5°C, then declared a La Niña year, otherwise, it is neutral year. 
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5.3 Estimation Results Discussion 

The estimation is done under a seemingly unrelated regression (SUR) approach due to the 

consideration that the disturbances in equations (1) and (2) are correlated. Use of SUR can help 

to gain efficiency in estimation by combining information on several equations (Moon and 

Perron, 2006). With the reduced form equation (4), we can estimate the equations simultaneously 

and get the total marginal effect of DCV information on crop yields. 

Table 4 shows the estimation results of DCV impacts on log crop yields. From this table 

we can see that the log yield of corn decreases by 0.186 unit under PDO+TAG-WPWP+ relative 

to the base year of PDO-TAG-WPWP-. In terms of percentage change, it means switching from 

PDO-TAG-WPWP- to PDO+TAG-WPWP+, we can expect a significant 17% decrease in mean 

corn yield. While for oats yield, there is a significant 34.8% increase in year of PDO+TAG-

WPWP+ relative to the base year. DCV impacts on oats yield under all DCV years are all 

significantly positive relative to the base year PDO-TAG-WPWP-. And the DCV effects on 

yields of irrigated sorghum are not statistically significant. 

 

Table 4 Econometric Results of Log Crop Yield Regressions 
 Corn Cotton Oats Sorghum 

-Irr 

Sorghum 

-Dry 

WinWht 

-Irr 

WinWht 

-Dry 

Time 0.011*** 

(0.003) 

0.033*** 

(0.004) 

0.006** 

(0.002) 

0.014*** 

(0.002) 

0.009*** 

(0.003) 

0.010*** 

(0.003) 

0.007** 

(0.003) 

C1 0.136 

(0.105) 

0.581*** 

(0.180) 

0.432*** 

(0.094) 

-0.050 

(0.065) 

0.219** 

(0.091) 

0.242*** 

(0.086) 

0.354*** 

(0.092) 

C2 -0.016 

(0.199) 

0.307 

(0.361) 

0.425** 

(0.176) 

0.088 

(0.124) 

0.328* 

(0.185) 

0.190 

(0.143) 

0.484** 

(0.201) 

C3 -0.070 

(0.108) 

-0.028 

(0.180) 

0.215** 

(0.096) 

-0.017 

(0.064) 

0.146 

(0.105) 

0.021 

(0.082) 

-0.082 

(0.108) 

C4 0.111 

(0.091) 

0.289* 

(0.151) 

0.415*** 

(0.079) 

-0.037 

(0.049) 

0.151* 

(0.079) 

0.202*** 

(0.072) 

0.118 

(0.083) 

C5 -0.186* 

(0.110) 

0.159 

(0.177) 

0.299*** 

(0.101) 

-0.012 

(0.071) 

-0.026 

(0.097) 

0.126 

(0.092) 

0.156 

(0.096) 

C6 -0.158 

(0.104) 

0.054 

(0.160) 

0.380*** 

(0.091) 

-0.101 

(0.089) 

-0.195 

(0.134) 

0.128 

(0.106) 

0.177 

(0.124) 
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 Corn Cotton Oats Sorghum 

-Irr 

Sorghum 

-Dry 

WinWht 

-Irr 

WinWht 

-Dry 

C7 0.037 

(0.119) 

0.148 

(0.188) 

0.580*** 

(0.103) 

-0.015 

(0.073) 

0.174 

(0.107) 

0.089 

(0.088) 

0.313*** 

(0.104) 

El Nino -0.009 

(0.070) 

0.077 

(0.117) 

-0.092 

(0.064) 

0.016 

(0.043) 

0.007 

(0.064) 

-0.180*** 

(0.055) 

-0.050 

(0.067) 

La Nina 0.025 

(0.080) 

-0.001 

(0.134) 

0.013 

(0.069) 

0.023 

(0.051) 

0.000 

(0.080) 

-0.037 

(0.071) 

0.038 

(0.077) 

Constant 4.026*** 

(0.090) 

5.521*** 

(0.146) 

3.118*** 

(0.079) 

4.068*** 

(0.050) 

3.581*** 

(0.081) 

3.314*** 

(0.076) 

2.873*** 

(0.085) 

R_sq 0.129 0.483 0.266 0.528 0.143 0.450 0.202 

Obs. 217 109 213 94 181 75 173 

Note: 1) Sorghum-Irr and Sorghum-Dry denote irrigated sorghum and dry sorghum, respectively. And WinWht-Irr 

and WinWht -Dry are irrigated winter wheat and dry winter wheat, respectively. 2) C1~C7 are dummies for eight 

DCV phase combinations. C1=PDO+TAG-WPWP-, C2=PDO-TAG+WPWP-, C3=PDO-TAG-WPWP+, 

C4=PDO+TAG+WPWP-, C5=PDO+TAG-WPWP+, C6=PDO-TAG+WPWP+, C7=PDO+TAG+WPWP+, PDO-

TAG-WPWP- is excluded due to the consideration of collinearity. 3) Values in parentheses are standard errors with 

* for p<0.1, ** for p<0.05, and *** for p<0.01, respectively. 4) R_sq denotes R squared value, and Obs. is the 

observation number. 
 

