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Abstract Sixteen global general circulation models were

used to develop probabilistic projections of temperature

(T) and precipitation (P) changes over California by the

2060s. The global models were downscaled with two sta-

tistical techniques and three nested dynamical regional

climate models, although not all global models were

downscaled with all techniques. Both monthly and daily

timescale changes in T and P are addressed, the latter being

important for a range of applications in energy use, water

management, and agriculture. The T changes tend to agree

more across downscaling techniques than the P changes.

Year-to-year natural internal climate variability is roughly

of similar magnitude to the projected T changes. In the

monthly average, July temperatures shift enough that that

the hottest July found in any simulation over the historical

period becomes a modestly cool July in the future period.

Januarys as cold as any found in the historical period are

still found in the 2060s, but the median and maximum

monthly average temperatures increase notably. Annual

and seasonal P changes are small compared to interannual

or intermodel variability. However, the annual change is

composed of seasonally varying changes that are them-

selves much larger, but tend to cancel in the annual mean.

Winters show modestly wetter conditions in the North of

the state, while spring and autumn show less precipitation.

The dynamical downscaling techniques project increasing

precipitation in the Southeastern part of the state, which is

influenced by the North American monsoon, a feature that

is not captured by the statistical downscaling.
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1 Introduction

California has a confluence of factors that make it parti-

cularly vulnerable to anthropogenically-induced climate

change (e.g., Hayhoe et al. 2004; Cayan et al. 2006).

Warming and precipitation changes will directly impact

crops and pests in the agricultural and wine-producing

regions, and affect regional water resources and flood risk

through changes in the snow line, snowpack, and evapo-

transpiration. Indeed, anthropogenic effects can already be

seen in the temperature and hydrology of the western US

(Barnett et al. 2008; Pierce et al. 2008; Bonfils et al. 2008;

Hidalgo et al. 2009; Das et al. 2009; cf. Maurer et al.

2007b, who examined a smaller region).

Electronic supplementary material The online version of this
article (doi:10.1007/s00382-012-1337-9) contains supplementary
material, which is available to authorized users.

D. W. Pierce (&) � T. Das � D. R. Cayan �
M. Kanamitsu � K. Yoshimura � M. Tyree

Scripps Institution of Oceanography, SIO/CASPO,

Mail Stop 0224, La Jolla, CA 92093-0224, USA

e-mail: dpierce@ucsd.edu

T. Das

CH2M HILL, Inc., San Diego, CA, USA

E. P. Maurer

Santa Clara University, Santa Clara, CA, USA

N. L. Miller � Y. Bao

University of California, Berkeley, Berkeley, CA, USA

M. A. Snyder � L. C. Sloan

University of California, Santa Cruz, Santa Cruz, CA, USA

G. Franco

California Energy Commission, Sacramento, CA, USA

123

Clim Dyn (2013) 40:839–856

DOI 10.1007/s00382-012-1337-9

http://dx.doi.org/10.1007/s00382-012-1337-9


The primary purpose of this work is to present pro-

jections of temperature (T) and precipitation (P) change

over California by the 2060s in a probabilistic framework

(e.g., Manning et al. 2009; Chen and Jiang 2011), which

facilitates risk-based planning and provides a framework

for adaptive resource management (e.g., Anderson et al.

2008; Brekke et al. 2009). Global climate models (GCMs;

Meehl et al. 2007) do not uniformly sample model

uncertainties, and are not independent (Pennell and

Reichler 2011). Therefore the distributions shown here are

not true estimates of the probability of future climate

changes, rather are best-guess estimates of future climate

change given current simulations. We compare our pro-

jections of T and P changes to natural internal climate

variability, so that the relative magnitude of the two can

be assessed.

Spatial downscaling is necessary in California, which is

topographically complex. We use daily results from two

GCMs dynamically downscaled with three different

regional climate models; the same two global models plus

two more statistically downscaled on a daily timescale; and

the same 4 models plus 12 more (some with multiple

ensemble members) statistically downscaled by a different

technique on a monthly timescale. In total, we incorporate

data from 45 runs originally generated by 16 different

global models. The secondary purpose of this work is to

compare the climate projections from the dynamical and

statistical downscaling techniques and address how they

systematically differ. Natural internal climate variability is

included to the extent that the original GCMs simulate it

(cf. AchutaRao and Sperber 2006).

