

Experimental Study of Secondary Electron Emission and its Role in Atmospheric Electricity

J. P. Nelson¹, J. A. Riousset¹, J.S. Méndes-Harper², L. Hartmann², and J. Dufek²

1. Physical Sciences, Embry Riddle Aeronautical University, Daytona Beach FL (nelsonj4@my.erau.edu)

2. Earth Sciences Department, University of Oregon, Eugene OR

UNIVERSITY OF OREGON

I. Summary

Paschen's law underlies our understand of scaling properties of electric discharges. It describes non-thermal, self-sustained discharges occurring in high voltage, low current, and low-pressure conditions between two parallel plate electrodes (Raizer et al., 1991). Originally established experimentally for various gas mixtures, Townsend (1915) developed a formal theory that relies on an exponential fit of the primary ionization coefficient $\alpha_{\rm eff} \approx Ap \exp(-Bp/E)$ and the poorly understood secondary electron emission (γ). Raizer et al. (1991 p.75) states that "The data on γ are incomplete and often contradictory." The commonly used A, B, γ constants do not traditionally consider electrodes' geometries and materials. Riousset et al. (2022) proposed a new formalism suitable for non-planar geometries using the reduced effective ionization coefficient $\alpha_{\rm eff}/p$ and mobility μp . The new model accounts for volume and drift velocity changes along the avalanche path via a power law approximation of μp . We propose to use this new formalism and explicitly characterize the constants A and B in the effective ionization $\alpha_{\rm eff}$. In addition, we develop an experimental setup for their validation. The discharges are produced in Embry-Riddle Aeronautical University's Lightning Plasma Chamber (LPC). The initiation voltage (V_{cr}) is measured at specific pressures p and distances d in air. Distances and pressure can be adjusted using a linear feedthrough (LFT) and mass flow controller (MFC), respectively. In addition, we seek to establish how γ depends on the nature of the electrode, its geometry, surface condition, and the gas of the environment. We show that the v. Engel-Steenbeck equation (Fridman & Kennedy, 2004) and the assumed value of γ does not adequately characterize the critical voltage under non-planar geometries. We propose a χ^2 —analysis to assess the dependencies of γ on the environmental parameters and obtain accurate values for A and B. These variations may prove especially important for the initiation of Transient Luminous Events occurring near the ionosphere at low pressures.

II. Introduction

Paschen's Law & Townsend Theory

- $V \ge V_{cr} \Rightarrow$ Collision e-N (N: neutral gas) \Rightarrow Ionization of neutrals \Rightarrow 1 ion / 2 free electrons \Rightarrow Avalanche (Townsend, 1915).
- Secondary Electron Emission S.E.E. (γ)
 - Experimental.
 - Depends on metallicity, pressure, distance, geometry, and gas mixture (Ellion, 1965).

Paschen's Law: State of the Art

- Main formalism for Townsend's theory.
- Model of infinite parallel plates.
- Not applicable to non-uniform geometries.
- Left of minimum is ill-defined (Knaster et al., 2012).
- A and B coefficients are defined by Stoletov point.

Objectives

- Definition of a new system of equations accounting for (1) distance between cathode and anode (2) S.E.E. (γ).
- Comparison with experimental data collected in the LPC chamber.
- A and B coefficients defined based on LSQ fit of either:
 - Plot of E/N vs $\alpha_{\rm eff}$
- Plot of pd vs. $V_{\rm cr}$ = Bpd/ln(Apd ln(1/ γ +1))
- Estimates of S.E.E. (γ) using theory.

III. Methods & Models

Figure 1. Geometries:

(b) Coaxial cylinders;

(c) Concentric spheres.

