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Purpose of Task

« Spacecraft are routinely impacted by micrometeoroids
and orbital debris (MMOD)

- Mechanical damage: “well-known”, larger (> 120 microns), rare

- Electrical damage: “unknown”, smaller/fast, more numerous

()

 Growing need to characterize MMOD down to smaller
sizes and provide predictive threat assessment
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MMOD — Classification

* Meteoroids * Space Debris
— Speeds — Speeds in LEO
* 11 to 72.8 km/s (interplanetary) * <12km/s
* 30-60 km/s (average) e 7-10 km/s (average)
— Densities — Densities
* <1 g/cm3 (icy) or > 1 g/cm3 (rocky/stony) * >2g/cm?d
— Sizes — Sizes
* < 0.3 m(meteoroid) * <10 cm (small)

°* <62 um (dust)
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MMOD — Previous Research

Run 00005: v = 5.62 km/s; m = 5.9 mg; TgtBias = 50.0 V
Well 1, Bias = 75.0 V Well 2, Bias =70.3 V Well 3, Bias = 65.6 V Well 4, Bias =60.9 V
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MMOD — Previous Research

Cumulative Number of Debris
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2R —NASA Exponential model
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 EISCAT Svalbard radar Diameter (m)

- 78.1°N, 16.0°E
- 500 MHz, 32 m dish, 0.8 MW peak power

— Data collected March 2007 — March 2009 (following
Chinese ASAT test in January 2007)
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MMOD and Neutral Densities

« “Space junk” WT1190F

- Approximately 1-2 m long

— Most likely discarded rocket body “lost” by SSN

- Reentry on November 13 (point of impact over Indian Ocean?)
- Can we improve the 15-50% error?
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Goal: Neutral Density Estimation

» Leverage the increasing number of constellations of
satellites in orbit

* Leverage the abundance of meteoroids ablating in the
atmosphere

« Good temporally and spatially varying profile of neutral
density

 Different source of density estimation

COE CST Fifth Annual Technical Meeting (ATM5)

October 27-28, 2015



Methodology

300-500 km 50-200 km

Satellites: Orientation Meteoroids: Size and Compositior

2

+ Want to measure density from readily availabi= equivalent platforms
« Each of these platforms is slightly different
+ Measurements made at a certain time contains certain biases (across all platforms)

Estimate Calculate

Remove

[ Data Bias

Variation Density
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Assumptions and Equations

« Assumptions
- Cp constant (spherical shape)
- Variation arises from mass/size/bulk density
- Multiple layers of atmosphere traversed
— Ablation and mass loss

« Governing equations

Velocity: v
dv 3p,Cp,
Drag: il ra— v Radius: r
m
_ dr 1Cy p Atmospheric
Ablation: il p—a lv|® Density: Pa
m
Meteoroid
Density: P

Enthalpy of
Destruction: H*

Coefficient of
Heat Exchange: Cy
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Density Ratios

« Combine drag and ablation equations and compare ratios
of radii at different points in time L

r 1C4 1
1 ( H (Vf _ V%)) h cmmem-m----

E = exp EC_DH*

« For it meteoroids at jt" altitude Vit P

dv. . 1 dv.. 1 1 —
1 L+l —Inl=2=—)=Zp.(v2Z —=v2 Y+In(o. h;
n( dt ij 1 n dt ij 6 I(Vl’] VI'JH) T n(p”) Voul2,0.0
| ) \ )
Y Y

LHS, RHS,

C., Cp, H® constant

* Given data on velocity and deceleration, estimate D, and

p,; for each meteoroid and altitude o Cui 1
Minimize: min Z(LHSM ~ RHS;;)’ ' CpiHf
- - Oy = pa,j+1
' 7 pa,'
Subject to: D; >0 )
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Ratio Distribution

« Translate point of entry measurement to a
reference point in altitude

dv 1 Pae ﬂi Paref N Paref —

— —

K
atv?  rop. > dtvI p..  ToPm

* Calculate K for each meteoroid and define
minimum ratio using order statistics

K. (retm)j

)~

EN=s

e Calculate distribution

mk
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Results

* ALTAIR radar
- 9°N, 167°E
- 160 and 422 MHz, 46 m dish, 6 MW peak power —_— ./
- Data collected November 8t 2007 (6 AM local time) & =

-9 Densities across 1 hour
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Conclusions and Future Work

 New method for estimating neutral density from multiple
measurements across equivalent platforms
- Errors < 10% using CubeSats (not shown), 12% for meteoroids
- Additional data to modeling community

* Next steps
- Satellites: precision orbit determination
- Meteoroids: ablation physics
- Space debris: highly variable Cy

Li, A., and Mason, J. Optimal Utility of Satellite Constellation Separation with Differential Drag.
2014 AIAA/AAS Astrodynamics Specialist Conference. AIAA 2014-4112.

