本書はCC-BY-NC-NDライセンスによって許諾されています。ライセンスの内容を知りたい方はhttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.ja でご確認ください。
Content-Length: 240163 | pFad | http://b.hatena.ne.jp/yaruo5222/python/
データサイエンティストによる統計入門 ― k平均法でデータをクラスタリングしてみよう! ビッグデータ、データサイエンス、人工知能など、統計学を主軸においた分野が隆盛ですが、統計学には高いハードルを感じる方も少なくないでしょう。k平均法を実際に手を動かしながら理解することで、データ分析を身近に感じることができます。 はじめまして、藤井健人(@studies)と申します。イタンジ株式会社でデータ基盤周りの運用を担当しています。 「ビッグデータ」「データサイエンス」「人工知能」といったバズワードに代表されるように、統計学を主軸においた分野の隆盛が日常となって久しいです。 しかし「統計学は学問的な要素があり難しい」という印象を持たれやすく、「実務に活かすのはハードルが高い、怖い」と感じる方も少なくないのではないでしょうか。 そういった方を対象に、今回は統計学の手法の一つであるk平均法を学んでいただ
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? はじめに 機械学習や深層学習が人気の昨今ですが、それらのモデルの精度に最もクリティカルに影響するのはインプットするデータの質です。データの質は、データを適切に把握し、不要なデータを取り除いたり、必要なデータを精査する前処理を行うことで高めることができます。 本頁では、データ処理の基本ツールとしてPandasの使い方を紹介します。Pandasには便利な機能がたくさんありますが、特に分析業務で頻出のPandas関数・メソッドを重点的に取り上げました。 Pandasに便利なメソッドがたくさんあることは知っている、でもワイが知りたいのは分析に最
関連:Pythonでスペクトルのフィッティング - 最終防衛ライン3 プログラミングの経験はほとんどないのですが、最近Pythonの勉強を始めました。自分のやりたいことがそれなりにできるようになりつつあります。いろいろな本を購入したり、図書館で借りたりして勉強したので、折角なのでそれらをまとめておきます。 プログラミング未経験者ではないものの、興味のある人がぴったりのまとめだと思います。 私の目標は、業務で扱う大量のデータ処理の自動化が主で、機械学習にもつなげられたらと考えています。特に科学技術計算を自動化したい。たとえば、大量のデータを同一フォーマットのグラフとして出力するなどですが、この目標は既に達成できました。 1. 私のプログラム歴 2. 一ヶ月勉強して、できるようになったこと 3. 非プログラマー向けの入門書 Pythonスタートブック 実践力を身につける Pythonの教科書
NumPyは、多次元配列を扱う数値演算ライブラリです。機械学習だけでなく画像処理、音声処理などコンピュータサイエンスをするならNumPyを学んでおくことで、あなたの日々の研究や開発の基礎力は格段にアップするはずです。 プログラミングの初心者から、Webエンジニア、これから研究する人など、初学者にも分かりやすく優しく説明することを心がけて必要な知識が身につくように解説しています。 腰を据えて学習する時間と余裕のある方は、Step1から順に進めていくことで、苦手意識のあった方でも一通り読み終わる頃には理解できなかったPythonとNumPyのソースコードがスラスラと読めるようになるはずです。 上級者の方は、分からない記事だけ読むだけでも、力になると思われます。あなたのプログラミング能力を向上する手助けになることをお約束します。このサイトを通して、コンピュータサイエンスに入門しましょう。 Ste
まえおき 巷では「プログラマーになりたい人に初学者にとって、ポインタという考え方がわけわかめ」という話がよくあります。 そこでいろいろな人が「ポインタは住所だ」とか「変数がハコで」とか手を変え品を変え分かりやすいように説明してくれています。 それでもなお「ポインタがわかりづらい」という人が後を絶ちません。 もういっそのこと、例え話をやめてド直球で攻めたらいいんじゃないでしょうか。 Hello, Worldより簡単に サンプルコード 以下のコードを考えます。 void main() { int a; int b; int c; a = 1; b = 2; c = a + b; } 「#include <stdio.h>」なんていう謎のオマジナイはこの際ナシです。あんなもの無くたってC言語は成り立ちます。 まぁ見ての通り、どこにも何も出力されませんが。 このプログラムは、「c = a + b」
