

VERITAS

Venus Emissivity, Radio Science, InSAR, Topography, & Spectroscopy

Science Goals

1 Rocky planet evolution

- 1a igneous rock type, surface-atmosphere interaction
- 1b ancient geologic processes
- 1c volcanic history
- 1d subduction, origins of plate tectonics

2 Active processes

Active and recent volcanism, tectonics?

3 Past and present water

- 3a continents from a wetter past?
- 3b current volcanic outgassing of water?

Mission Overview

Launch Date: 2028

Venus Orbit Insertion: TBD

3 years of science operations from orbit

>40 Tb of science data returned

PI: Sue Smrekar, JPL; Managed by JPL

What makes a rocky planet habitable?

Like Earth, Venus started with all the building blocks of a habitable world.

How was habitability lost?

High-Resolution Global Reconnaissance

- VISAR (Venus Interferometric Synthetic Aperture Radar)
 - Highest resolution global topography for terrestrial planets
 - 1st planetary active deformation map
 - · Global data sets:
 - Topography: 250 m horiz, 5 m vertical
 - SAR imaging: 30 m
 - Targeted data sets:
 - SAR imaging: 15 m
 - Surface deformation: 1.5 cm vertical
- 2. VEM (Venus Emissivity Mapper)

1st near-global map of igneous rock type, weathering

- 6 NIR surface bands with robust SNR
- 8 atmospheric bands for calibration / water vapor

3. Gravity Science Investigation

1st global maps of derived elastic thickness & core size

VERITAS

Venus Emissivity Radio science, InSAR, Topography And Spectroscopy

Payload

- Venus Emissivity Mapper (VEM): DLR
 - NIR multispectral imager for surface rock type, active and recent volcanism, and volcanically outgassed water
- Venus Interferometric Synthetic Aperture Radar (VISAR): JPL/ASI
 - Radar for geologic evolution, volcanism, tectonism, and active deformation

 Uses two-way Ka-band telecom (ASI) to obtain elastic thickness and density variations, core size and state

Measurement Objectives

VISAR

Science Measurements:

Global DEM

- 250 m horz, 5 m vert resolution

Global SAR Imaging

- 30 m resolution

Targeted imaging (27% of planet)

-15 m resolution

1st Interferometric Deformation Maps

Searching for Surface Change

VEM

Science Measurements:

- 6 surface bands, SNR > 150
- 8 atmos, bands & calibration

Global Rock Type

Search For Volcanic Activity

Gravity

Science Measurements:

Gravity field (155 km), 3 mgal MOIF to ±0.005, k2 to ±0.01

Interior Structure
Core Size and State

DAVINCI Flybys and Probe Descent reveal Atmosphere and Oceans Was Venus habitable in the past?

Questions?