Center for Advanced Turbomachinery and Energy Research Vasu Lab

Advancement of LED-Based Hazardous Gas Sensors for Space Applications

Prof. Subith Vasu

Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL, 32816

<u>Team</u>: A. Terracciano; A.Parupalli;

Z. Loparo; J. Urso;

Agenda

- Motivation
- Technical Background
- High Altitude Balloon Flight
- Swept Grating Design
- Sensor Testing
- Laser Validation
- Conclusions
- Future Work
- Acknowledgements

Center for Advanced Turbomachinery and Energy Research Vasu Lab

Need For Sensors & Design Theory

CO

Motivation

 Cabin air is confined aboard spacecraft and toxic gases may accumulate

- Toxic gas sources include
 - Human activity
 - Astroculture
 - System malfunctions
- Rapid detection is necessary to ensure safety of crew & exper

Ethylene

Formaldehyde

Ureá

Motivation

- Many current hazardous gas detection sensors are particle based
 - Particle ionization smoke detector
 - NIR laser forward scattering particle detector
- LEDs are more durable and less expensive than lasers

Image Credits NASA

Image Credits NASA

Absorption Spectroscopy & Beer's Law

Absorption Spectroscopy is an application of the Beer-Lambert Law:

$$A(\lambda) = -\ln\left(\frac{I_{\lambda}}{I_{\lambda,0}}\right) = \sum_{i} \int_{s_{j}}^{s_{j+1}} k_{\lambda} \cdot x_{i} \, ds$$

- $A(\lambda)$ Spectral absorbance
- $I_{\lambda,0}$ Incident spectral intensity of electromagnetic radiation
 - I_{λ} Transmitted spectral intensity of electromagnetic radiation

 x_i - Molar fraction of ith species

s - Path variable

 k_{λ} - Spectral absorbance coefficient (function of pressure, temperature, & species)

Center for Advanced Turbomachinery and Energy Research Vasu Lab

Sensor History

Center for Advanced Turbomachinery and Energy Research Vasu Lab

High Altitude Balloon Flight

Original Design

- 3 LEDs: CO₂, CO, and reference
- Modulated at different frequencies
- Separated signals via Fast Fourier Transform (FFT)
- Autonomous operation using a National Instruments cRIO DAQ

Abridged Sensor Overview

- Temperature dependent feature distribution
- As pressure ↓, peak width narrows
- As pressure ↑
 baseline
 absorbance is
 present
 - Baseline effects cause saturation when used in conjunction with broadband source

Abridged Sensor Overview

- Single LED used with filter for CO₂ detection
 - Reduction in complexity from previous design
 - Omitted reference LED
- Designed open-loop LED driver
 - Ceramic capacitor to allow temperaturedependent frequency changes
- Isolated power distribution channels
- Autonomous operation using a National Instruments cRIO DAQ

Sensor Enclosure & Packaging

- Components placed in acrylic enclosure
 - Panels cut using laser CNC & assembled using acrylic monomer
 - Ribs and layered design used to ensure lightweight construction
- Acrylic enclosure sealed using greased butyl gasket
 - Passthroughs on the enclosure for electrical signals & power
- Aluminum housing surrounding acrylic for protection
 - High altitude solar heating & µwave interference

Balloon Flight

- NASA Columbia
 Scientific Balloon
 Facility Ft.
 Sumner, NM
- Sensor packaged and mounted on balloon payload
- Autonomous operation test
- Enclosure sealed with ambient air
- Power supplied via NASA HASP Platform

Max Altitude: 109,412 ft

Nominal Float Altitude: 105,000 ft Launch Time: 9/4/2017 14:04:25 UTC

Duration: 776 min.

Autonomous Flight Data

- Intensity, temperature & wave center changing
- Following warmup
 - Signal intensity & Frequency correlate with temperature
- Curve fits for baseline detection were then fit
 - Temperature dependent

$$A_{max}(T^{\circ}C) = -0.299^{mV}/_{\circ C} \cdot T(^{\circ}C) + 15.313mV$$

Balloon Flight Conclusions

- Simplified design requiring less power and optical space
- Proved functional and able to withstand high-altitude balloon flight
- Established effect of temperature on modulated frequency
- Expand detection range without greatly increasing optical complexity

Center for Advanced Turbomachinery and Energy Research Vasu Lab

Swept Grating Sensor

Sensor Target Gases

- · CO₂
 - Released during combustion and smoldering events
 - Impairs cognitive capacity in large concentrations
- N₂O
 - Oxidizer in hybrid rockets
 - Sedative and affects critical thinking

Optical Path

Diffraction Grating

Detected wavelength calculated using grating equation:

$$n\lambda = d[sin(\alpha) \pm sin(\beta)]$$

Grating Calibration

- Grating "zero" reference
 - Laser diode placed perpendicular to grating
 - Measuring distance between adjacent modes
 - $-n\lambda = d[sin(\alpha) \pm sin(\beta)]$

