COE CST Fifth Annual Technical Meeting

Optical Measurements of Rocket Nozzle Thrust and Noise

PI (s): Rajan Kumar & Farrukh Alvi Student: Griffin Valentich

October 27-28, 2015 Arlington, VA

Agenda

- Team Members
- Challenges and Motivation
- Task Description
- Test Facilities
- Schedule & Milestones
- Nozzle Design
- Future Work

Team Members

- Team
 - Rajan Kumar & Farrukh Alvi
 - Griffin Valentich
- Organizations Involved
 - FSU / FCAAP
 - Space Florida
 - SpaceX

Challenges & Motivation

70% accidents in aerospace missions are due to engine malfunction or propulsion system failures!!

Rocket propulsion studies are limited (only National Labs. & big corporations)

- High temperature and pressure environment
- Complex chemistry unstable fuels
- Large scale tests are expensive & require specialized rigs
- Need to develop high temperature pressure sensors – activity initiated under COE-CST
- Measure steady and transient loading on the nozzle and ground surface material characterization
- Jet plume development and flow field analysis
- Nearfield & farfield noise measurement and prediction tools
- Study of next generation hybrid fuels

Tasks Description

- Development of a research plan based on state-of-art thrust and noise measurement techniques.
- Discussion with NASA /commercial launch engineers to ensure the transition of technology from laboratory to fullscale implementation.
- Design of a scaled nozzle and simulate realistic temperature and pressure conditions of the jet exhaust in the FSU jet facility
- Design and develop advanced optical techniques for thrust measurements and characterize its performance at controlled conditions.
- Refine and test the measurement techniques over a wide range of test conditions.

Test Facilities

Nozzle

Ground Plate with Transducer Block

 $T_0 = 70 - 2000 F$

 $\cdot D_{.let} = 25.4 - 76.2 \, mm$

•NPR = Under-ideal-over

expanded

•Anechoic chamber: 5.8 m x 5.2 m x 4.0 m, Calibrated to 100 Hz

Center of Excellence for

Thrust Measurements

Measured using PIV

Measured using Pitot-static probe

Noise Measurements

Schedule and Milestones

Task	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug
Development of research plan												
Design and fabrication of nozzle												
Thrust measurements												
Noise measurements												

Preliminary Nozzle Design

Thrust optimized parabolic (TOP) contour nozzle

Design Mach Number: 5.6

 $A/A^* = 38$

Future Work

- Discussion with NASA / commercial launch manager (SpaceX).
- Detailed design to suit FSU jet facility and fabrication of TOP nozzle
- Instrumentation of jet facility to measure mass flow rate, exhaust velocity and pressure distributions at the nozzle exit