Since there are 8 DCV phase combinations, it would be more interesting to know the 

percentage change in crop yields under all 8 DCV phase combinations, so we re-compute the 

results as percentage changes from the mean yield over all 8 phase combinations. In doing this 

we only use estimation results that are significant at a 90% confidence level. The results are 

shown in Table 5. We will discuss the DCV effects for each DCV phase combination in turn 

below. 

The DCV phase combination PDO+TAG-WPWP+ is associated with decreases of 5-15% 

in the yields of all crops except irrigated sorghum. Similar results can be found in the year of 

PDO-TAG-WPWP-, except that there is a larger decrease in oats yield and a small increase in 

corn yield. For the DCV phase combination of PDO+TAG-WPWP-, all crop yields increase, 

with cotton yield increasing by 67.25%. Also the yields for most of the crops increase under 

PDO+TAG+WPWP- except for dry winter wheat.  

 According to Mehta, Rosenburg, and Mendoza (2012), PDO+ was generally positively 

correlated with the increase of precipitation in almost the entire MRB region, while precipitation 
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anomalies with PDO- were generally negative. In PDO+TAG+ WPWP+ year, the yields of corn, 

oats, and dry winter wheat increase, while the yields of cotton, dry sorghum, and irrigated winter 

wheat decrease. In this case, PDO+ might not dominate in the phase combination 

PDO+TAG+WPWP+. 

For the year of PDO-TAG+WPWP+, as which the 1950s drought are classified, there are 

yield decreases of 5-10% in cotton, dry sorghum, irrigated and dry winter wheat. The yields of 

most crops decrease by 5-15% under PDO-TAG-WPWP+. And there are positive and negative 

yield changes under DCV phase combination PDO-TAG+WPWP-. 

 

Table 5 Total DCV Impacts on Crop Yields (% Change) 

 

PDO- 

TAG- 

WPWP- 

PDO- 

TAG+ 

WPWP- 

PDO- 

TAG- 

WPWP+ 

PDO+ 

TAG+ 

WPWP- 

PDO- 

TAG+ 

WPWP+ 

PDO+ 

TAG+ 

WPWP+ 

PDO+ 

TAG- 

WPWP- 

PDO+ 

TAG- 

WPWP+ 

Corn  1.34 1.34 1.34 1.34 1.34 1.34 1.34 -15.66 

Cotton -11.55 -11.55 -11.55 21.92 -11.55 -11.55 67.25 -11.55 

Oats -40.92 12.10 -16.94 10.56 5.24 37.70 13.12 -6.12 

Sorghum  

-Irr 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Sorghum  

-Dry 
-6.96 31.82 -6.96 9.31 -6.96 -6.96 17.52 -6.96 

WinWht  

-Irr 
-5.72 -5.72 -5.72 16.65 -5.72 -5.72 21.67 -5.72 

WinWht  

-Dry 
-11.36 50.93 -11.36 -11.36 -11.36 25.44 31.11 -11.36 

Note: 1) Sorghum-Irr and Sorghum-Dry denote irrigated sorghum and dry sorghum, respectively. And WinWht-Irr 

and WinWht -Dry are irrigated winter wheat and dry winter wheat, respectively. 2) The total DCV effects are 

calculated based on the estimated results with 90% statistical significance. 
 

6 Simulating Value of Information 

The simulation of the value of DCV information will be done using a regional 

agricultural model that includes crops and livestock. The model is an extension of EDSIM, an 

economic and hydrological cropping, municipal and industrial, and water use choice simulation 
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model of the EA region. EDSIM model optimizes expected social net benefits with choice of 

crop mix, plus agricultural, municipal, and industrial water use subject to land and hydrologic 

constraints. For this study livestock production was added into EDSIM to allow analysis of the 

role of livestock in adjusting to drought, plus land conversion from cropping to grazing. Also 

EDSIM is stochastic with in this case 8 states of nature included to depict the DCV phase 

combinations. Then we added the DCV impacts on crop yields that we got from the econometric 

step into EDSIM to examine the economic value of DCV information in agricultural production, 

water management, and land allocation. 

6.1 EDSIM Model Structure 

EDSIM simulates agricultural, municipal, and industrial water use, plus irrigated versus 

dryland cropping, livestock herd size, pumping cost and springflow. It optimizes consumers’ and 

producers’ surplus simulating the economic allocation of water subject to pumping limits. The 

following equation (5) shows the objective function with DCV information. 