Grating Calibration

- For valid measurements, a repeatable grating position is necessary
 - Stepper motor used for actuation
 - Motor driving function parametrically investigated for minimal drift

Grating Calibration

DAQ controls the movement of the grating in a uniform manner

Measurement Sweep Range

- Wavelength Range: 4117nm 4592nm
 - Split into 110 discretizations
 - Step size of 4.318nm

Signal Collection & Interpretation

- LED modulated at 250 kHz to reduce noise
- FFT & Absorbance
 - Figure shows FFT at 4185nm for vacuum
 - Save peak signal and reference data (110)

-
$$P_{signal,dB} = 10log_{10} \left(\frac{P_{signal}}{P_{ref.}} \right)$$

$$- A(\lambda) = -ln\left(\frac{I_{\lambda}}{I_{\lambda,0}}\cdot\right)$$

- I_{λ} = test detector signal
- $I_{\lambda,0}$ = vacuum detector signal
- $SNR_{dB} = P_{signal,dB} P_{noise,dB}$
 - $SNR_{dB,ref} = 37dB$

Cross-Interference Study

- Interference between the two species must be studied before making combined mixtures
- False baseline absorbance is present

Test Mixtures

- Mixtures were prepared in a manifold using an MKS Baratron
- All mixtures contained equal concentrations of CO₂ and N₂O
- The gas cell was filled with the specific mixture and diluted with N₂ to reach different concentrations
- Each test was completed 3-4 separate times
- The gas cell was vacuumed to 0.30 Torr in between experiments

Mixture	Percentage of CO ₂ (%)	Percentage of N ₂ O (%)	Percentage of N ₂ (%)
1	0.778	0.774	98.5
2	0.548	0.551	98.9
3	0.355	0.356	99.3

Integrated Absorbance

- Top figure shows CO₂ integrated from 4150 to 4350nm
- Bottom figure shows N₂O integrated from 4420 to 4585nm
- HITRAN absorption cross-section modeled using a Gaussian App. Function with an App. Resolution of 35 cm⁻¹
- Error bars show standard deviation at each concentration value

Laser Validation Setup

- Validation with 2 Distributed Feedback Quantum Cascade Lasers (QCL)
- "CO₂ Laser" : 4.256 4.266μm
- "N₂O Laser": 4.583 4.596μm

Laser Test Mixtures

Mixtures were prepared in the same manner as the LED experiments

Mixture	Percentage of CO ₂	Percentage of N ₂ O	Percentage of N ₂
	(%)	(%)	(%)
1	0.355	0.356	99.29
2	0.674	0.654	98.67
3	0.518	0.503	98.97
4	0.537	0.521	98.94
5	0.201	0.195	99.60

Concentration Comparison

- CO₂ laser at 4264.314 nm
- LED data at same wavelength
- Calculated concentration values from Beer-Lambert Law

Concentration Comparison

- N₂O laser at 4589.699 nm
- LED data at same wavelength
- Calculated concentration values from Beer-Lambert Law

Conclusions

- An LED based gas sensor was tested for its abilities to detect toxic compounds
- Grating design proved functional for detection of both CO₂ and N₂O with a single LED
- Comparison with laser-based measurements validates the sensor at lower concentrations
- Show potential for greatly reducing complexities of gas detection systems
- Lead to increased safety in space vehicles

Future Work

- Focus on increasing wavelength test range
- Detect more hazardous gases, such as CO
- Conduct tests in harsher environments
- Partner with Commercial Space companies
- Seek other applications and resources (e.g., NASA planetary sensing, enrionmental applications, etc.)

Presentations & Publications

Journal Publications

- Akshita Parupalli, Anthony Carmine Terracciano, Zachary Loparo, Justin Urso, S.S. Vasu, "Multi-Species Single-LED Gas Sensor for Space Habitats and Vehicles", New Space, 8(2), 2020.
- Published in Anthony Carmine Terracciano, Kyle Thurmond, Michael Villar, Akshita Parupalli, Justin Urso, Erik Ninnemann, S.S. Vasu, "Hazardous Gas Detection Sensor Using Broadband Light-Emitting Diode-Based Absorption Spectroscopy for Space Applications", New Space, 6(1), 28-36, 2018.

Presentations

- A.Terracciano, A. Parupalli, Z. Loparo, J. Urso, S.S. Vasu, "Advancement of LED-based hazardous gas sensors for space applications." 2018 AIAA SPACE and Astronautics Forum and Exposition. 2018.
- A. Terracciano, K. Thurmond, M.S. Villar, J. Urso, A. Parupalli, E. Ninnemann, Z. Loparo, N. Demidovich, J. Kapat, W. Partridge, S.S. Vasu, "Flight Test Demonstration of LED-based Fire Sensors for Space Propulsion Vehicles", presented at the ESS/CI Spring Technical meeting, State College, PA, 3/2018.

Acknowledgements

Research at UCF was supported by financial assistance from FAA-COE-CST, Space Florida, and Florida Space Institute. The authors thank Dr. Bill Partridge for support on previous designs.

Questions?

Vasu Lab 2016