#参考 @kidach1 さんの投稿をPythonに書き換えてるだけです。 @kidach1 さん、いつもありがとうございます。 https://qiita.com/kidach1/items/4b63de9ad5a97726c50c #概要 改めて基本を学ぶ。 参考「Rubyによるデザインパターン第1章」→この投稿はPython #デザインパターンとは プログラミングにおいて繰り返し現れる問題に対する、適切解のパターン。 無駄無く設計されたオブジェクト指向プログラムの実現をサポート。 パターンとしてカタログ化されていることで 車輪の再発明を防ぐ #デザインパターンの根底にある5つの考え 変わるものを変わらないものから分離する プログラムはインターフェイスに対して行う(実装に対して行わない) 継承より集約 委譲、委譲、委譲 必要になるまで作るな(YAGNI) #変わるものを変わらないものか
はじめに こんぬづは、ゲーム用のPCを東京に置いているため、実家に帰ってくるとゲームができなくてしんどい田中です。こういうときに限って、ゲームの実況動画を見てしまったりして余計に心を痛めています。 さて今回は、今年正規表現をサッと確認するのに重宝した Regexper を紹介します。 Regexper こんなサイトです。とてもシンプル。 以下のような特徴があります。 正規表現を図で表示してくれる 表示した図をダウンロードできる 正規表現を図で表示してくれる 入力欄に正規表現を入力して、Displayボタンを押すと、以下の画像のようにその正規表現のパターンを図示してくれます。 どんな範囲でパターンマッチしてくれるのかがとても見やすくなります。 表示した図をダウンロードできる 入力欄の右下にあるDownloadボタンを押せば、表示した図をダウンロードすることができます。 例えば正規表現の仕様を
Pythonで最初に知っておきたかったこと 最近、PC(Mac/Linux)やRaspberry PiでPythonを使ってプログラムを組むことが多くなってきました。長く使っていると、多少はPythonのことが分かってきて、色々便利な機能なども知ることができます。その中でも「これ、もっと早くに知りたかった…」というものが結構あったりするので、一度そういったものをまとめて紹介しようと思います。 Pythonをこれから始める初心者の方の参考になればよいなと思います。環境はMac/Linux(Raspberry Pi)を想定していますが、それ以外の環境の方でも参考になるかとは思います。 環境セットアップ 最初は環境構築です。PC(Mac/Linux)だと、仮想環境を使うのを個人的にはオススメします。以下記事参照下さい。 「俺はとにかくPythonで機械学習をやりたいんだー!」という人は、下記の記
【2021/1/11】2021年版を公開しました 【2020/1/9】2020年版もあります, こちらもよろしくおねがいします! 【2019/8/12】一部書籍のリンクを最新版に更新しました 【2018/12/24追記】最新版を公開しました!「Python本まとめ・2019年版 - Webとデータ分析を初心者が仕事にするまで - Lean Baseball」 機械学習にWebアプリ,そしてFintechと,今年(2017年)は昨年(2016年)以上にPython界隈が賑やかな一年でした. Pythonでお仕事と野球データ分析を生業としている@shinyorke(野球の人)ですこんにちは. このエントリーでは,そんなPythonの学び方・本が充実した今年から来年(2018年)に移るにあたり, 最短距離でPythonレベルを上げるための学び方・読むべき本の選び方〜2018 をまとめてみました.
本記事はU-TOKYO AP Advent Calendar 2017の17日目です. はじめに 年の瀬が近づき何かと出費がかさむ季節になりましたね. 財布の中も真冬です. 実は2ヶ月ほど前から年越しに備えて仮想通貨で資産運用をしています. 他の資産運用と比べたときの仮想通貨取引のメリットは「少額でも大きな利益を得るチャンスがあること」と「24時間365日取引ができること」でしょうか. ということで, その時に自動取引についていろいろと試行錯誤をしたので, 勉強したことをまとめて記事にしたいと思います. 具体的には, PythonでbitFlyerのAPIを叩いてチャートを描画し, 決められたアルゴリズムに従って自動でビットコインの売買をする, という一連の流れを紹介します. ごく簡単な紹介にとどめるので, その先は各々で試して自分なりのやり方を考えてほしいです. *僕は仮想通貨に関しても
この記事は、以下の方向けに執筆しています。 ・とにかくAIブームに乗りたい方 ・転職してAI案件に携わりたい方 ・AIに必要な知識だけをざっくり身に付けたい方 関連記事:AI人材になるにはスキルよりまず職種を選択しよう 清水亮さんがAI人材の不足を言われてから、人材不足感は一向に変わっておらず、むしろ不足感が強まっている。企業が本格的に取り組み始めたのに、検証できる人材が誰もいない。データ分析経験があったり、Pythonでnumpyとか少し触れる人が、AI人材として急に売れっ子になるのを何度も見てきたし、その流れはしばらく続くんだと思う。 BIベンダも最近その流れに乗って売り込み始めた。コンサル会社は、AIコンサルと言い始めた。SIベンダは、AIの専門部署をたくさん作り始めた。メーカーもR&D中心にAI人材を採用しはじめてる。 CONNPASSで機械学習と名の付くセミナーはすべて人気で埋ま
