UCSD Time-Dependent 3-D Reconstructions Modified to Provide Brightness and Polarization Brightness Analyses

Bernard Jackson (bvjackson@ucsd.edu)

Matthew Bracamontes, Andrew Buffington

Center for Astrophysics and Space Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0424, USA

Dusan Odstrcil

George Mason University, Fairfax, Virginia and NASA Goddard Spaceflight Center, Greenbelt, Maryland, USA

Introduction:

The UCSD time-dependent 3D reconstruction analysis – Current IPS and SMEI analyses

Analysis modification to provide Thomson scattering pseudo polarization brightness

Current tests of the modified B and pB analyses

Beneficial enhancement changes for future analyses

Interplanetary Scintillation Heliospheric Analyses from ISEE, Japan

ISEE IPS array near Mt. Fuji

ISEE IPS array systems

Most Are Guilty (Me too)

Interplanetary Scintillation Heliospheric Analyses from ISEE, Japan

ISEE IPS array systems

Line-of-sight Response Interplanetary Scintillation

Jackson, B.V., et al., 2008, Adv. in Geosciences, 21, 339 Jackson et al., 2020, Frontiers in Astronomy and Space Sci., doi: 10.3389/fspas.2020.568429

ISEE DATA

Heliospheric C.A.T. analyses: example line-ofsight distribution for each sky location to form the source surface weighting of the 3-D reconstruction.

Line-of-sight Response Interplanetary Scintillation

Jackson, B.V., et al., 2008, Adv. in Geosciences, 21, 339 Jackson et al., 2020, Frontiers in Astronomy and Space Sci., doi: 10.3389/fspas.2020.568429

ISEE DATA

Heliospheric C.A.T. analyses: example line-ofsight distribution for each sky location to form the source surface weighting of the 3-D reconstruction.

A Good Recent IPS CME Forecast

Jackson, B.V., 2023, Solar Phys., doi:10.1007/s11207-023-02169-8.

2022/03/10 CME

2022/03/12 21 UT

A Good Recent IPS CME Forecast

Jackson, B.V., 2023, Solar Phys., doi:10.1007/s11207-023-02169-8.

2022/03/10 CME

2022/03/14 21 UT

A Good Recent IPS CME Forecast

Jackson, B.V., 2023, Solar Phys., doi:10.1007/s11207-023-02169-8.

Thomson scattering and ses and

Titan II launch from Vandenberg AFB 6 January 2003.

The Solar Mass Ejection Imager (SMEI)

Jackson, B.V., et al., 2004, Solar Phys., 225, 177

Launch 6 January 2003

Sun

C3

C1

C2

1 gigabyte/day; total ~4 terabytes

Simultaneous images from the three SMEI cameras.

A joint US Air Force - NASA Project

Thomson-Scattering B & pB Line-of-Sight Response

reference surface

Jackson, B.V., et al., 2008, Adv. in Geosciences 21, 339 Jackson et al., 2020, Frontiers in Astronomy and Space Sci., doi: 10.3389/fspas.2020.568429

Heliospheric C.A.T. analyses:

"Traceback" Matrix Concept

The "traceback matrix" (any solar wind model works) In the traceback matrix the location of the upper level data point (starred) is an interpolation in x of $\Delta x2$ and the unit x distance – $\Delta x3$ distance or $(1 - \Delta x3)$. Similarly, the value of Δt at the starred point is interpolated by the same *spatial* distance. Each 3D traceback matrix contains a regular grid of values $\Sigma \Delta x$, $\Sigma \Delta y$, $\Sigma \Delta t$, $\Sigma \Delta v$, and $\Sigma \Delta m$ that locates the origin of each point in the grid at each time and its change in velocity and density from the heliospheric model.

Thomson-Scattering B & pB Line-of-Sight Response

reference surface

Jackson, B.V., et al., 2008, Adv. in Geosciences 21, 339 Jackson et al., 2020, Frontiers in Astronomy and Space Sci., doi: 10.3389/fspas.2020.568429

Heliospheric C.A.T. analyses: example line-of-sight distribution for each sky location to form the source surface weighting of the 3-D reconstruction.