(5)

/ /( ) * ( , ,
: _ *

, , , )

pzd r d r d pzrcsd pzrmd

d d

pzrld pzrd prmd prmd

k IRRLAND prob h CROPPROD AGWATER
Max prob DCV

LIVEPROD GRASSUSE MUN IND

  
  

  

 

Historical probability of the DCV phases is represented by _ dprob DCV  which is 

calculated based on DCV (d). And /r dprob  is the probability of a recharge state r given a DCV 

phase combination. Function k denotes the cost of developing new irrigated land (IRRLAND) in a 

county (p) and lift zone (z), and function h is the net benefit from agricultural production 

(CROPPROD), livestock production (LIVEPROD), and water use in agricultural (AGWATER), 
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municipal (MUN), and industrial (IND) sectors. GRASSUSE is the acreage of grassland land used 

by livestock. 

Constraints on land conversion are defined in the similar way as McCarl et al. (1999) 

except including the DCV phases. Irrigated land use (IRRLAND) cannot exceed the initial 

irrigated land available less the irrigated land converted to dryland and grassland. Likewise, 

grassland use (GRASSUSE) is limited to the available initial grassland plus land converted to 

grassland from irrigated land. 

DCV information is mainly used in three aspects in the EDSIM model. First the original 

nine states of nature is changed to eight combinations of DCV phases and corresponding 

historical DCV probability is applied; Second data on DCV impacts on crop yields will be added 

in the model. Data on DCV impacts on corn, cotton, and oats will be used for both irrigated and 

dryland practices. Additionally impact data for dryland sorghum will be applied as a proxy to 

grass production and other dryland crops excluding corn, cotton, oats, sorghum, and winter 

wheat. Average DCV impacts data for irrigated corn, cotton, oats, sorghum, and winter wheat 

under each DCV phase combination will be used for other irrigated crops; Third, the adaptation 

of crop mix and livestock mix is examined in detail under different DCV phase combinations. 

When DCV information is considered in crop/livestock mix adaptation, the transition probability 

is used for each of the 8 initial points for the DCV phase combinations. 

The crop mix constraint is defined in equation (6). Crop land use (CROPROD) is a 

convex combination of historical crop mixes (cropmixdata) for crops (c) and mix possibilities (x) 

in county (p). Different crop mixes can be chosen depending on knowledge of DCV phase and 

phase strength information. Following Fernandez (2013), we have three cases to discuss here. 

The first one is the historical distribution case in which crop mix is selected without DCV 



21 

 

information. The second one is the transition probability case where we know the DCV 

information to setup crop mix. The last one is the perfect information case where both DCV 

phase combination and phase strength information are known in advance. Similar to the crop mix 

constraint, constraint of livestock mix is set in these three cases. 

(6)

 ,   

 ,   

 

pzrcsd

s

pcx px

x

pcx pxd

x

pcx pxrd

x

CROPPROD

cropmixdata CROPMIX without DCV information for all p,z,r,c,d

cropmixdata CROPMIX with DCV information for all p,z,r,c,d

cropmixdata CROPMIX with DCV and phase 







 ,   strength information for all p,z,r,c,d









 

Other constraints are defined in the same way as stated in McCarl et al. (1999) except 

adding the DCV phases. For instance, pumping cost is a linear function of aquifer lift, both 

ending water level and springflow level are a function of recharge level, initial water level, and 

total water use (AGWATER+MUN+IND), respectively. 

6.2 Simulation Results 

The EDSIM model was solved with and without DCV information with the cases 

including no information (the base case), perfect knowledge of next year’s phase combination 

plus a lesser information case where there was knowledge of today’s phase combination and the 

transition probabilities to next year’s possible states. Here we discuss the simulation results on 

economic benefit, land conversion, water use, springflow, crop mix, and livestock mix. We will 

do most of the comparisons with and without a pumping limit of 400 thousand acre-feet (400k). 
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6.2.1 Economic Benefit 

Table 6 shows the value of DCV information without the 400k pumping limit. Total 

benefits under transition probability will increase relative to the historical distribution except 

when the initial DCV phase combination is PDO+TAG-WPWP+, PDO-TAG+WPWP+, and 

PDO+TAG+WPWP-. And the average total benefit under transition probability increases by 

$1.62 million, which is quite close to the economic value of ENSO information in the EA region 

(Chen et al., 2005). If next year’s DCV phase combination is perfectly known, the total benefits 

increase under all DCV phase combinations except PDO+TAG-WPWP+. The average total 

benefit under perfect information is $40.27 million compared with the case of historical 

distribution. And these increases in total benefits are mainly from agricultural sector. Under 

perfect information, net benefits from agricultural production increase, no matter what DCV 

phase combination is the starting point. However, economic benefits from livestock production 

decrease under perfect information compared to the case of transition probability, that is, when 

phase strength information is known, without pumping limits, farmers would prefer to produce 

crops relative to raising livestock. 

