COE CST Fifth Annual Technical Meeting

Task 244: Autonomous Rendezvous & Docking for Space Debris Mitigation

Bungo Shiotani Norman Fitz-Coy (P.I.)

Center of Excellence for **Commercial Space Transportation**

October 27-28, 2015 Arlington, VA

Agenda

- Team Members
- Task Description
- Schedule
- Goals
- Results
- Conclusions and Future Work

Team Members

- Principal Investigator
 - Norman Fitz-Coy
- Students
 - Bungo Shiotani (PhD student)
 - Kathryn Cason (accepted job with MEI)
 - Takashi Hiramatsu (PhD in 2012 Keio Univ.)
- Organizations
 - Collaborator: NASA ODPO
 - Matching provided by: Space Florida

Task Description (Original)

- Active debris removal is required
 - Interests in small satellites (e.g., CubeSats) especially by new space entrant leads to:
 - More spacecraft → more failure (debris)
 - Debris likely to be non-cooperative
- Objective
 - Develop strategies to minimize interactions during removal of non-cooperative debris
 - Develop strategies for safe proximity operations / collision avoidance during removal

Task Description (Modified)

Objectives

- Identify/quantify the global growth trends of CubeSat-class satellite; assess the interests of US and international communities for CubeSat applications and investigate emerging CubeSat products (e.g., Planet Labs constellation of CubeSats).
- Survey the assembly integration and testing practices of these CubeSat developers and utilize that information to investigate the mortality rates of CubeSats
- Assess the space debris mitigation strategies utilized / implemented by these developers

Replace CubeSats with "Containerized" Satellites

Schedule

- Start date: September 2014
- Develop survey strategy: October 2014
- Pilot test questionnaire: December 2014
 - Reviewed by NASA ODPO
- Disseminated questionnaire: January 2015
- Survey closed: May 2015
- Analyze survey results: June-Aug. 2015
- Finalize/publish results: September 2015

Goals

Outcomes

- Utilize the growth trends, mortality information, and mitigation strategies to access the impact of "containerized" satellites to LEO debris
- Sensitize containerized satellite community of their potential impact on space debris
- Work with NASA ODPO and IADC to develop protocols to reduce debris growth trend (e.g. modify 25-year rule)

Relevance to FAA

- Debris in LEO will re-enter the airspace and could interact with sub-orbital flights and/or air traffic
- Collision with 5 mm sized debris could be consequential

Task Motivation

Task Motivation

- Debris growing due to increases launch rate of containerized satellites
- Large constellations (hundreds of satellites) are being "developed"

Constellation of traditional satellites (e.g., Iridium)

Constellation of containerized satellites (e.g., OneWeb, SpaceX, PlanetLabs)

Containerized Satellite Survey

• Survey disseminated to small satellite community through mailing lists (e.g., CubeSat, AMSAT, and working groups of INCOSE and IAA) and personal contacts worldwide.

200 survey links opened

Participant affiliation

Past and future launch masses

Systems Engineering Activities

Simulation & Analysis	Orbital, thermal, and structural	Hardware V&V	Environmental (thermal, vacuum, vibe)
Reliability Analysis	FTA	Software V&V	Hardware & software in-the-loop
Requirements	AES9100 QA, ICDs, QA plans	Reviews	Working groups, subject matter experts
Documentation	Versioning, server system, and software	Other	No SE activities

- 91 respondents familiar with the "25-Year-Rule"
 - 56% of these respondents have procedures in place to satisfy the "25-Year-Rule"

Orbital simulations and analyses Reports and documents to governing administration Active deorbit devices Passive deorbit devices By design (consider area-to-mass ratio)

Selected Procedures

Rely on launch providers to put us in low orbit

Purchase/request launch to low perigee altitudes

Further details to be published in Journal of Small Satellites

Conclusions and Future Work

- Survey results show a healthy continuous growth of containerized satellites
- Small satellite community acknowledge the debris issue and either have procedures in place or are developing procedures to be in compliance with the "25-Year-Rule"
- Statuses vary depending on mission assurance (i.e., systems engineering) activities and affiliation
- The small satellite community is capable of becoming/being responsible users of space

Conclusions and Future Work

- Observations from the study
 - Lack of survey responses leads to inconclusive assessments (e.g., mortality rates)
 - Some participants thought the survey asked proprietary information and refused to answer
- Future work
 - Disseminate results (paper to be submitted)
 - Work with NASA Orbital Debris Program Office to develop protocols and continue assessment of debris
 - Work with INCOSE SSWG to develop a CubeSat reference model utilizing MBSE
 - Further assess mission assurance (i.e., systems engineering) activities

Acknowledgement

- We would like to express sincere gratitude to:
 - All participants that responded to the survey
 - NASA ODPO for their guidance

- Contact information
 - Bungo Shiotani bshiota@ufl.edu
 - Norman Fitz-Coy nfc@ufl.edu