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Generating Functions of Class-Numbers

by

G. N. Watson

Birmingham (England)

1. Introduction.

In the notation of Kronecker 1 ) and Humbert 2), let F(n)
and G(n) denote the number of uneven classes and the whole
number of classes of binary quadratic forms of determinant

- n, with the usual conventions that classes equivalent to

are to count as -1 and 1/3 respectively, and that

Also let 3)

The power series in which the general coefficients are such
class-numbers admit of a transformation theory analogous to
the theory of Jacobi’s imaginary transformations of the theta-
functions. The formulae, however, are not of such a simple
character as the Jacobian formulae because they involve certain
infinite integrals; alternatively, the formulae may be regarded as
supplying a means of expressing the integrals as the sum of two
convergent séries. The first of these two points of view is probably
the more important because it is a simple matter to obtain
asymptotic expansions by means of which the infinite integrals
may easily be calculated.
Two transformations of generating functions of class-numbers

have been discovered by Mordell4j; the method by which

1) L. KRONECKER [Journal für Math. 57 (1860), 248-255].
2) G. HUMBERT [Journal de Math. (6) 3 (1907), 337-449].
3 ) Evidently Fl(n) is the number of even classes.

4) L. J. MORDELL [Quarterly Journal of Math. 48 (1920), 334; Messenger of
Math. 49 (1920), 65-72].



40

he proved them depended on the use of properties of solutions
of certain functional equations.

In this paper 1 propose to give a direct and systematic dis-
cussion of the transformation theory based on a quite straight-
forward application of the methods of contour integration. The
difference between the integral function used by Mordell as
the solution of his functional equations and the modified forms
of Hermite’s expansions which 1 use is rather remarkable.
The notation which 1 shall use for theta-functions is the

classical second notation of Jacobi (modified, as usual, by the
substitution of V4 for Jacobi’s e), so that 5)

the parameter q will be omitted from these functional symbols
whenever its absence cannot cause confusion; the argument will
also be omitted when it is zero, so that

1 shall also write

so that

In order that we may have q  1, it is, of course, essential
that the real parts of oc and should be positive, and, in par-
ticular, that oc and P themselves should be positive when they
are real.

The notation which 1 shall use for generating functions of class-
numbers is the notation introduced by Humbert, namely 6)

s) 1 prefer not to follow the practice (initiated by H. J. S. Smith) of using
a double-suffix notation for the ordinary theta-functions in work on the theory
of numbers.

8) The use of a dash in two senses, to indicate derivates of theta-functions and

to indicate a change of sign of q in generating functions, should not cause confusion.
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In addition 1 shall use a notation introduced by Petr 7),
with some slight amplifications, and therefore 1 shall write

1 recall the well known relations

These formulae are due to Kronecker 8) and Hermite 9).

v v v

7) K. PETR [Rozpravy Ceské Akademie Cisare Frantiska Josefa 9 (1900),
No. 38]. Petr writes simply U for what I here call U(--q2).

8) L. KRONECKER [Journal für Math. 57 (1860), 248-255] ; see also H. J. S.
SMITH [Report British Assoc. 1865, 348].

8) C. HERMITE [Journal de Math. (2) 7 (1862), 25-44].
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The results to be obtained in the present paper are formulae
connecting A (q), A’ (q), B (q), B ’ (q ) with the corres-
ponding functions of ql. 1 shall also obtain a formula connecting
the two functions 

this formula seems to be completely new, and it might be difficult
to prove it by Mordell’s methods.

In the contour integrals which 1 shall use, it is to be understood
in all cases that the paths of integration are straight lines; it

is also to be understood that c is a positive number so small
that the integrands of the various integrals have no poles in
the strip of the plane of breadth 2c which is bisected by the real
axis with the exception of those poles which lie on the real axis
itself.