Li, A., and Close, S. Mean Thermospheric Density Estimation derived from Satellite
Constellations. Advances in Space Research 56 (2015),pp. 1645-1657. DOI: 10.1016/j.asr.

2015.07.022
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Thank youl!
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17 . . REE Esti.m?te Calcullate
Ballistic Factors Variation Density

» 0: Rotation about the satellite spin axis (IID)

A
I
I
 Ballistic factor: Ci\_)
Co(®)AE) -

B(8) =

» B is IID with some unknown distribution
> B

defined when 8=0 (absolute minimum)

min

T

 Ignore rotations about other axes \j

_ CD,minAmin
min —

m

[ID = Independent and Identically Distributed

SESS Stanford University
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Estimate Calculate
18

Orbital Elements N

Variation Density

ORIENTATION:

periapsis direction

angular momentum
|

; = 0

ine of nodes
1st derivative of Mean Drag termor
Name of Satellite Motion or Ballistic Coefficient  radiation pressure
o Kept up tO date by NORAD (11 characters) . o coefficient Element Nurber
International Epoch Vear & 2nd derivative of Mean & Check sum
(Space-track) Designttor Doy Fraction | Motion, usullyblank | Epheraeris
Type
« Uses S|mp||f|ed General 1 (Ba123 _R)B6 50.28438588)0. 00000140 ) (00000-0)(67960-4)0
: 2 98,5105 69.3305)0012788 | 63. 2828)(296, 0658)14. 24899202046978
Perturbations (SGP) model i
 Within few km of error over 1 Satellte  Inclnation T Eentricly | Mean Anonaly
da L Right Ascension ~ Argurcent Mean Mation
y gf :?‘e Ascending of Perigee Revolution number

at epoch & chieck sum
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19 Data Estimate Calculate
D ata Variation Density

From TLEsS

From ranging data

=

=S
L]
=_"

I
X= [V ,an

B

<
=

da

2'vdvp |, 2a°BvF

I -, =
dt dt |
b B S X = Fp(X) + F, (X) + Fy(X)
%da; daj d
AaSGp (t',tk) = f — +— + dt
™ ti dt D dt G U

b =R (X(t;X)) ~ Ropeas(t) /

2 tx 1 . X= T leTwi')
Afiy () = = 1173 (£ o3 vangt Loop until RMOX (A WA):

24Uy —> X, =X, + 8x
__ 23Any(t, ty) b™Wh
I e - RMS =
3 ¢ “n3v3F dt Nobs
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28 How to Remove Bias

* Density estimated as: Ballistic factor: B ("["‘A
L 2;1;An,,(t,,tk) K Mean motion: n
p= v 1 = E or pB=K

3B gin" n3 v3Fdt Wind Factor: F

+ K can be calculated by: Density: p

» SGP4 in the case of TLEs

» Ranging or GPS measurements; propagator needs to account for higher
order gravity terms, SRP, efc...

* Internal bias within K because K is composed from varying densities

The Dilemma: If we have N satellites, we have K,, measurements but need to
estimate n+1 values (p and B,), where B, is randomly distributed

SESS Stanford University
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Order Statistics

*  What is order statistics? Order Statistics on Minimum (Normal Distribution)
» Let X, ,X,..., X, be lID with some CDF C(x) 08 — Original PDF
» Then the r'" order statistic can be expressed Pin 107 N=5
. 0.6 P for N=10
as: N {1\ min
. N\ i . N ~i )
L,,x=z,(.'x 1-Cx)|™ W ooal R
r)(X) ,,.(") (x) | (x)} & 0.4 SN
» And the minimum as: 0.2 \
Coy(x) =1—[1-=Cx)N / \\
_ % — 0 - 5
* Why do we use it? x

» We know something about the minimum of C from physics
» We have many satellites
» Estimation of Cj, is difficult due to coupling with p
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22 . Remove Estimate Calculate
Remove Bilas Bias Variation Density

Randomly distributed K
* Define the minimum of our 0.05
observations:
e 0.04} .
Kk (tx) = minK; (ty) 5 .
4 v 003 ' o N
Kitd)  Bj(tw) b E
~ 02t o1 b i
Knk(tk) Bk (ti) v ;o
« Amalgamate measurements 0.01 ' '
across all time periods to 0 S Inzjgx 15 20
construct CDF ratio: K Ratio CDE
1.5

—Analytical Value
« Simulation Data

» Results in ratio distribution 1 /,, -
B | B

CDF (— —> 1) 05

Bmk

CDF

1.1 1.2 1.3 1.4 1.5
K/Kmin
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Ratio Distribution

» Probability of ratios defined as:

+co
y= Bmk
@)=l ey
. 5
Math L= B_mk
’ ( N—1(y))
N Bmax d FB
Cz) =5~ J Fp(z'y)- & dy +1
Bmin
l Discretize N = # of platforms
Cp = CDF(B)