 

Table 6 Comparison of Economic Benefits for Alternative Forecasting Cases without 400k 

Pumping Limit (Unit: 10
6
$) 

 

PDO- 

TAG- 
WPWP- 

PDO- 

TAG+ 
WPWP- 

PDO- 

TAG- 
WPWP+ 

PDO+ 

TAG+ 
WPWP- 

PDO- 

TAG+ 
WPWP+ 

PDO+ 

TAG+ 
WPWP+ 

PDO+ 

TAG- 
WPWP- 

PDO+ 

TAG- 
WPWP+ 

Mean 

Agriculture 

         Historical 

Distribution 
208.94 208.94 208.94 208.94 208.94 208.94 208.94 208.94 208.94 

Transition 

Probability 
3.40 10.52 -1.44 0.34 2.31 8.77 -5.98 -7.16 1.58 

Perfect 

Information 
44.79 54.67 41.23 37.73 45.98 50.08 30.29 23.77 41.92 

Livestock          
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PDO- 

TAG- 

WPWP- 

PDO- 

TAG+ 

WPWP- 

PDO- 

TAG- 

WPWP+ 

PDO+ 

TAG+ 

WPWP- 

PDO- 

TAG+ 

WPWP+ 

PDO+ 

TAG+ 

WPWP+ 

PDO+ 

TAG- 

WPWP- 

PDO+ 

TAG- 

WPWP+ 
Mean 

Historical 

Distribution 
106.88 106.88 106.88 106.88 106.88 106.88 106.88 106.88 106.88 

Transition 

Probability 
-0.98 4.97 6.49 -6.63 -2.29 -0.18 14.40 -9.91 -0.39 

Perfect 

Information 
-2.84 2.96 4.73 -7.96 -4.28 -1.89 12.62 -10.77 -2.09 

M&I          
Historical 

Distribution 
751.88 751.88 751.88 751.88 751.88 751.88 751.88 751.88 751.88 

Transition 

Probability 
17.83 12.90 13.99 -3.11 -11.22 2.57 10.72 -34.66 0.43 

Perfect 

Information 
17.65 12.80 14.04 -2.97 -11.10 2.52 10.65 -34.54 0.45 

Total          
Historical 

Distribution 
1067.7 1067.7 1067.7 1067.7 1067.7 1067.7 1067.7 1067.7 1067.7 

Transition 

Probability 
20.25 28.39 19.05 -9.40 -11.21 11.15 19.13 -51.74 1.62 

Perfect 

Information 
59.60 70.43 59.99 26.80 30.60 50.71 53.57 -21.53 40.27 

          Note: Historical distribution case is the baseline to be compared with. 

 

When the EA operates under a 400k pumping limit, total benefits also increase under 

perfect information compared to both the base case of historical distribution and the case of 

knowing the initial state plus the transition probability except for the PDO+TAG-WPWP+ phase 

combination (see Table 7). Without considering PDO+TAG-WPWP+, the potential welfare 

gains from adaptation in crop and livestock mix with the perfect knowledge of DCV information 

vary from $27.70 million to $68.70 million, depending on the initial phase of DCV combination. 

The average economic value of a perfect DCV forecast is $40.76 million per year in the EA 

region. And under transition probability, the average value of DCV information is $1.52 million 

per year. 
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Due to the pumping limit, agricultural benefits do not increase as much as those without 

the pumping limits given DCV information. However, in livestock sector, benefits under perfect 

information (or transition probability) increase relative to the results without pumping limit, 

indicating that farmers might tend to increase livestock production under pumping limit with the 

knowledge of DCV phase information. 

 

Table 7 Comparison of Economic Benefits for Alternative Forecasting Cases with 400k 

Pumping Limit (Unit: 10
6
$) 

  