2. Expansions of quotients of theta-functions.
Before proceeding, 1 shall state certain expansions of a type

which are easily derived from relations between various expansions
associated with Humbert’s generating functions. The twelve

expansions in question form three sets, each containing four
expansions, such that the members of a set are obtainable from
each other by altering the variable by a half-period. The expan-
sions are as follows:
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1 have not seen these expansions anywhere in print, though,
by expanding the series on the right as double series and then
rearranging them as Fourier series, it is easy to reduce the

expansions to certain expansions given by Hermite lo).
It is also a simple matter to establish the expansions in the

following manner. It may be verified that (for the first of the
twelve) the expression

is a doubly periodic function of x (with periods n and nir) which
has no poles at the zeros of any of the functions

Hence, by Liouville’s theorem, the expression is a constant;

and the value of this constant is

This establishes the first result, and the others can be proved
in a similar manner.

1° ) Oeuvres de Charles Hermite 2 (1908), 244.
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3. The modified f orm of Humbert’s expansions.

1 now state certain formulae involving the generating functions;
these formulae are derived from Humbert’s 11 ) expansions by
the same process as that by which the formulae of § 2 are derived
from Hermite’s expansions. The formulae are

The first four formulae are derivable from one another by
changing the variable by a half-period and (in the case of com-
plex half-periods) using one of the formulae of § 2. The same
remark applies to the last four formulae, some of which have
been stated by Mordell 12) with the corresponding formulae
for C (q).

11) G. HUMBERT [Journal de Math. (6) 3 (1907), 349-350].
12) L. J. MORDELL [Messenger of Math. 45 (1916), 75-80].
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4. The transformation of -5e ( q ).

We now attack one of the main problems. In formula (3.08)
put x=o; then

by Cauchy’s theorem on residues, since the only poles of the
integrand between the two lines forming the contour are at the
points z=n (n= - oo, ... , - 2, -1, 1, 2,..., oo ) and the residue
at z == n is

Now consider

On the path of integration we may write

so that

say. We calculate these integrals in the following manner. The
poles of fn(z) are simple poles at the points

and the residue at z. is

say.
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Now, P denoting the ’principal value’ of an integral, it follows
from Cauchy’s theorem that

and therefore

Next, by rearranging repeated series, we see that

Further we have

the symbol P being omitted in the last line because there is no
longer a pole on the path of integration. It will be observed that
the result of this analysis is to obtain a path of integration
which passes through the stationary point, not of fn(z), but of
its important factor e(2n+ 1)niz-cx.z2. .
The analysis is, in fact, a rudimentary form of the "method

of steepest descents".
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The other integral 13 ) may be treated in a si-

milar manner, by changing the sign of i throughout the previous
work. Consequently

that is to say, by (3.06),

By using Jacobi’s imaginary transformation for V4 (0, q),
namely V4(0, q)v (- iT) == t9,(O, q1)’ and writing nu/ce for t, we
see at once that

This is one form of the required transformation of
Interchange oc and fi; we deduce that

By combining the last two formulae and using Jacobi’s

imaginary transformation of .03(0, q), we see immediately that

13) Two integrals so related will, for brevity, be called ,conjugate’.
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a direct proof of this formula has been constructed by Rama-
nujan 14) with the help of the theory of reciprocal functions.

1 defer the consideration of the consequences of these results

to § 7.

5. The transformation of B ’ ( q ).

We can treat B ’ (q) in much the same way as !3! ( q ).
In formula (3.08) put x = 0 and change the sign of q, so that

Now consider

On the path of integration we may write

so that

say. We calculate these integrals by expressing

in terms of where

14) S. RAMANUJAN [Quarterly Journal of Math. 46 (1916), 253].
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If, as before, we write zm=(m+l)ni/oc, the residue of (j)n(z)
at zm is

say, and we have

the empty sum in the case n=o being interpreted as zero.
Next, by rearranging repeated series, we see that

Further we have

It therefore follows that

The conjugate integral may be treated in a similar manner,
by changing the sign of i throughout the previous work. Con-
sequently
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that is to say, by (3.03),

tanh oct dt.