(a) Parallel plates;

a) Experimental setup

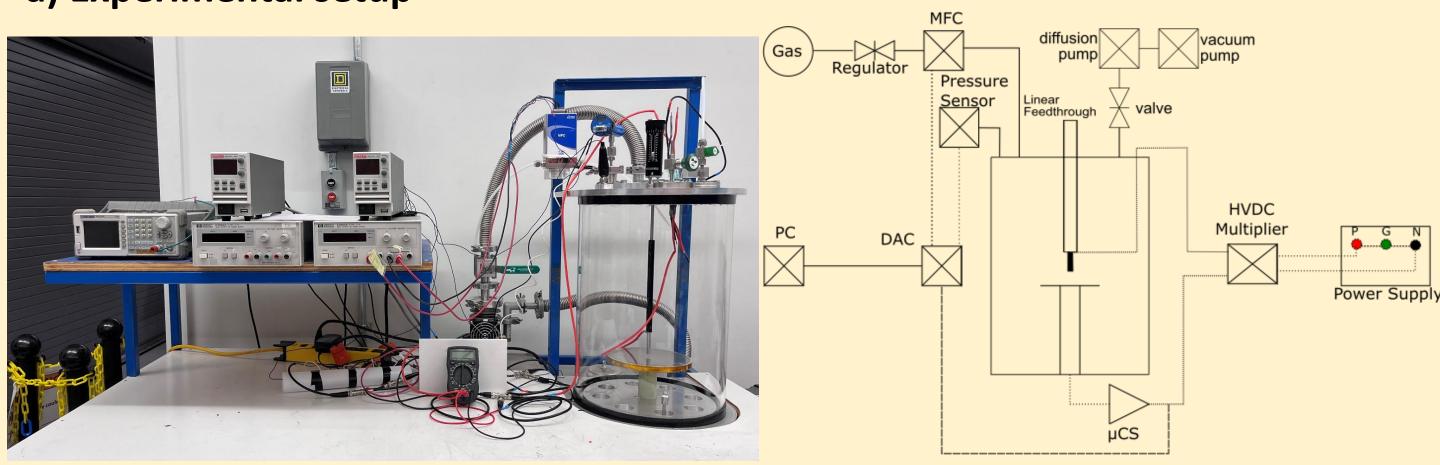


Figure 2. Experimental setup for initiating electrical dischargers in various environments. HVDC multiplied input voltage amplifies 0-25V to 10-3000V. Left: Experimental setup. Right: Schematic of the experiment.

III. Methods & Models (cont.)

Figure 3. (a) Rough surface electrode from previous discharges; (b) Smooth surface electrode; (c) Glow discharge from rough surface, γ=0.0029; (d) Glow discharge from smooth electrode, γ =0.0049.

b) Theory

- Plasma relationships:
 - $\nabla \cdot \vec{E} = 0$

 - $v_d = \mu E$ where $\mu N = C \left(\frac{E}{N}\right)^D$ (3)
 - $\frac{\partial n}{\partial t} + \nabla \cdot (n \ \vec{v}_d) = v_{iz} n$
- Gauss' law $\nabla \cdot \vec{E} = 0 \Rightarrow E(r)/N$ • Breakdown equation $\Rightarrow \frac{E}{N}$
- Constitutive relationships between charge densities at a and b from primary secondary ionization and electronic currents:

$$n_a = n_{\gamma} + n_i \tag{5}$$

$$n_{\gamma} = \gamma (n_b - n_a) \tag{6}$$

$$n_b = A_v n_a \tag{7}$$

 $\delta = 0$: Cartesian \Rightarrow v. Engel-Steenbeck

$$\delta = 1$$
: Cylindrical (8)