PDO- 

TAG- 

WPWP- 

PDO- 

TAG+ 

WPWP- 

PDO- 

TAG- 

WPWP+ 

PDO+ 

TAG+ 

WPWP- 

PDO- 

TAG+ 

WPWP+ 

PDO+ 

TAG+ 

WPWP+ 

PDO+ 

TAG- 

WPWP- 

PDO+ 

TAG- 

WPWP+ 
Mean 

Agriculture                 

 Historical 

Distribution 
205.37 205.37 205.37 205.37 205.37 205.37 205.37 205.37 205.37 

Transition 

Probability 
2.91 9.39 -2.27 -0.74 1.54 7.72 -5.29 -7.25 0.92 

Perfect 

Information 
44.35 52.62 40.98 38.21 46.25 49.30 31.97 24.87 41.96 

Livestock          
Historical 

Distribution 
106.88 106.88 106.88 106.88 106.88 106.88 106.88 106.88 106.88 

Transition 

Probability 
-0.54 5.08 6.81 -5.99 -1.68 0.23 14.64 -9.40 0.08 

Perfect 

Information 
-2.90 3.17 4.90 -8.09 -4.24 -1.87 12.73 -10.52 -2.04 

M&I          
Historical 

Distribution 
751.05 751.05 751.05 751.05 751.05 751.05 751.05 751.05 751.05 

Transition 

Probability 
17.91 12.70 14.04 -2.88 -11.09 2.56 10.87 -34.55 0.52 

Perfect 

Information 
18.01 12.92 14.31 -2.42 -10.75 2.81 11.07 -33.81 0.84 

Total          
Historical 

Distribution 
1063.3 1063.3 1063.3 1063.3 1063.3 1063.3 1063.3 1063.3 1063.3 

Transition 

Probability 
20.28 27.18 18.58 -9.62 -11.23 10.51 20.23 -51.20 1.52 

Perfect 

Information 
59.46 68.70 60.19 27.70 31.27 50.24 55.77 -19.45 40.76 

           Note: Historical distribution case is the baseline to be compared with. 
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6.2.2 Land Conversion 

Table 8 and Table 9 report the land conversion changes for the three information cases 

with and without the pumping limit. Given the transition probability information, the acreage of 

land converted from sprinkler to dryland increases under PDO-TAG-WPWP- and PDO+TAG-

WPWP- relative to the historical distribution without pumping limit (see Table 8). Similar results 

occur in land conversion from sprinkler land to grassland. Under perfect DCV information, land 

conversion from sprinkler land to grassland decreases relative to both historical distribution and 

transition probability, which is consistent with the decreased welfare gains from livestock 

production in Table 6. In Table 9, under the 400 K pumping limit, more land is converted from 

furrow land to dryland and sprinkler land under perfect information relative to the base historical 

distribution. Land conversion from sprinkler land to dryland under perfect information is greater 

than the results without pumping limit. Although the acreage converted from sprinkler land to 

grassland still decreases under perfect information, the decrease is smaller than what occurs 

without the pumping limit, implying that farmers may move more strongly to grassland under 

pumping limits. 

 

Table 8 Comparison of Land Conversion for Alternative Forecasting Cases without 400k 

Pumping Limit (Unit: 10
3
 acres) 

 

PDO- 

TAG- 

WPWP- 

PDO- 

TAG+ 

WPWP- 

PDO- 

TAG- 

WPWP+ 

PDO+ 

TAG+ 

WPWP- 

PDO- 

TAG+ 

WPWP+ 

PDO+ 

TAG+ 

WPWP+ 

PDO+ 

TAG- 

WPWP- 

PDO+ 

TAG- 

WPWP+ 

FurrowToSprinkler 

        Historical Distribution 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Perfect Information 0.00 0.43 0.48 0.20 0.44 0.27 0.00 0.00 

SprinklerToDry 

        Historical Distribution 8.25 8.25 8.25 8.25 8.25 8.25 8.25 8.25 

Transition Probability 1.52 -4.83 -0.66 -3.85 -5.16 -4.45 9.59 -6.17 
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PDO- 

TAG- 

WPWP- 

PDO- 

TAG+ 

WPWP- 

PDO- 

TAG- 

WPWP+ 

PDO+ 

TAG+ 

WPWP- 

PDO- 

TAG+ 

WPWP+ 

PDO+ 

TAG+ 

WPWP+ 

PDO+ 

TAG- 

WPWP- 

PDO+ 

TAG- 

WPWP+ 

Perfect Information 0.37 -5.40 -5.13 -7.29 -6.80 -6.37 6.07 -6.26 

SprinklerToGrass 

        Historical Distribution 13.57 13.57 13.57 13.57 13.57 13.57 13.57 13.57 

Transition Probability 2.05 0.00 0.00 -3.46 -0.60 -2.02 0.00 -1.07 

Perfect Information -9.44 -9.90 -9.22 -10.14 -11.93 -10.72 -9.58 -7.23 

          Note: Historical distribution case is the baseline to be compared with. 

   

Table 9 Comparison of Land Conversion for Alternative Forecasting Cases with 400k 

Pumping Limit (Unit: 10
3
 acres) 

 

PDO- 

TAG- 

WPWP- 

PDO- 

TAG+ 

WPWP- 

PDO- 

TAG- 

WPWP+ 

PDO+ 

TAG+ 

WPWP- 

PDO- 

TAG+ 

WPWP+ 

PDO+ 

TAG+ 

WPWP+ 

PDO+ 

TAG- 

WPWP- 

PDO+ 

TAG- 

WPWP+ 

FurrowToDry 

        Historical Distribution 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Perfect Information 0.68 1.75 1.04 0.49 0.96 1.05 0.00 0.00 

FurrowToGrass 

        Historical Distribution 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Transition Probability 2.80 0.70 2.18 2.54 3.16 1.71 1.87 0.00 

