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e Cabin air i1s confined aboard
spacecraft and toxic gases m
accumulate
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Motivation

« Many current hazardous gas detection

sensors are particle based

« Particle ionization smoke detector
* NIR laser forward scattering particle detector

« LEDs are more durable and less expensive
than lasers
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Absorption Spectroscopy &
Beer’s Law

« Absorption Spectroscopy is an application of the Beer-Lambert

Law:
Sj+1
AQQ) = —In ZJ kyx; ds
IAO
i
A(A) - Spectral absorbance x; - Molar fraction of it" species
I,0 - Incident spectral intensity of  k, - Spectral absorbance coefficient
electromagnetic radiation (function of pressure, temperature,
I, - Transmitted spectral intensity of & speuels)
electromagnetic radiation s - Path variable Lo
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High Altitude
Balloon Flight

eATE Ring ta the energy needs of society COFF




Original Design (
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« 3 LEDs: CO,, CO, and reference

« Modulated at different frequencies

« Separated signals via Fast Fourier Transform (FFT)
 Autonomous operation using a National Instruments cRIO DAQ
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Abridged Sensor Overview ()

Temperature
dependent feature
distribution

As pressure |,
peak width narrows

As pressure 1
baseline
absorbance is
present

Baseline effects
cause saturation
when used in
conjunction with
broadband source
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Abridged Sensor Overview (e~

3443 mm 4.2 um Filter Condenser Lens Photodiode
4.2 um LED
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« Single LED used with filter for CO,
detection

— Reduction in complexity from
previous design

— Omitted reference LED

68.42 mm > 20.46 mm

Secondary Condenser Ljnfes<

O

« Designed open-loop LED driver @wfﬁ - | |
— Ceramic capacitor to allow temperature- = & L2 entte
dependent frequency changes oc oo
. Isolated power distribution channels :_——
« Autonomous operation using a I P
National Instruments cRIO DAQ T oo




Sensor Enclosure & |
Packaging NI

« Components placed in acrylic enclosure
— Panels cut using laser CNC & assembled using acrylic monomer
— Ribs and layered design used to ensure lightweight construction

* Acrylic enclosure sealed using greased butyl gasket
— Passthroughs on the enclosure for electrical signals & power

 Aluminum housing surrounding acrylic for protection
— High altitude solar heating & pwave interference




Balloon Flight Jon

NASA Columbia t=200 min
Scientific Balloon %:’
Facility Ft. =% =R,
Sumner, NM gsoﬁ :
Sensor packaged §4o:

and mounted on £

balloon payload <20 ~ t=800min | i
Autonomous S o\°“°°" oh =0
operation test 3
Enclosure sealed » 35"“»0__ T 4
with ambient air . 30116° a0

P.ower supplied Max Altitude: 109,412 ft

via NASA HASP Nominal Float Altitude: 105,000 ft
Platform Launch Time: 9/4/2017 14:04:25 UTC

Duration: 776 min.



Intensity, temperature &

—0.299™V/..-T(°C) + 15.313mV ~
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wave center changing e
Following warmup 40}
— Signal intensity & $ .30
Frequency correlate with o0
temperature =
: : 10
Curve fits for baseline
detection were then fit 9
— Temperature dependent 135"_‘
T
> 6
max(ToC) = E; 4
0.022 4%/, . T(°C) + 3.283kHz 3 _
max(ToC) O‘
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Balloon Flight

Simplified design requiring less power
and optical space

Proved functional and able to withstand
high-altitude balloon flight

Established effect of temperature on
modulated frequency

Expand detection range without greatly
Increasing optical complexity
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Sensor
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Sensor Target Gases

- CO,
— Released during combustion and smoldering events
— Impairs cognitive capacity in large concentrations

+ N,O
— Oxidizer in hybrid rockets
— Sedative and affects critical thinking

Main symptoms of

Volum

Ambient Air Dental Procedure iy
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Photodiode

Detector
Condenser

Lenses

Windows

Collimating

Diffraction
Grating

u

A Lenses

4.2 um
LED
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Diffraction Grating

» Detected wavelength calculated using
grating equation:
nA =d[sin(a) + sin(f)]

Pseudo Monochromatic
Diffracted Light

. Slit
Polychromatic
Incident Light
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Grating Calibration

* Grating “zero” reference
— Laser diode placed perpendicular to grating
— Measuring distance between adjacent modes

- nd = d[sin(a) + sin(B)]

Photodiode Detector

/

COEY ™ —
CST
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* For valid measurements, a repeatable grating
position Is necessary
— Stepper motor used for actuation

— Motor driving function parametrically
Investigated for minimal drift |




« DAQ controls the movement of the
grating in a uniform manner

t---‘433
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Measurement Sweep Range (- —

&

 Wavelength Range: 4117nm —4592nm
— Split into 110 discretizations
— Step size of 4.318nm

Wavenumber, cm™”

2450 2400 2350 2300 2250 2200 2150 2100
il E l _COZ
26000~ | —N,0

- R | 1

I v | I ,

4300 4400 4500 4600
Wavelength, nm
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Signal Collection &
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Interpretation
» LED modulated at 250 kHz

to reduce noise —

 FFT & Absorbance |

— Figure shows FFT at
4185nm for vacuum

— Save peak signal and
reference data (110)
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Cross-Interference Study (-

e

=

* Interference between the two species must be studied before
making combined mixtures
« False baseline absorbance is present

Wavenumber, cm™!
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Test Mixtures

 Mixtures were prepared in a manifold using an MKS Baratron

« All mixtures contained equal concentrations of CO, and N,O

 The gas cell was filled with the specific mixture and diluted with N,
to reach different concentrations

« Each test was completed 3-4 separate times

« The gas cell was vacuumed to 0.30 Torr in between experiments

Mixture Percentage of | Percentage of | Percentage of
CO, (%) N,O (%) N, (%)
1 0.778 0.774 98.5
2 0.548 0.551 98.9
3 0.355 0.356 99.3
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Integrated Absorbance
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Top figure shows CO,
Integrated from 4150 to
4350nm

Bottom figure shows N,O
integrated from 4420 to
4585nm

HITRAN absorption
cross-section modeled
using a Gaussian App.
Function with an App.
Resolution of 35 cm?

Error bars show standard
deviation at each
concentration value



Validation with 2 Distributed Feedback Quantum Cascade Lasers (QCL)
“CO, Laser” : 4.256 — 4.266um
“N,O Laser” : 4.583 — 4.596um

Optlcal slit Beam splitter

I..,,\ PR .
AR
1

Fiber- OptIC coupler

\
I
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Laser Validation Setup ()~



Mixtures were prepared in the same manner as the LED experiments

Mixture | Percentage of CO, | Percentage of N,O | Percentage of N,
(%) (%) (%)
1 0.355 0.356 99.29
2 0.674 0.654 98.67
3 0.518 0.503 98.97
4 0.537 0.521 98.94
5 0.201 0.195 99.60




Concentration Comparison (-

« CO, laser at 4264.314 nm
« LED data at same wavelength
« Calculated concentration values from Beer-Lambert Law

1.2
* Laser Experiments

O LED Experiments
1 LED R% = 0.8154
— Laser R? = 0.7527

o
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Concentration Comparison (-

* N,O laser at 4589.699 nm
« LED data at same wavelength
« Calculated concentration values from Beer-Lambert Law

3 —
* Laser Experiments
O LED Experiments o
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Conclusions J |

« An LED based gas sensor was tested for its
abilities to detect toxic compounds

« Grating design proved functional for detection
of both CO, and N,O with a single LED

« Comparison with laser-based measurements
validates the sensor at lower concentrations

« Show potential for greatly reducing
complexities of gas detection systems

 Lead to increased safety in space vehicles
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Future Work Lo

A ~tuiatahle

 Focus on increasing

Acetylene (CH,)
wavelength test range T s
—— Carbon Disulfide (CS,)

Carbon Monoxide (CO)
Cyanogen (NCCN)

« Detect more hazardous gases, | =

Ethylene |;C2H4]
0.01

Hydrogen Cyanide (HCN)
S u C h as C O = Hydrogen Peraxide (H,0,)
:'E 0.008 Hydrogen Sulfide (HZS]
a ——— Methyl Mercaptan [CH3SH]
Nitrie Owide (NO)

e Conduct tests in harsher

—— Sulfur Dioxide (SO,)

en VI ro n m en tS - Sulfur Trioxide (S0,)

-Water (H,0)

Abs

 Partner with Commercial > il ” k b

. iy LA N At TRIRTRR,

Space companies LR sl

. Detector """

« Seek other applications and PcE. §

resources (e.g., NASA S8
planetary sensing,

enrionmental applications,

etc.)
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