 $\delta = 2$: Spherical

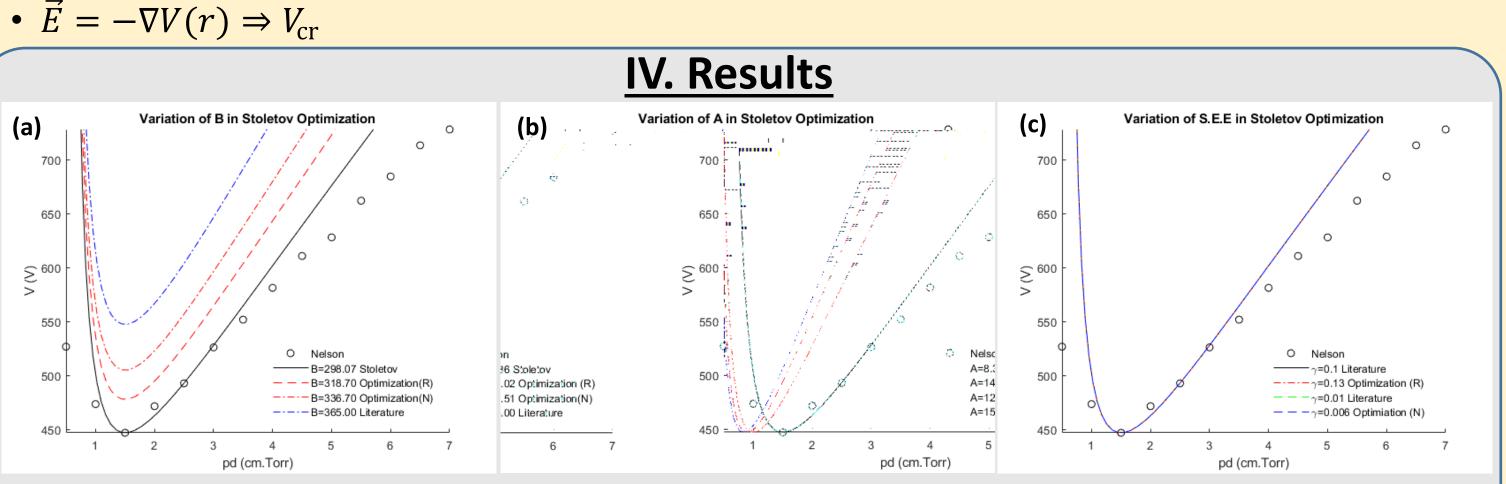


Figure 4. (a) Role of variable B in Paschen curves; (b) Role of variable A in Paschen curves; (c) Role of γ in Paschen curves. $B = V_{\min}/pd_{\min}$ $A = \bar{e} \ln \left(\frac{1}{r} + 1\right)/pd_{\min}$ (Fridman & Kennedy, 2004, p.210).