By using Jacobi’s imaginary transformation of V3(0, q) and
writing nu/oc for t, we see at once that

and therefore, disposing of the theta-function by (1.14),

An alternative method of disposing of the theta-function is

to write

so that, by (1.15), we have

1 remark that the integral on the left admits of a trans-

formation, though, unlike the corresponding integral of § 4,
the transformation is not symmetrical. To obtain it, take the
well known formula

which gives
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The required transformation is consequently

6. The transformation of --7’ (q).
The last fundamental transformation which 1 shall consider

is that of the function defined by (1.04 ), namely

To discuss this function take Humbert’s formula 15)

and replace q by i -BI-q; we get

and hence, in the usual manner,

16) G. HUMBERT [Journal de Math. (6) 3 (1907), 368].
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The four integrals on the right have to be discussed separately;
first we have

say. The residue of gn(z) at 16) zm is

say; also

and hence, by rearranging repeated series, we see that

Now

1g ) As hitherto, we write
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Collecting our results and treating the conjugate integral in a
similar manner, we find that, for the first pair of integrals,
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The transformation of the first pair of integrals is now complete
and we turn to the other pair. We have

say. Leaving the first integral on the right for the moment, we
observe that the residue of hn(z) at m is

say; further

and hence, by rearranging repeated series, we see that
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and lastly

Collecting our results and treating the conjugate integral in
a similar manner, we find that, for the last pair of integrals,
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Now combine the expressions obtained for the two pairs of

integrals; we get

The next step is to dispose of the derivates of the theta-functions ;
this can be effected by expressing them in terms of the moduli
and quarter-periods of Jacobian elliptic functions, with the

help of the formula



57

we thus get

so that

Hence we have

The next step is to simplify the integrals on the right. Since
the residue at the origin of

we have

In this result it is permissible to take 4occ=n, and then we get
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The required transformation is therefore

that is to say

By interchanging oc and B, we infer that

To prove this last result directly, observe that 17)

and therefore

which immediately gives the result in question.

7. Sets of transformations of generating functions.
From the results of §§ 4-6 it is possible to construct a large

number of formulae, each formula containing three terms, two

17) Cf. J. HARKNESS and F. JBtIoRLEY [Introduction to the theory of analytic
functions, (1898), 226].
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of which are generating functions proceeding in powers of q
and q1 respectively, and the third term being an infinite integral;
it is always possible to secure that the formulae contain no
theta-functions by means of devices such as were used in obtaining
(5.1) and (5.2).
The most interesting formulae consist of three self-contained

sets of six formulae; each set of six formulae involves twelve
generating functions in all, namely three series proceeding in
powers of q and nine series obtained from these three by replacing
q successively by - q, q1 and - q1.
To save space, 1 shall state only three out of each set of six

formulae; in each set the three omitted are the reciprocals of
those which are stated, and they are immediately obtainable by
interchanging q with ql.
The first set of six formulae consists of relations which connect

the six functions

with their reciprocals; these formulae are immediate consequences
of the results of §§ 4 and 5. The formulae are as follows:

and the three reciprocal formulae.
1 shall merely state the second and third sets of formulae,

and shall leave the proofs of them to the reader. In each case
a proof can be constructed very easily (with the help of formulae
of the first set) by expressing the first function on the left in
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each formula in terms of either £ô (q ) and C (q ) or of B ’( q)
and C ’(q), whichever is applicable to the function in question.

The second set of six formulae consist of relations which

connect the six functions

with the reciprocal functions obtained from them by writing ql
in place of q. The formulae are as follows:

and the three reciprocal formulae.
The third set of formulae consists of relations which connect

the six functions

with the reciprocal functions obtained from them by writing qi
in place of q. The formulae are as follows:
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and the three reciprocal formulae.
1 remark that, so far as 1 know, no investigations of arith-

metical properties of the class-number

appear to have been published.
In addition to these sets, a few isolated formulae exist. The

formula involving the function U (q), defined by (1.05) and
its reciprocal is self-reciprocal. This formula is

The corresponding formula involving

is also self-reciprocal; but this formula, namely

is obviously trivial.
The formulae which involve



62

respectively are

the latter being trivial.
Finally, by the result of § 6, there is the self-reciprocal formula

8. A relation between three infinite integrals.

By eliminating generating functions from three suitably
chosen members of one of the sets of formulae given in § 7, it

is possible to construct an interesting relation which connects
three infinite integrals. Thus, in the formulae (7.01), 7.02),
(7.02) respectively, take

where the real part of y is positive.
When the phases of the three complex numbers

are taken to lie between - ln and 1/2 , we see without difficulty
that

Hence the three formulae become
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By eliminating the generating functions from these formulae,
we immediately obtain the relation required, namely

It is not very difficult to construct a direct proof of this for-
mula ; we shall first prove a subsidiary formula, namely 18)

where t is real.