N m
((8) - 1= ) Fale) (010 - B 0) Fy(B) =1~ Cy(B)
i-1 T

Limits:

lim Fy(B) -1 llm Fg(B) =

B-Bmin B-Bmax
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24

R . , Estimate Calculate
Discretization Density

e Matrix form:

[ C(zn) Fpm 0 .. 07 Fpr —Fpp
Ay B (A1 (] = Fpm-1 Fpgm 0 FN‘l _ FN-l
N : E S
i C(ZZ) 4 | FB_,2 FB_,3 FB_,m- Fg'ml FBm "
‘ v ) : ;

. dC
Minilgiect to: mln(Z(LHS RHS)Z ty max( dZB))

0= FB,l > FB,Z > > FB,m =1
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25 Est!mgte Calculgte
Effe CtS Of E rror Variation Density

K Ratio CDF
« Any estimation scheme is prone to error 15 — Analytical Value
» These errors affect the minimum ratio + Simulation Data
and hence its CDF 1 -
- el
0
o (B+dB) | (B+dB) ; 05 /
(B +dB) k| (B + dB)
0
- Estimate (B + dB) using similar method W 1 1'2K,Kmin1'3 14 15
* Require statistics on the error of dB K Ratio CDF with error
> Estimate from previous filtering methods 1 !

(non-linear least squares to estimate K)

/H:hAnalyt‘ical Value
0.8 // - Simulation Data
0.6

T/
BN(0S) Gt = Rel) P/

1 1.2 1.4 1.6 1.8 2
K/Kmin

SESS

Stanford University
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Estimate Calculate

26 : g :
S O IVI n g fO r F Variation Density
Ratio Comparison CDF Estimation of Gamma Distribution
1.2 1 . . .
1
/ —Analytical x/xmin 0.8
- 08 / — Estimated x/xmin
c
E 056 <067 —Original CDF
X / E —Initial Guess for Optimization
5 04 Og4l —Estimated CDF
0 0.4
0.2 /
0 . ; 0.2r
0 2 I I I | I I i | 0 I I I ‘

| 15 2 25 3 35 4 45 5
x/xmin 1 2 3 4 5 6

*  Test Case: Gamma Distribution

Problem: If the distribution shifted left or right and is scaled appropriately, get
same observed result (unknown integration constant)!

How to determine the minimum, B,,,?
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27 Calcullate
Free Molecular Flow Density

¢ [ )
o ° Mean free path: A
L Characteristic
() , L
length:
[ ) [ )
. Number density: N
o 9 o Collision Area: O
* Knudsen number: A 1
Kn=- A~ —
L No CoA
 High Knudsen numbers: Free molecularl}low (Kn>>10) B = D
» Basically collisionless, not a continuum (no bulk properties) m
»  Random thermal motions dominant: Maxwellian distribution minl

B _ CD,minAmin
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28 Calculgte
Free Molecular Flow Density

« Accommodation coefficient: €= E-E,

Diffusely Reflected Flux

Incident Flux Specularly Reflected Flux

» Reflected particles classified as:
» Specular — perfect reflection about surface normal
» Diffuse — random

« Surfaces for satellites in LEO tend to become coated with adsorbed atomic
oxygen; most reflections are diffuse (80-99%)

Stanford University



?
Calculate
C, on Flat Plate

Cp = Aif (2-0y)cosf (cos 9(1 +erf (V)) t %e_yz) *3:55%251““ =
- ) TT ﬁ . B iéw /
- 252”(1+erf(y))+7Nﬁ—i(?(1+‘~"‘f(5))+5—ze S )‘ A
Y =Scosf I, =Ti(1-a)+al,
U U -
§=—= ,
Va ZRSpTa 7//" \\
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30 - - Calculgte
Uncertainty in a Density

 Combine this with earlier results:

Effect of uncertain

P(B, ) = P(B|Byyin)P (B | )P(a) 1
B, is a fungﬁgn of &nm //—-
0.8 / 74
Bmax /
CéB )Eif ton W@fﬁB'PBmm)P (Bmin) dBmin 0.6 A
Bmm,a 1 L
; /
o Limits: B 0.4 /
C(Bmk) = [ C(Bmlemin)P(Bmin) dBmm 0.2 / _Origi“al CD -
Bmin,a=1 _CD with uncertain @
0 ! i
2 2.2 2.4 2.6 2.8 3
I\III—IBo P(Bmk) mln CD
Cp ~ Half Normal Ao~ (2.2,
0.1)
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. . Calculate
Calculating Density l benl l

-
« Calculate density p: Recursion
7 |
_ _ Kk i - , _ _ Kmk
Mean Estimate: pp=— I Minimum Estimate: pp==—"
B I Bmin
|
*  Minimum K I - Maximum Kk
. Maximum B : « Minimum B
|

« Kcontains estimation error .
_ _ _ Have to choose which one to
« B contains error associated with platform minimize!

* Nullify large estimation errors in K from affecting estimation of B

Separate estimation error from the random elements of the platform in question
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