Magnetohydrodynamics turbulence simulations as testing ground for PUNCH

F. Pecora¹,

Y. Yang¹, S. Gibson², N. Viall³, R. Chhiber^{1,3}, C. DeForest⁴, W. H. Matthaeus¹

¹University of Delaware, Newark, US-DE

²HAO, NCAR, Boulder, US-CO

³NASA Goddard Space Flight Center, US-MD

⁴Southwest Research Institute, Boulder, US-CO

Punch science objectives

- 1. Understand how coronal structures become the ambient solar wind.
- Understand the evolution of transient structures (such as CMEs) in the young solar wind.
- Slow solar wind near Earth is dominated by fluctuations of unknown origin.
 - Do they form mainly from turbulence in the solar wind?
 - Or is the slow solar wind intrinsically intermittent from its origins?
- II. Track observed coronal microstructures in 3D as they form, evolve and propagate into the heliosphere.
- III. Detect the onset of turbulence through spatial spectrum steepening.

Punch scales

- Narrow Field Imager (NFI) $6 R_{\odot}$ $32 R_{\odot}$ Resolution: 0.67 arcmin ~ 0.04 R_{\odot} ~ 28 Mm
- ightharpoonup Wide Field Imagers (WFI) 20 R $_{\odot}$ 180 R $_{\odot}$ Resolution: 1.33 arcmin ~ 0.08 R $_{\odot}$ ~ 56 Mm
- ➤ 4-min cadence observations longer than the crossing time of a 140 Mm structure

- ii. Tracking of structures
- iii. Evolution of turbulence

 Understand how coronal structures become the ambient solar wind.

Observations in the inertial range

PUNCH will provide observations in the inertial range

e- density, Artemis @ 1AU

Simulation campaign

Several MHD simulations:

- Isotropic (no mean B₀)
- Anisotropic (mean B₀)
- Shear (Kelvin-Helmholtz)
- Different spectral slopes

5/21

Forward modeling

Not 1-to-1 comparison!

Forward-generated images include:

- Effects from integration along LOS (smearing of structures)
- Radial trend due to scattering function

PUNCH-like image

Not 1-to-1 comparison!

Forward-generated images include:

- Effects from integration along LOS (smearing of structures)
- Radial trend due to scattering function

PUNCH-like image

Not 1-to-1 correspondence!

Forward-generated images include:

- Effects from integration along LOS (smearing of structures)
- Radial trend due to scattering function

PUNCH – detrended

Not the same, but same spectral properties!

Effect of LOS integration on correlation scale

 $C(oldsymbol{\ell}) = \langle f(oldsymbol{x}) f(oldsymbol{x} + oldsymbol{\ell})
angle_{oldsymbol{x}}$

- Integrated fields decorrelate more slowly
- Absence of small-scale structures

15/21

Second-order structure function

$$S^2(oldsymbol{\ell}) = \langle \left| f(oldsymbol{x}) - f(oldsymbol{x} + oldsymbol{\ell})
ight|^2
angle_{oldsymbol{x}}$$

PUNCH

- Simulation 2D plane has the expected scaling from turbulence theory
- PUNCH and integrated sim have the same scaling

Equivalent power spectra

PUNCH

Effects of Rubik's cube dimensionality

1 cube

4 cubes

 10^{-2} -

___10^{−4}

2 cubes

101

1/lag

Scaling of

PUNCH and

integrated sim

does not change

8 cubes

Periodicity may bias results

10⁰

101

1/lag

Changing observer direction

Scaling of PUNCH and integrated sim does not change (as expected from isotropic turbulence)

Conclusions

- Simulations can be used to create a tunable Rubik's cube corona/heliosphere
- Several caveats need to be taken into account:
 - Actual resolution (now x5)
 - averaging
 - trends
 - density falloff
- LOS integration modifies "usual" turbulence scalings.

- Use different simulations
- Investigate time evolution
- Anisotropies
- •

20/21