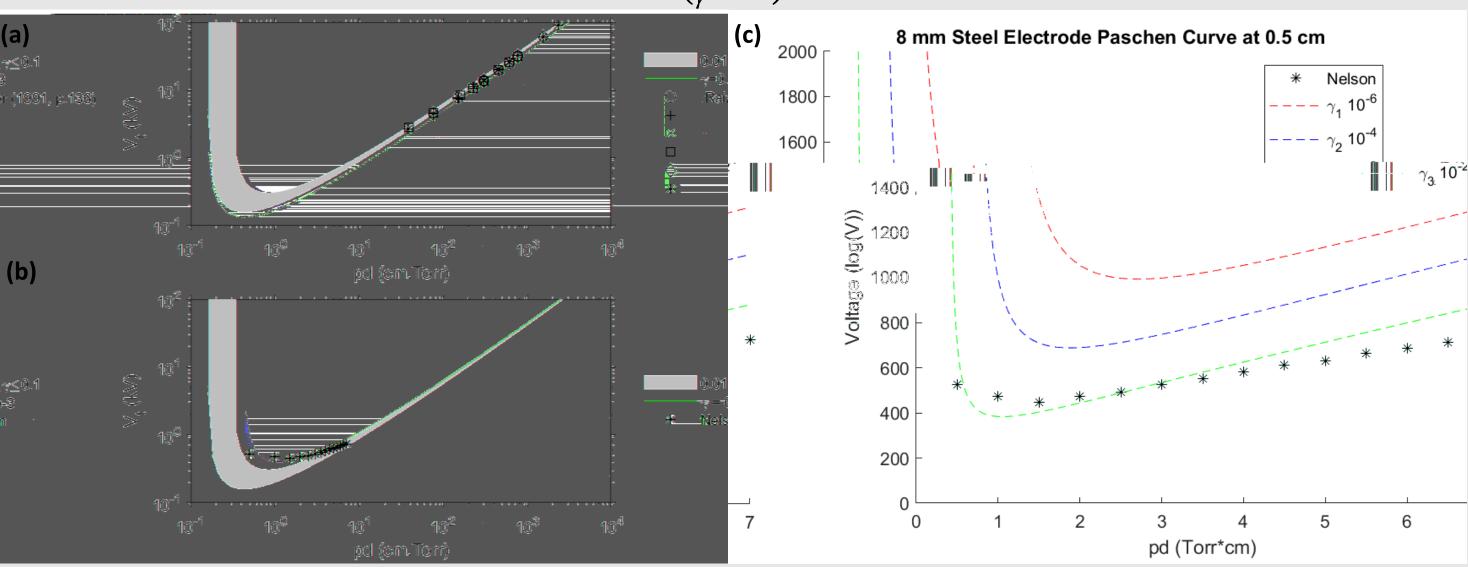


Figure 5. (a) Comparison of 'acceptable range' for Raizer et al. (1991) data; (b) Comparison of 'acceptable range' for Nelson data; (c) Discrepancy of Paschen curves in air from v. Engel-Steenbeck equation.

IV. Results (cont.)

Table 1. Case studies for air. Raizer et al. (1991, Tab.4.1) suggests that A = 15/(cm*Torr), B=365V/(cm*Torr), $\gamma = 10^{-2}$. All optimizations based on best fit equation.

V. Discussion

Role of previous ionization path:

- Unpurged chamber \Rightarrow Presence of free ions/electrons \Rightarrow Easier breakdown \Rightarrow Lower V_{cr} .
- Purged chamber \Rightarrow Little/no free charges \Rightarrow Stricter conditions \Rightarrow Higher V_{cr} .
- Improper grounding \Rightarrow Easier breakdown \Rightarrow Lower $V_{\rm cr}$.

Roles of primary $\alpha_{\rm eff}$ and secondary electron emission γ :

- Discrepancy between experiments and theory when A, B calculated from Stoletov's points.
- Impossible to calculate A & y separately based on v. Engel-Steenbeck equation ⇒ Discrepancies when LSQ fit is used.
- Surface conditions of electrode ⇒ accrued errors in discharge parameters.

VI. Conclusions

The principal results and contributions from this work can be summarized as follows:

- We developed a new experimental setup to create self-sustained electrical discharges in air.
- We preformed the first tests of scalability for the newly revised formalism for Paschen's law (Riousset et al., 2022, under review).
- We found discrepancies between theoretical calculations of critical voltage and experiments.
- We compared the estimates of A and B obtained from Stoletov's point to a LSQ fit and showed that the accepted gas constants and secondary electron emission only hold true at minimum critical voltage.
- We demonstrated that adopting the v. Engel-Steenbeck equation as a standard description of the Paschen curves does NOT let us calculate A and γ separately.
- We experimentally showed that rough surface conditions of electrode decreases the secondary electron emission.

References

Ellion, M.E. (1965). A Study of electrical discharges in low-pressure air. Jet Propulsion Laboratory. Fridman, K., & Kennedy, L. (2004). *Plasma Physics and Engineering*. Taylor & Francis Books, Inc. DOI: 10.1201/9781482293630.

Knaster, J., & Penco, R. (2012). Paschen tests in superconducting coils: why and how. IEEE Transactions on Applied Superconductivity, vol. 22, no. 3, doi:10.1109/TASC.2011.2175475.

Raizer, Y., Kisin V., & Allen, J. (1991). Gas Discharge Physics. Springer Berlin Heidelberg. ISBN: 978-3540194620.

Riousset, J.A., et al., (2022). A generalized Townsend's theory for Paschen curves in planar, cylindrical, and spherical geometries. ArXiv:2212.06147.

Townsend, J.S.E (1915). Electricity in Gases. Claredon Press. ISBN: 9780266527886.

Acknowledgments

The authors acknowledge support from the National Science Foundation under grant 2047863 to Embry Riddle Aeronautical University, and the support by the Center for Space and Atmospheric Research (CSAR).