Pythonを使ってこの方さまざまな点につまずいたが、ここではそんなトラップを回避して快適なPython Lifeを送っていただくべく、書き始める前に知っておけばよかったというTipsをまとめておく。 Python2系と3系について Pythonには2系と3系があり、3系では後方互換性に影響のある変更が入れられている。つまり、Python3のコードはPython2では動かないことがある(逆もしかり)。 Python3ではPython2における様々な点が改善されており、今から使うなら最新版のPython3で行うのが基本だ(下記でも、Python3で改善されるものは明記するようにした)。何より、Python2は2020年1月1日をもってサポートが終了した。よって今からPython2を使う理由はない。未だにPython2を使う者は、小学生にもディスられる。 しかし、世の中にはまだPython3に
この記事は2年前の以下の記事のアップデートです。 前回はとりあえずデータサイエンティストというかデータ分析職一般としてのスキル要件として、「みどりぼん程度の統計学の知識」「はじパタ程度の機械学習の知識」「RかPythonでコードが組める」「SQLが書ける」という4点を挙げたのでした。 で、2年経ったらいよいよ統計分析メインのデータサイエンティスト(本物:及びその他の統計分析職)vs. 機械学習システム実装メインの機械学習エンジニアというキャリアの分岐が如実になってきた上に、各方面で技術革新・普及が進んで来たので、上記の過去記事のスキル要件のままでは対応できない状況になってきたように見受けられます。 そこで、今回の記事では「データサイエンティスト」*1「機械学習エンジニア」のそれぞれについて、現段階で僕が個人的に考える「最低限のスキル要件」をさっくり書いてみようかと思います。最初にそれらを書
先日、オンライン学習サイトCourseraの"Machine Learning"コースを修了しました。これが最高に勉強になったわけですが、機械学習に興味があって情報収集を始めてる人にとって、「Courseraの機械学習コースがおすすめですよ」という話は 「はい、知ってます」 という感じではないでしょうか。 (たとえば、Qiitaで検索してみると、以下のような同コースに関連する超人気記事が出てきます) 数学を避けてきた社会人プログラマが機械学習の勉強を始める際の最短経路 - Qiita 機械学習をゼロから1ヵ月間勉強し続けた結果 - Qiita 僕もそんな感じで、幾度となく人や記事に同コースを薦められたりしつつ、たぶん2年ぐらいスルーし続けてきたと思います。 しかし約2ヶ月前、ひょんなきっかけから本講座を始めてみて、やはり評判通り最高だったと思うと同時に、僕と同じような感じでこのコースが良い
【2020/1/9更新】2020年版もあります, こちらもよろしくおねがいします! 【2018/12/24追記】最新版を公開しました!「Python本まとめ・2019年版 - Webとデータ分析を初心者が仕事にするまで - Lean Baseball」 ※2017/12/24 最新版をこちらに上げました、この内容は古いのでこちらを見ていただけると幸いです🙇♂️ Pythonの学び方と,読むべき本を体系化しました2018〜初心者から上級者まで こんにちは.野球(とグルメ)の人です. 会社と仕事はメッチャ楽しいのですが,今日はそれと関係なくPythonの話題を久々に.*1 昨年から,「AI(えーあい)」だの「でぃーぷらーにんぐ」だの「機械学習」といったワードとともにPythonを覚えようとしている方が多いらしく, 何から学ぶべきか 何の本がオススメか 簡単に覚えて僕もいっちょ前に「えーあい
Photo by photobom こんにちは。谷口です。 プログラミングをこれから学ぼうとしている方や、これから研修や実務に入る新人ITエンジニアの皆さんの中には「Pythonを学習したい」という方も多くいらっしゃるかと思います。 Pythonは1990年代前半からオランダ人のグイド・ヴァンロッサムによって開発されたオブジェクト指向スクリプト言語です。 Pythonは文法が必要最小限に抑えられており、ITエンジニアの学習の負担が軽減された開発言語と言われています。 海外では、近年Pythonによる開発が急速に増加しており、各種モジュール等が充実しています。Googleの開発に置けるメインのスクリプト言語ともされています。 日本国内でも、読みやすさ(=保守性)を重視する企業や、スマートフォンのバックエンド等では積極的に取り入れる企業が増加してきており、これからの一層の普及が期待される言語で
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く
Fetched URL: http://b.hatena.ne.jp/yaruo5222/python/
Alternative Proxies: