COE CST Eleventh Annual Technical Meeting

399-UCF
Efficient Uncertainty Quantification,
Probability of Collision and
Benchmarking

Tarek A. Elgohary

Agenda

- Team Members
- Task Description
- Schedule
- Goals
- Results
- Conclusions and Future Work

Team Members

PeoplePrincipal Investigator

Tarek A. Elgohary

Ph.D. Student

Tahsinul Haque Tasif

Task Description

Monthly Effective Number of Objects in Earth Orbit

- Accumulation of space debris Kessler's Syndrome – Sustainability of the space environment
- More and more constellations in Earth orbit –
 SpaceX, OneWeb, India, China, etc.

Our Approaches for UQ

Probability Density Function (PDF) via Higher Order State Transition Tensors

Evolution of uncertainties

$$\delta x = \phi_1 \delta x_0 + \phi_2 \delta x_0 \delta x_0 + \cdots$$

• Knowing the probability distribution of δx_0 , the posterior PDF is given by,

$$P_{\delta x}(\delta x) = P_{\delta x_0}(\delta x_0) \left| \det \left(\frac{\partial g^{-1}(\delta x)}{\partial (\delta x)} \right) \right|$$

• Where, $g^{-1}(\delta x)$ is the Taylor series reversion.

$$\delta \boldsymbol{x}_0 = \Psi_1 \delta \boldsymbol{x} + \frac{1}{2} \Psi_2 \delta \boldsymbol{x} \delta \boldsymbol{x} + \frac{1}{3!} \Psi_3 \delta \boldsymbol{x} \delta \boldsymbol{x} \delta \boldsymbol{x} + \dots$$

$$\delta \boldsymbol{x}_0' = \Psi_1 + \frac{1}{2} \Psi_2 \delta \boldsymbol{x} + \frac{1}{3!} \Psi_3 \delta \boldsymbol{x} \delta \boldsymbol{x} + \dots$$

$$P_{\delta \boldsymbol{x}}(\delta \boldsymbol{x}) = P_{\delta \boldsymbol{x}_0}(\delta \boldsymbol{x}_0) |\det(\delta \boldsymbol{x}_0')|$$

Analytic Continuation Technique

- Analytic Continuation is an integration method applied to solve fundamental problems in Astrodynamics.
- This method has been proven to be highly precise and computationally efficient in orbit propagation.
- The full spherical harmonics gravity model and atmospheric drag model were also incorporated with Analytic Continuation method.

$$f = \mathbf{r} \cdot \mathbf{r} \text{ and } g_p = f^{-\frac{p}{2}}$$

$$\mathbf{r}_0^{(2)} = -\mu \frac{\mathbf{r}_0}{(\mathbf{r}_0 \cdot \mathbf{r}_0)^{3/2}} = -\mu \mathbf{r}_0 f^{-\frac{3}{2}} = -\mu \mathbf{r}_0 g_3$$

Analytic Continuation - State Variables

Taylor series expansion to obtain position and velocity:

$$\mathbf{r}(t_0 + dT) = \mathbf{r}_0 + \sum_{m=1}^n \mathbf{r}_0^{(m)} \frac{dT^{(m)}}{m!}$$
$$\mathbf{r}^{(1)}(t_0 + dT) = \mathbf{r}_0^{(1)} + \sum_{m=2}^n \mathbf{r}_0^{(m)} \frac{dT^{(m-1)}}{(m-1)!}$$

• The recursive equations to calculate ${m r}_0^{(n)}$, $f^{(n)}$ and $g_p^{(n)}$:

$$\mathbf{r}_0^{(n+2)} = - \mu \sum_{m=0}^n \binom{n}{m} \mathbf{r}_0^{(m)} g_3^{(n-m)} \text{ and } f^{(n)} = \sum_{m=0}^n \binom{n}{m} \mathbf{r}_0^{(m)} \mathbf{r}_0^{(m-m)}$$

$$g_p^{(n+1)} = -\frac{1}{f} \left\{ \frac{p}{2} f^{(1)} g_p^{(n)} + \sum_{m=1}^n \binom{n}{m} \left(\frac{p}{2} f^{(m+1)} g_p^{(n-m)} + f^{(m)} g_p^{(n-m+1)} \right) \right\}$$

Analytic Continuation – State Transition Tensors

Index based First and Second order State Transition Tensors:

$$\Phi_{ij}^1 = \frac{\partial \chi_i}{\partial \chi_{0j}} \text{ and } \Phi_{ijk}^2 = \frac{\partial^2 \chi_i}{\partial \chi_{0j} \partial \chi_{0k}}$$

where, χ_i is the i-th element of the state vector, $\chi = [x, y, z, \dot{x}, \dot{y}, \dot{z}]^T$.

Taylor series expansion of the terms of the State Transition
 Tensors:

FAA COE CST

Tenth Annual Technical Meeting (ATM11)

Schedule

Task	Time Frame
Develop Analytic Continuation for arbitrary order perturbed state transition tensors for accurate error propagation	Fall 2020
Develop estimation framework for space-based surveillance and tracking utilizing the perturbed STM/STT.	Fall 2021
Computing Probability of collisions of RSOs via two approaches + Benchmarking problems	Spring/Summer 2022

Goals

- Accurate and efficient approaches to quantify uncertainty and compute probability of collision for RSOs
- Benchmarking platform for other methods to provide synthetic or real cases and compare results
- Sustainability of the space environment
- Tools to predict space debris trajectories and potential hazardous events to various operators
- Accurate orbit prediction for newly deployed constellations and their potential collisions with debris and/or other RSOs.

Results

Fig: Symplectic Error in $J_2 - J_6$ gravity perturbed orbits and comparison with MATLAB ODE suite

Fig: Linear prediction error of states of $J_2 - J_6$ gravity and drag perturbed LEO and MEO orbit using Analytic Continuation and comparison with ODE87

Fig: Linear prediction error of states of $J_2 - J_6$ gravity and drag perturbed GTO and HEO orbit using Analytic Continuation and comparison with ODE87

Fig: 2nd order prediction error improvement of states of J₂ perturbed LEO and MEO orbit using Second Order State Transition Tensor derived using Analytic Continuation technique

Fig: 2nd order prediction error improvement of states of J₂ perturbed GTO and HEO orbit using Second Order State Transition Tensor derived using Analytic Continuation technique

Application – Accurate Orbit Estimation with Sparse Measurements for Space-Based Surveillance & Tracking (SBSST)

Analytic Continuation Extended Kalman Filter (AC-EKF)

AC-EKF Accuracy & Efficiency Comparison

A Small Formation Performing SBSST

	Pos. RMSE (m)	Vel. RMSE (m/s)	Condition Number				
Keplerian Two-Body Motion							
Two-body Assumption w/o P.N.	1.785	0.888	5.920×10^{11}				
AC-EKF	1.792	0.888	5.931×10^{11}				
Two-Body Motion Gravity Perturbed							
Two-body Assumption w/o P.N.		Diverges					
Two-body Assumption w/ P.N.	5.680	1.672	6.395×10^{11}				
AC-EKF	1.646	1.348	6.592×10^{11}				
Two-Body Motion Gravity and Drag Perturbed							
Two-body Assumption w/o P.N.		Diverges					
Two-body Assumption w/ P.N.	5.644	0.926	5.480×10^{11}				
AC-EKF	1.542	0.916	5.602×10^{11}				
Two-Body Higher Order Gravity and Drag Perturbed							
Two-body Assumption w/o P.N.		Diverges					
Two-body Assumption w/ P.N.	9.470	0.547	6.896×10^{11}				
Analytic Continuation w/o P.N.		Diverges					
Analytic Continuation w/ P.N.	4.592	0.518	6.916×10^{11}				

Computational Efficiency

	Relative Time	Num. Steps	Pos. RMSE (m)	Vel. RMSE (m/s)
	$\Delta t = 0.5 \mathrm{s}$			
F&G-EKF	0.402	1	5.995	1.042
ODE45-EKF w/ P.N.	7.679	12	5.953	0.967
<i>RK4-EKF</i>	1.000	2	1.542	0.916
<i>ODE45D-EKF</i>	11.102	10	1.542	0.916
ODE45-EKF	11.409	10	1.542	0.916
AC-EKF	2.822	1	1.542	0.916
	$\Delta t = 200.0 \mathrm{\ s}$			
F&G-EKF	0.073	1	928.977	4.114
ODE45-EKF w/ P.N.	2.692	100	922.227	4.109
<i>RK4-EKF</i>	1.000	40	25.827	0.106
<i>ODE45D-EKF</i>	1.703	13	25.827	0.106
ODE45-EKF	3.018	39	25.827	0.106
AC-EKF	0.158	1	25.827	0.106

Publications

- Tasif, T.H., Elgohary, T.A.: A high order analytic continuation technique for the perturbed two-body problem state transition matrix, Advances in Astronautical Sciences: AAS/AIAA Space Flight Mechanics Meeting (2019)
- Tasif, T.H., Elgohary, T.A.: An adaptive analytic continuation technique for the computation of the higher order state transition tensors for the perturbed two-body problem, AIAA Scitech 2020 Forum, p. 0958 (2020)
- Tasif, T.H., Elgohary, T.A.: An adaptive analytic continuation method for computing the perturbed two-body problem state transition matrix, **The Journal of the Astronautical Sciences** (2020).
- Tasif, Tahasinul H.; Hippelheuser, James; and Elgohary, Tarek A., "Analytic Continuation Extended Kalman Filter Framework for Space-Based Inertial Orbit Estimation via a Network of Observers", IAA Space Traffic Management Conference, January 26 – 27, 2021.
- Tasif, Tahsinul Haque; and Elgohary, Tarek A., "A Computation Process for the Higher Order State Transition Tensors of the Gravity and Drag Perturbed Two-Body Problem using Adaptive Analytic Continuation Technique", The International Conference on Computational and Experimental Engineering and Sciences (ICCES 2022), January 2022.
- Tasif, Tahsinul H.; Hippelheuser, James; and Elgohary, Tarek A., "An Analytic Continuation Extended Kalman Filter Framework for Perturbed Orbit Estimation Using a Network of Space-Based Observers with Angles-Only Measurements", Astrodynamics (2022). In Press.

Conclusions and Future Work

- Implementation of Spherical Harmonics Gravity and drag perturbations for State Transition Matrix and Higher Order State Transition Tensors.
- A robust estimation framework for multi-observer space-based surveillance and tracking in the absence of continuous measurements.
- The results of the current research work will be extended to solve uncertainty quantification of states over time and perturbed Multi Revolution Lambert's Problem.