COE CST Fifth Annual Technical Meeting

Task 306 UAT ADS-B Research and Demonstration for Commercial Space Applications: Progress Report

Richard S. Stansbury

Student:

Brandon Neugebauer
Dominic Tournour
Dylan Rudolph
Richard Day
Yosvany Alonso

October 27-28, 2015 Arlington, VA

Agenda

- Team Members
- Project Overview
- Collaboration with Terminal Velocity Aerospace
- Maturation plan and follow-on research plans

Team Members

People

- Principal Investigators: Richard S. Stansbury
- Students: Brandon Neugebauer, Richard P. Day, Yosvany Alonso, Dyland Rudolph, and Dominic Tournour
- Other faculty: William C. Barott, Massood Towhidnejad
- FAA: Nick Demidovich, Chuck Greenlow, John Dinofrio, and others.
- MITRF: Dave Edwards

Organizations

October 27-28, 2015

- Terminal Velocity Aerospace, LLC.
 - Dominic Depasquale
- NASA Flight Opportunities Program
 - Up Aerospace
 - Near Space Corporation

Center of Excellence for

Goals

- Enhance tracking of vehicles as they traverse through the national airspace system to mitigate the impact of commercial space operations on routine aviation operations
- Sub-goals goals:
 - Determine suitability for ADS-B for commercial space
 - Determine boundary conditions of system performance
 - Assess performance of prototypes on space vehicles and suitable analogues
 - Identify areas of improvement in ADS-B standard to accommodate ADS-B operation
 - Provide stakeholders with information regarding suitability of ADS-B as a primary or secondary tracking source

MITRE UBR-TX

- UAT Beacon Radio Transmit Only (UBR-TX)
 - Broadcasts state vector once per second
 - Supports both barometric and GPSbased altitudes
- Balloon / Rocket Flight Tests
 - 2008 Red Glare V (amateur rocket)
 - 2009 Red Glare VII (amateur rocket)
 - 2010 AFRL research balloon
 - 2010 NASA Wallops sounding rocket
 - 2012 Up Aerospace Spaceloft 6
 - 2012 Team America Rocket Challenge
 - 2013 Up Aerospace Spaceloft 7
 - 2013 Masten Xombie

Center of Excellence for

Commercial Space Transportation

Past Flights:

- NSC Nano Balloon System
- NSC High Altitude Shuttle System
- Up Aerospace SpaceLoft-8
- NSC Small Balloon System w/ TVA Spacecraft

Maximum Altitude: 349,700 ft (SL-8)

Parameter	Specification	
Length	5.75" (14.6 cm)	
Width	2.5" (6.35 cm)	
Height	2.5" (6.35 cm)	
Weight (UBR board, daughter board, GPS, battery, and enclosure)	790 g (27.9 oz)	
Weight (cables, antennas, etc.)	85-300g est.	
Nominal power Consumption	840mA @ 3VDC	
Nominal battery capacity	7.75 Ah	

UBR-ERAU Advanced ADS-B Transmitter for sRLVs

Upgraded firmware and GPS hardware

Terminal Velocity Aerospace

 Integration of Advanced ADS-B Unit onboard reentry vehicle

- Funded by NASA Ames
- Goals:
 - Evaluate performance of ADS-B broadcasting through experimental TPS material
 - Demonstration of UBR on new vehicle type

Center of Excellence for

Link Budget Analysis

Link Budget ADS-B				
	Symbols	Data	Units	Deviation
Frequency	f ₀	978	MHz	0.3125
Wavelength	λ	0.30654	m	0.000006
Modulation Rate	В	1.041667	Megabits/sec	
Altitude	h	45.72	km	
Distance	d	241.4	km	
Offset Angle	θ	10.72	degrees	
	Symbols	Gain/Loss	<u>Units</u>	<u>Equation</u>
Transmitter	Ртх	8.5	dBW	
Transmitter Cable	L _{TX}	0.9	dB	
Transmitter Antenna	GTX	4.6	dBi	
TPS Window	Lм	0	dB	Not Disclosed
				FSPL=20 log_10[(4*π/C
Free Space	LFS	140.1	dB)*f ₀ *d]
Pointing Loss Tran		1.0	dB	
Pointing Loss Rec	Lp	1.0	dB	
Polarization Loss	Lн	3.0	dB	
Receiver Antenna	Grx	7.0	dBi	
Receiver Cable	L _{RX}	0.9	dB	
Signal Present at	P _{RX}	-123.8	dBW	
Receiver		-126.8	dBW	
Margin		-2.8	dBW	
		-5.8	dBW	

Amplification needed with TPS material added as altitude is increased. Note: TPS material unknown and not included in models shown.

Terminal Velocity Aerospace Reentry Vehicle Drop from stratospheric balloon

Terminal Velocity Aerospace Reentry Vehicle Drop from stratospheric balloon

- Dropped from 100Kft ADS-B payload reported at all times in flight
- Was useful in finding vehicle in landing location in forest!
- Balloon gondola also had ERAU ADS-B out payload
- First known flight with
 - ADS-B on both balloon and ballistic payload
 - Tranmission through heat shield

Technology maturation plan

- Project goal to demonstrate viability and test functional envelope of experimental ADS-B payload for sub-orbital commercial space operations
 - TRL-7, proven within its operational environment
- Additional flights needed before transition to TRL-8 (i.e. move out of prototype phase)
- Diversity of new vehicles is desirable to get operator feedback
- Conduct research to address issues with current ADS-B message standards as no message type for space vehicle yet developed / approved.

Planned Future Commercial Space Flights with Experimental ADS-B Payloads

- Near Space Corporation's High Altitude Shuttle System
 - Surrogate winged suborbital vehicle performing a descent into NAS (from above 60, 000 feet) - ASAP
- SL-11 reflight with GPS through boost phase (16Gs for 12 seconds with FOP – Spring 2016 First time to pull high-g's with live data
- TVA vehicle –upgrades proposal developed
- Large amateur rocket to >100 miles in consideration
- SL-12 mixed airspace demo with UAS TBD
- Virgin Galactic SpaceShip 2 (TBD)

Center of Excellence for

Planned Future Commercial Space Flights with Experimental ADS-B Payloads

Expendable Launch Vehicle

- Currently in planning stages for first stage
- fly back booster
- expendable

Source: Near Space Corporati

- Cubesat or International Space Station
 - Investigating opportunities for cubesat integration or a ISS flight
 - Proof of concept for on-orbit application

Questions?

Image courtesy of UpAerospace Inc.

Embry-Riddle Aeronautical University

Richard Stansbury, stansbur@erau.edu
Massood Towhidnejad, towhid@erau.edu
Dominic Tournour, TOURNOUD@my.erau.edu

FAA Office of Commercial Space Transportation

Nick Demidovich, <u>nickolas.demidovich@faa.gov</u>

FAA William J. Hughes Technical Center

Chuck Greenlow, chuck.ctr.greenlow@faa.gov
John DiNofrio, john.dinofrio@faa.gov

MITRE

Dave Edwards, davee@mitre.org