Consider the integral

taken along two lines parallel to the real axis and passing through
the points - 2i, 2i respectively. The upper line is to have inden-
tations below it at -li and -li + t, and the lower line is to have
indentations above it at 2i and 2i + t, so that there are no
poles of the integrand in the strip between the indented lines.
It therefore follows from Cauchy’s theorem that

is equal to the sum of the residues of the integrand at the simple
poles 2 i, 2 i + t, - li, 2 i + t, that is to say it is equal to

18) For an indirect and much more elaborate proof of (8.2), see S. RAMANUJAN
[Messenger of Math. 44 (1915), 81-82].
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If we now write x--lffi and 0153+!i for z on the two parts of
the path of integration, we find that

that is to say

Hence, replacing x by x + t, we have

and (8.2) is an immediate consequence of this result.
We are now in a position to give a direct proof of (8.1); by

using (8.2), we have

and the truth of (8.1) is now evident.

9. Asymptotic expansions of infinite integrals.

In conclusion 1 put on record the asymptotic expansions of
the various integrals which occur in § 7. Two sets of expansions
will be given, one suitable for small values of oc, the other for

large values of oc. It will be supposed that cc is not necessarily
real, but the real part of a must, of course, be positive to ensure
that ] q C 1.
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All the asymptotic expansions possess the property that, for
complex values of oc, the absolute value of the error due to stopping
at any term never exceeds the absolute value of the first term

neglected; if, in addition, oc is real (and therefore positive), the
error is of the same sign as the first term neglected.
We first prove this general property of the expansions as

follows: by Taylor’s theorem, with Darboux’s form of the

remainder for complex values of a and with Lagrange’s form
of the remainder in the special case when oc is positive, on the
hypothesis that t is always positive we have

where 10 1  1, 001 in the general and the special cases
respectively.
Now, when f{t ) is positive and 0 1 1, we have

while, when f(t) and a are both positive and 0 ç 0  1, we see
that the expressions

evidently have the same sign. In each of the cases to be con-
sidered, we shall be dealing with an integral in which the function
typified by f(t) is positive; this makes obvious the asserted

properties of the asymptotic expansions.
We now discuss the set of asymptotic expansions suitable for

small values of oc.

The first integral to be considered is
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by using Binet’s integral for the Bernoullian numbers Bn,
which have the following values:

Thus we have

The second integral to be considered is

Since

we have at once

The third integral to be considered is

Since

we have at once

The last integral to be considered, namely

is rather more troublesome; we start with the expansion
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in which the coefficients have the values

1 mention in passing that the values of the coefficients up to
Q2. have been computed by Glaisher 19) who has obtained a
number of properties of the general coefficient Qn. We can
now evaluate the integral

by taking the formula (6.4), namely

(where u is supposed real), differentiating 2n+1 times with
respect to u under the integral sign (a procedure which is easily
justified), and then putting u=o. This process gives

so that

From the formula

it now follows immediately that

It is worth mentioning that the expansion (9.4) is not useful

for purposes of computation unless ] ce is very small, since the

expansion starts with the terms

In this respect (9.4) differs from (9.1) which is of a certain amount
of use in the extreme case (x=.

19) J. W. L. GLAISHER [Quarterly Journal of Math. 45 (1914), 202].
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We next discuss the asymptotic expansions suitable for large
values of loci; these expansions are easily determined by the
transformation formulae, since IPI is small when locl is large.
Thus we have

and consequently

Similarly

The sets of asymptotic expansions are now complete.

(Received August 16th, 1933.)