Thomson Scattering CAT Analysis

From SMEI (6 hr difference- 1/25 # of LOS)
3-5 Million LoS in a one-month interval

Jackson, B.V., et al., 2008, J. Geophys Res., 113, A00A15, doi:10.1029/2008JA013224

2003 May 27-28 CME events

sMEI density 3D reconstruction of the 28 May 2003 halo CME as viewed from 15° above the ecliptic plane about 30° east ___ of the Sun-Earth line.

2003/05/30 00:00 UT

SMEI density (remote observer view) of the 28 May 2003 halo CME

Excess Mass(g): 1.844E+016
Total Mass(g): 2.491E+016
Ambient (g): 6.470E+015
Energy (ergs): 3.448E+031

2003/05/30 00:00 UT Volume: 0.14

Volume: 0.144 AU^3

Jackson et al., 2020, Frontiers in Astronomy and Space Sci., doi: 10.3389/fspas.2020.568429

SMEI Analysis

3,000,000 LoS in one month, 1.5- Hour Cadence Resolution

Jackson et al., 2020 doi: 10.3389/fspas.2020.568429

Ecliptic, Earth Meridional, and Synoptic Cuts at 1.5-**Hour Cadence Resolution**

SMEI Analysis 2003 May 27-28 CME events High Res Analyses show CMEs corrugated and spotty!

Thomson Scattering Analyses
The Republic Property of the Republic Prope

SMEI Regular B Analysis 2003 May 27-28 CME events 12-Hour 3-D Reconstructions Sample CME Views

Jackson et al., 2020 doi: 10.3389/fspas.2020.568429

Month-long Time Series

6-days CME

Jackson et al., 2020 doi: 10.3389/fspas.2020.568429

SMEI Pseudo B Analysis 2003 May 27-28 CME events 12-Hour 3-D Reconstructions Sample CME Views

Month-long Time Series

6-days CME

Jackson et al., 2020 doi: 10.3389/fspas.2020.568429

SMEI Pseudo pB Analysis **2003 May 27-28 CME events** 12-Hour 3-D Reconstructions Sample CME Views

Remote View

Skymap

Ecliptic Cut

Meridional

Caveats:

The analyses show images interpolated to a given instant in time, not how the data were actually obtained over a period of a few minutes, with each LoS different from one another from the IPS or SMEI data.

To be expedient I used the LoS only from density proxy observations, not the proxy speeds, and gave these times of the LoS, not the actual images. These were made into data files and re-read into the program.

The images show volumes where data were sufficient to make an accurate 3-D reconstruction, but to provide the pseudo LoS, each volume was filled completely and then that pseudo observation used.

Future Work:

Provide pB with these immediate analyses and others at higher resolution and with less smoothing (provide in multi-node)

Raster-scan volumes in both B and pB at PUNCH locations with random outage line-of- sight locations

Correlation tracking velocities would be good to attempt from STEREO data to compare with inner heliospheric spacecraft or SMEI pseudo skymaps

Compare correlation-tracking with IPS velocities

Ecliptic, Earth
Meridional, and
Synoptic Cuts at 1.5Hour Cadence
Resolution

One Carrington interval

SMEI Analysis 2003 Oct 28 CME event CME shock sheaths are corrugated and spotty!

Ecliptic, Earth
Meridional, and
Synoptic Cuts at 1.5Hour Cadence
Resolution

One Carrington interval

SMEI Analysis 2003 Oct 28 CME event CME shock sheaths are corrugated and spotty!

Low Res IPS V Ecliptic Cut

Conclusions:

The UCSD time-dependent 3D reconstruction analysis – Current IPS and SMEI white-light analyses work pretty well

Analysis modification to provide density results from Thomson scattering polarization brightness (pB) now gives results

Current tests of the pseudo B and pB analyses give essentially the same results

Enhancements for better future results should include more multinode processing and image brightness correlation tracking

SMEI Ratio Analysis 2003 May 27-28 CME events 12-Hour 3-D Reconstructions

Sample CME Views

Jackson et al., 2020 doi: 10.3389/fspas.2020.568429

Month-long Time Series

CME