FurrowToSprinkler 

        Historical Distribution 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Perfect Information 0.43 0.86 0.57 2.59 1.65 1.94 0.00 2.01 

SprinklerToDry 

        Historical Distribution 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 

Transition Probability 2.98 1.98 3.11 -1.26 -6.48 -0.29 11.11 -4.67 

Perfect Information 5.06 0.46 -0.90 -2.94 -3.60 -1.26 5.53 -0.55 

SprinklerToGrass 

        Historical Distribution 13.57 13.57 13.57 13.57 13.57 13.57 13.57 13.57 

Transition Probability 3.22 0.00 0.00 -0.52 1.70 -0.31 0.00 5.98 

Perfect Information -9.24 -7.64 -7.93 -10.21 -11.07 -9.62 -8.70 -4.66 

          Note: Historical distribution case is the baseline to be compared with. 

 

6.2.3 Water Use 

Compared with historical distribution, total water usage goes up under transition 

probability case except for the DCV combinations PDO+TAG-WPWP-, PDO-TAG-WPWP-, 

and PDO-TAG+WPWP+, while under perfect information, water use increases for all DCV 
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phase combinations (see Figure 2). Without pumping constraints, the variance of total water 

usage under transition probability (or perfect information) is larger. The results imply that more 

complete DCV information would smooth out the water usage and better preserve springflow. 

Figure 3 and Figure 4 display the water use changes in the agricultural, municipal and 

industrial (M&I) sectors. More water will be used in agricultural production under transition 

probability excluding the scenarios when PDO-TAG-WPWP- or PDO+TAG-WPWP- is 

forecasted. When perfect DCV information is available, the amount of agricultural water use is 

greater relative to the base case of historical distribution, no matter whether the pumping limit is 

constrained or not. However, M&I water use changes a lot across the DCV phase combinations. 

Under perfect information, M&I water use decreases relative to the case of transition probability, 

indicating that more water would be retained in agriculture sector when perfect information of 

DCV is available. 
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Figure 2 Comparison of Total Water Use for Alternative Forecasting Cases (Unit: 10
3
 acre-

feet) 

 

 

Figure 3 Comparison of Agricultural Water Use for Alternative Forecasting Cases (Unit: 

10
3
 acre-feet) 
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Figure 4 Comparison of Municipal and Industrial Water Use for Alternative Forecasting 

Cases (Unit: 10
3
 acre-feet) 

 

6.2.4 Springflow and Aquifer Elevation 

Springflow level in the Comal Springs and water elevation in J-17 well are reduced under 

more information (see Figure 5 and Figure 6). The decrease is not as much when the pumping 

limit is imposed. And in the PDO-TAG+WPWP- phase combination, Comal springflow under 

perfect information is higher relative to the case of historical distribution. 
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Figure 5 Comparison of Comal Springflows for Alternative Forecasting Cases (Unit: 10
3
 

acre-feet) 

  

 

Figure 6 Comparison of J-17 Well Elevation for Alternative Forecasting Cases (Unit: feet) 
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6.2.5 Crop Mix Adaptation 

Table 10 reports the changes in crop mix under transition probability relative to the 

historical distribution. The acreage of corn decreases under PDO-TAG-WPWP- , PDO-TAG-

WPWP+ and PDO+TAG-WPWP-. Production of cotton keeps increasing for all combinations of 

DCV phases, while winter wheat, hay, and watermelon display a negative acreage shift for all 

DCV scenarios. Changes in corn, peanuts, and sorghum vary based on the initial DCV phase 

combination. The acreage of oats decreases in all DCV phase combinations except PDO+TAG-

WPWP-. 

When a perfect DCV forecast is available, acreage shifts in corn, cotton, peanuts, carrot, 

and lettuce are all positive for all DCV phase combinations (see Table 11). The acreage of oats, 

winter wheat, hay, cabbage, and watermelon decreases despite the status of DCV combinations. 

Sorghum acreage decreases in all scenarios except PDO+TAG-WPWP-. Comparing results in 

Table 10 and Table 11, we find that knowledge of phase strength information would encourage 

the production of more vegetables, e.g., carrot, lettuce, and onion. 

 

Table 10 Crop Mix Adaptation under Transition Probability Relative to Historical 

Distribution with 400,000 Pumping Limit (% Change) 

 

