

Gilly!

Postdoctoral Researcher at SwRI PhD Astrophysics, CU Boulder 2022 www.gilly.space

FLUXPipe: Automated Fluxon Modeling of the Solar Wind from Magnetograms

---- Mean: 575 km/s

...... Std: 108 km/s

650

Median: 547 km/s

- 650

- 600

- 575

- 550

PUNCH 4 Conference, July 5-7, 2023

Overview

FLUX^[1,2,3] is a coronal forward-model which creates Fluxons then relaxes them to a linear force-free state.

Fluxons are equal-flux tracers of the magnetic field that follow field lines. This approach allows for multi-scale modeling of the corona, simulating plasma parameters along Fluxons and interpolating between them only if necessary.

FLUXPipe is a new pipeline which automates the individual steps from magnetogram to solar wind speed values.^[3]

The **solar wind speed** along the open fluxons is determined iteratively by finding the transonic solutions.

0. Acquire

PUNCH Objectives of Relevance

•Objective 1: Understand how coronal structures become the ambient solar wind.

- •1A: Global solar wind flow
 - Determine large-scale flow context necessary to relate coronal structure to in-situ measurements
 - Characterize the global solar wind conditions through which transient structures propagate.
- •1C: Alfven Zone
- Determine the height where the solar wind exceeds the fast MHD speed

Extra Plots

Relaxed PFSS (mirrored) Wide Angle view of Fluxon Worlds Voronoi Analysis of Fluxon Forces

575

Velocity (km/s)

600

625

Solar Wind Speed Results

CR2193, 1549 Open Field Lines

References

- [1] https://github.com/lowderchris/fluxon-mhd
- [2] Deforest, Kankelborg 2006

525

[3] Lowder, Gilly, Deforest 2023

Questions:

Why are there so many outliers? How can we connect source features to wind speed? Will ADAPT maps converge better than HMI Synoptic?