# Mapping the Sun's Alfvén surface with PUNCH





Colleagues, students, & co-conspirators: R. Chhiber, C. Gilly, I. Cairns, R. Colaninno, D. McComas, N. Raouafi, A. Usmanov, S. Gibson, C. DeForest, A. Lattimer, M. Kenny, P. Tatum, R. Bandyopadhyay, M. Miralles *Image credit:* M. Druckmüller

# Mapping the Sun's Alfvén surface with PUNCH

PUNCH Working Group 1C: "What are the evolving physical properties of the Alfvén surface?"

#### Talk Outline:

- 1. What is it, and why do we care?
- 2. Where is it?
- 3. How will PUNCH help improve our understanding?

Is there a boundary between the corona and the solar wind?



## Is there a boundary between the corona and the solar wind?

- The Alfvén surface (or Alfvén radius, or Alfvén zone) is a useful place to draw this distinction.
- Below  $r_A$ , information (waves) can propagate both in & out. Above  $r_A$ , the solar wind drags out both inward & outward modes, and information doesn't propagate back down to the Sun.





## Is there a boundary between the corona and the solar wind?

- The Alfvén surface (or Alfvén radius, or Alfvén zone) is a useful place to draw this distinction.
- Below  $r_A$ , information (waves) can propagate both in & out. Above  $r_A$ , the solar wind drags out both inward & outward modes, and information doesn't propagate back down to the Sun.
- It's the angular momentum "lever-arm" of the corona (Weber & Davis 1967).
- Measuring the wind speed at  $r_A$  gives  $V_A \rightarrow B$  there, too.





## In reality, there's a range of critical radii

- Models: 318 runs of ZEPHYR for various types of magnetic flux configurations & wind speeds (Cranmer et al. 2007, 2013).
- Weber & Davis (1967) found that the Parker "sonic point" is the point beyond which slow-mode MHD waves cannot reach the Sun.
- There are separate radii for Alfvén & fast-mode MHD waves, but they differ in location by  $< 0.01 R_{sun}$ .





#### Is it also the "heliobase?"

- It's quite rare to find **closed** magnetic field lines above  $r_A$ , so this is often considered as the "source surface" for the heliosphere's magnetic flux.
- However, cusps of the largest streamers tend to occur no higher than  $\sim$ 2 to 3  $R_{\rm s}$  above the surface.
- Why not at  $r_A$  itself?





#### Is it also the "heliobase?"

- It's quite rare to find **closed** magnetic field lines above  $r_A$ , so this is often considered as the "source surface" for the heliosphere's magnetic flux.
- However, cusps of the largest streamers tend to occur no higher than  $\sim$ 2 to 3  $R_{\rm s}$  above the surface.
- Why not at  $r_A$  itself?
- Considering radial forces only,  $r_A$  is the only game in town.
- Field-line shapes depend more on the **transverse** force balance . . .

Models: http://www.predsci.com/mhdweb/





#### Outline:

- 1. What is it, and why do we care?
- 2. Where is it?
- 3. How will PUNCH help improve our understanding?

## Models & simulations predict it . . .

- Weber & Davis (1967) predicted it should fall between 15 and 50  $R_s$ .
- Others have generally gone a bit lower (10 to 30  $R_s$ ) with lots of dependence on latitude, longitude, & solar activity (e.g., Pneuman & Kopp 1971; Keppens & Goedbloed 2000; Matt & Pudritz 2008; Cohen et al. 2009; Pinto et al. 2011; Cohen 2015; Chhiber et al. 2019, 2022).
- For more, see next talk . . .





## Extrapolation from in situ data

• If we fold in some assumptions about the radial behavior of u(r) &  $V_A(r)$ , we can take measurements of these quantities at 1 AU (or elsewhere) and **extrapolate** to where they meet (Marsch & Richter 1984; Exarhos & Moussas 2000; Katsikas et al. 2010; Goelzer et al. 2014; Tasnim & Cairns 2016; Tasnim et al 2018; Kasper & Klein 2019; Liu 2021; Verscharen et al 2021).







#### Parker Solar Probe has been to the other side!



- Nov. 2018: Perihelion 1 (36 R<sub>sun</sub>)
- Apr. 2021: Perihelion 8 (16 *R*<sub>sun</sub>); first crossing of the Alfvén surface
- Mar. 2023: Perihelion 15 (13.3 R<sub>sun</sub>)
- Dec. 2024: Perihelion 22 (9.9 R<sub>sun</sub>)



## Coronagraph imaging can see inflows, too

- The corona is full of small density inhomogeneities ("blobs") that flow in & out.
- Tracking outflowing blobs with off-limb imaging has helped probe solar-wind dynamics.



# Coronagraph imaging can see inflows, too

• The corona is full of small density inhomogeneities ("blobs") that flow in & out.

• Tracking outflowing blobs with off-limb imaging has helped probe solar-wind dynamics.

• DeForest et al. (2014) saw a few examples of **inflow** (12 to 7  $R_{sun}$ ), but the kinematics didn't

match MHD-wave expectations:





# Coronagraph imaging can see inflows, too

- The corona is full of small density inhomogeneities ("blobs") that flow in & out.
- Tracking outflowing blobs with off-limb imaging has helped probe solar-wind dynamics.

• DeForest et al. (2014) saw a few examples of **inflow** (12 to 7  $R_{sun}$ ), but the kinematics didn't

match MHD-wave expectations:

• Theoretical models abound (see Tenerani et al. 2016; Cranmer et al. 2021), and they hint that the blobs may be gaining mass by "snowplowing" plasma in front of them. Are they reconnection exhausts? Kelvin-Helmholtz vortices? Supra-Alfvénic shocks?

• We need more examples . . .



#### Outline:

- 1. What is it, and why do we care?
- 2. Where is it?
- 3. How will PUNCH help improve our understanding?

#### PUNCH flow tracking

- PUNCH will produce visible-light images between 6 and 180  $R_s$ , with cadences between 4 minutes ( $r < 80 R_s$ ) and 35 minutes (entire FOV).
- To measure flow speeds of inflowing & outflowing features, we use:
  - well-tested flow-tracking algorithms
  - spatio-temporal Fourier filtering
  - (some) 3D localization via polarization





## PUNCH flow tracking

- PUNCH will produce visible-light images between 6 and 180  $R_s$ , with cadences between 4 minutes ( $r < 80 R_s$ ) and 35 minutes (entire FOV).
- To measure flow speeds of inflowing & outflowing features, we use:
  - well-tested flow-tracking algorithms
  - spatio-temporal Fourier filtering
  - (some) 3D localization via polarization
- Working Group 1C is thankful for all the work being done by Working Group 1A!
- Will the decelerating inbound features seen by DeForest et al (2014) be just the "tip of the iceberg?" Will lower-contrast features not undergo so much snowplowing? What will the lifetimes of these features tell us about the solar wind & turbulence?







## The "frothy Alfvén zone"

- Together with Working Group 1B, we will also use PUNCH to probe MHD turbulence and stochasticity in the vicinity of the Alfvén surface.
- Turbulence produces time-varying "froth" such that  $r_A$  bobs up & down and there can be multiple places where  $u=V_A$ .
- In fact, the **decelerated** inflow seen by DeForest et al. (2014) may be explainable because bobbing up & down **delays** the inflow...





#### **Conclusions**

- Using PUNCH to locate the Alfvén surface --- and to probe the dynamics of turbulent parcels in its vicinity --- will improve our understanding of coronal heating & solar wind acceleration.
- Coordination with other instruments/missions/telescopes could be the "secret sauce" that provides even more multi-scale context & insight . . .

