PDO- 

TAG- 

WPWP- 

PDO- 

TAG+ 

WPWP- 

PDO- 

TAG- 

WPWP+ 

PDO+ 

TAG+ 

WPWP- 

PDO- 

TAG+ 

WPWP+ 

PDO+ 

TAG+ 

WPWP+ 

PDO+ 

TAG- 

WPWP- 

PDO+ 

TAG- 

WPWP+ 

Corn -8.03 6.35 -2.06 10.75 11.35 10.67 -16.76 1.19 

Cotton 259.27 260.88 76.34 60.37 48.06 181.61 76.63 123.74 

Hay -13.46 -11.66 -21.05 -28.25 -13.15 -17.45 -38.04 -41.19 

Oats -25.23 -26.38 -11.22 -21.05 -30.07 -27.48 5.07 -23.01 

Peanuts -9.93 -6.63 -13.52 3.81 5.59 1.56 -24.19 3.90 

Sorghum -8.20 -7.16 5.86 -10.30 -29.49 -13.81 38.22 -5.76 

Sorghum 

Hay 
31.41 51.92 6.41 39.74 42.31 57.05 -12.18 42.95 

Winter 

Wheat 
-32.96 -38.49 -19.37 -30.54 -31.91 -37.24 -17.31 -54.18 

Cantaloupe 4.15 5.99 -28.57 -38.25 -13.36 -6.91 -74.19 -92.17 
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PDO- 

TAG- 

WPWP- 

PDO- 

TAG+ 

WPWP- 

PDO- 

TAG- 

WPWP+ 

PDO+ 

TAG+ 

WPWP- 

PDO- 

TAG+ 

WPWP+ 

PDO+ 

TAG+ 

WPWP+ 

PDO+ 

TAG- 

WPWP- 

PDO+ 

TAG- 

WPWP+ 

Onion -7.35 1.25 -8.06 -13.98 -14.52 -6.63 -6.45 -2.69 

Watermelon -16.74 -11.35 -15.84 -18.76 -5.62 -13.93 -30.00 -20.56 

        Note: No change in soybean, cabbage, carrot, cucumber, honeydew, lettuce, and spinach 

 

Table 11 Crop Mix Adaptation under Perfect Information Relative to Historical 

Distribution with 400,000 Pumping Limit (% Change) 

 

PDO- 

TAG- 

WPWP- 

PDO- 

TAG+ 

WPWP- 

PDO- 

TAG- 

WPWP+ 

PDO+ 

TAG+ 

WPWP- 

PDO- 

TAG+ 

WPWP+ 

PDO+ 

TAG+ 

WPWP+ 

PDO+ 

TAG- 

WPWP- 

PDO+ 

TAG- 

WPWP+ 

Corn 24.94 27.67 27.80 37.99 37.91 34.40 15.68 22.93 

Cotton 533.77 573.04 274.07 209.67 291.79 430.55 274.21 260.81 

Hay -21.32 -10.76 -16.72 -17.06 -10.90 -10.80 -25.30 -21.60 

Oats -23.30 -37.80 -25.92 -19.81 -23.93 -28.32 -6.69 -28.84 

Peanuts 2.47 12.92 14.95 14.39 20.94 15.04 4.51 12.96 

Sorghum -3.51 -22.45 -4.05 -7.39 -9.25 -18.83 23.45 -3.36 

Sorghum 

Hay 
81.41 85.26 32.69 26.28 43.59 68.59 26.92 -2.56 

Winter 

Wheat 
-42.83 -42.22 -29.38 -28.35 -30.08 -33.70 -27.58 -44.26 

Cabbage -1.57 -1.57 -3.10 -1.78 -0.47 -1.05 -4.67 -3.10 

Cantaloupe 12.90 76.96 27.19 -11.06 33.64 46.54 -51.15 -35.02 

Carrot 0.04 0.04 0.08 0.05 0.01 0.03 0.13 0.08 

Lettuce 29.41 29.41 60.00 34.12 9.41 20.00 89.41 60.00 

Onion 17.92 14.52 1.79 4.12 14.34 7.53 3.23 -4.66 

Watermelon -25.73 -21.12 -14.16 -8.20 -8.65 -15.17 -20.22 -15.51 

       Note: No change in soybean, cucumber, honeydew, and spinach 

 

6.2.6 Livestock Adaptation 

In the case of no pumping limit, under transition probability, the number of cattle and 

sheep is smaller for most DCV combinations except PDO-TAG-WPWP- relative to the historical 

distribution case (see Table 12). When total pumping is limited, quantity of cattle increases for 

all DCV combinations under transition probability. And goats and sheep also display a small 

increase compared with the results when there is no pumping limit. From Table 12 we find that 

under transition probability, the pumping limit increases livestock production. 
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When perfect DCV forecast is available, all livestock show a negative shift for both cases 

with or without pumping limit (Table 13), but quantities of cattle and sheep are greater when 

overall pumping is constrained relative to the results without pumping limit. 

 

Table 12 Livestock Mix Adaptation under Transition Probability Relative to Historical 

Distribution (% Change) 

 

PDO- 

TAG- 

WPWP- 

PDO- 

TAG+ 

WPWP- 

PDO- 

TAG- 

WPWP+ 

PDO+ 

TAG+ 

WPWP- 

PDO- 

TAG+ 

WPWP+ 

PDO+ 

TAG+ 

WPWP+ 

PDO+ 

TAG- 

WPWP- 

PDO+ 

TAG- 

WPWP+ 

Without 400,000 Pumping Limit 

     Cattle 0.29 -0.38 -0.53 -0.76 -0.67 -0.57 0.00 -0.20 

Goats 0.08 0.01 0.00 -0.72 -0.35 -0.41 0.00 -0.52 

Sheep 0.01 -0.48 -0.64 -1.09 -1.03 -0.79 0.00 -0.69 

With 400,000 Pumping Limit 

      Cattle 0.61 0.56 0.73 0.41 0.55 0.32 0.30 1.14 

Goats 0.15 0.06 0.08 -0.65 -0.31 -0.38 0.06 -0.33 

Sheep 0.02 0.31 0.41 -0.07 0.24 0.06 0.01 -0.19 

 

Table 13 Livestock Mix Adaptation under Perfect Information Relative to Historical 

Distribution (% Change) 

 

PDO- 

TAG- 

WPWP- 

PDO- 

TAG+ 

WPWP- 

PDO- 

TAG- 

WPWP+ 

PDO+ 

TAG+ 

WPWP- 

PDO- 

TAG+ 

WPWP+ 

PDO+ 

TAG+ 

WPWP+ 

PDO+ 

TAG- 

WPWP- 

PDO+ 

TAG- 

WPWP+ 

Without 400,000 Pumping Limit 

     Cattle -1.47 -1.66 -1.69 -1.73 -1.65 -1.70 -1.62 -1.36 

Goats -0.26 -0.56 -0.87 -1.24 -1.29 -0.91 -0.17 -0.63 

Sheep -1.84 -2.14 -2.25 -2.38 -2.29 -2.26 -2.00 -1.79 

With 400,000 Pumping Limit 

      Cattle -0.71 -0.45 -1.05 -1.41 -1.46 -0.90 -1.09 -0.58 

Goats -1.11 -1.75 -1.44 -2.36 -1.85 -1.70 -0.74 -0.80 

Sheep -1.10 -0.94 -1.59 -2.23 -2.19 -1.47 -1.48 -0.88 
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7 Concluding Comments 

The analysis shows that DCV is a powerful force affecting crop yields and water use in 

the EA region and that information on DCV phenomena has substantial economic value. In terms 

of DCV effects on crop yields, we find that there are decreases of 5-15% in most crop yields 

except for a few cases of irrigated sorghum, while under some other phases yields of all crop 

increase, with cotton yield increase as much as 67.25%. 

We find that releasing DCV information to decision makers has substantial economic 

value amounting to $40.76 million annually for a perfect forecast. And for a less perfect forecast 

in the form of knowing DCV phases under transition probability, the value of DCV information 

is around $1.52 million per year. In terms of adaptation we find that under some DCV phase 

combinations crop mix adjusts with the acreage of corn, cotton, carrot, and lettuce increasing and 

the acreage of oats, winter wheat, hay, cabbage, and watermelon decreasing. Under perfect 

information, livestock production decreases in some phase combinations with the decreasing 

amount smaller with pumping limit. 

There still some points needed to be considered in the future. First, we did not estimate 

the effect of DCV on irrigation water use by crops due to a lack of available data and future 

studies could explore this. Second, we did not have information on DCV impacts on grass yields 

rather using dry sorghum impacts as a proxy and did not study impacts on livestock productivity. 

Future work could improve the analysis regarding these aspects. 
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Appendix: 

If we know 
4 3 3

log( ) ˆˆ ˆ
Yield

a a b
DCV


 


, 

Since DCV is the dummy variable, we have 1 0 4 3 3
ˆˆ ˆlog logDCV DCVYield Yield a a b      

Then, 1

4 3 3

0

ˆˆ ˆlog
DCV

DCV

Yield
a a b

Yield





   

With exponential transformation, we have  1

4 3 3

0

ˆˆ ˆexp
DCV

DCV

Yield
a a b

Yield





   

Then,   1 0

4 3 3

0

ˆˆ ˆ*100 exp 1 *100
DCV DCV

DCV

Yield Yield
a a b

Yield

 



 
    

 
 

The final equation shows that switching from DCV=0 to DCV=1, the mean of crop yield will 

increase by  4 3 3
ˆˆ ˆ

1 *100
a a b

e


 . 

 

 

Table A1 Information of Weather Stations in the EA Region 

County Station ID Station Name 

Bexar 417945 San Antonio Intl AP 

Comal 416276 New Braunfels 

Hays 417983 San Marcos 

Kinney 
411007 (1968-2002) 

411013 (2003-2012) 

Brackettville 

Brackettville 26 N 

Medina 
414254 (1968-1974 and after 1996) 

414256 (1975-1996) 

Hondo 

Hondo Municipal AP 

Uvalde 
419265 (1968-1985) 

419268 (1986-2004) 

Uvalde 

Uvalde Research Center 

 