Climate change over California has been extensively

studied using some combination of single or multiple

GCMs and statistical or dynamical downscaling (e.g.,

Dickinson et al. 1989; Giorgi et al. 1994; Pan et al. 2001;

Kim 2001, 2005; Snyder et al. 2002; Hayhoe et al., 2004;

Leung et al. 2004; Brekke et al. 2004; Maurer and Duffy

2005; Snyder and Sloan 2005; Duffy et al. 2006; Maurer

2007; Liang et al. 2008; Caldwell et al. 2009; Chin et al.

2010). Some common themes emerge from these efforts.

First, different GCMs produce different warming and pre-

cipitation changes. Second, regional climate models

(RCMs) introduce another source of variation, even with

the same driving GCM. Third, temperature changes over

California are consistently positive, but precipitation

changes vary in sign. Fourth, even with the divergent

precipitation projections, the effect on California’s

hydrology is substantial; snowpack declines and runoff

shifts to earlier in the water year, with elevation-dependent

effects due to the colder temperatures at higher elevations.

And fifth, all model simulations exhibit biases, which are

assumed to systematically affect the projected climate as

well.

Given this body of previous work, it is perhaps sur-

prising that major gaps remain. Few of the studies

approached the problem probabilistically, and only Leung

et al. (2004), Hayhoe et al. (2004), and Kim (2005) analyze

the future daily data, which is critical to energy use, agri-

culture, ecology, flooding, and water management. Finally,

none of the studies used both statistical and dynamical

downscaling and compared the two (cf. Hay and Clark

2003, who used both, but over the historical period only

and examined runoff rather than T and P). Similar issues

have been addressed in other regions; for example, Europe

in the PRUDENCE (Christensen et al. 2007) and

ENSEMBLES (Kjellstrom and Giorgi 2010) projects, and

the UK with the Climate Projections project (http://uk

climateprojections.defra.gov.uk/).

Pierce et al. (2009) examined 40-year periods over the

western U.S., and found that 14 runs developed from 5

global models reliably conveyed the information from the

full set of 21 CMIP-3 model results. The bulk of results

shown here are generated using monthly data from all 45

runs (developed from 16 global models), so should be

reliable even though the spatial and time scales considered

here are somewhat smaller than used in Pierce et al. (2009)

(California vs. the western US, 10-year vs. 40-year periods)

and natural internal variability becomes more evident at

smaller scales (e.g., Hawkins and Sutton 2009). However

the analysis shown here was also done with a subset of 25

runs (excluding multiple ensemble members for any single

model) and the results were little different, which suggests

that our sampling of available climate model ensemble

members is adequate.

Some of our results are from the 9 daily runs developed

from 4 global models, which falls short of the ideal number

of runs and global models to use. However Pierce et al.

(2009) demonstrates that the large majority of the increase

in multi-model ensemble averaged skill occurs when going

from 1 to 4 global models. We therefore believe that the

daily results shown here, obtained from the 9 runs (incor-

porating information from 4 global models), are both a

credible first analysis of the problem and a roadmap

showing how the multi-model probabilistic treatment could

be extended with additional runs in the future.

2 Data and methods

We used dynamical downscaling with 3 regional climate

models (RCMs): the Regional Climate Model version 3

(RegCM3), which is derived from NCAR’s MM5 meso-

scale model (Pal et al. 2007); the NCAR/NCEP/FSL

Weather Research and Forecasting (WRF) model

(Skamarock et al. 2008); and the Regional Spectral Model

(RSM, Kanamitsu et al. 2005), which is a regional version
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of the National Centers for Environmental Prediction

(NCEP) global spectral model. Details of the RCMs are

given in the Supplemental Material, Sect. 1. Miller et al.

(2009) examined the ability of the RCMs used here to

simulate California’s historical climate when driven

with boundary conditions from the NCEP reanalysis II

(Kanamitsu et al. 2002), and compared their climatology to

observations. That work concluded that all the models have

limitations, particularly in parameterized process such as

cloud formation, but that ‘‘they perform as well as other

state-of-the-art downscaling systems, and all do a credible

job simulating the historical climate of California’’ (see

also the supplementary information).

We used two methods of statistical downscaling: Bias

Correction with Constructed Analogues (BCCA; Hidalgo

et al. 2008; Maurer and Hidalgo 2010), and Bias Correction

with Spatial Disaggregation (BCSD; Wood et al. 2002,

2004) These methods were compared in Maurer and

Hidalgo (2008), who concluded that they have comparable

skill when downscaling monthly fields of temperature and

precipitation. However only BCCA preserves the daily

sequence of original global model variability, which is of

interest here. Details of the statistical techniques are given

in the Supplemental Material, Sect. 2. Some of the BCSD

ensemble members were downloaded from the Bias Cor-

rected and Downscaled WCRP CMIP3 Climate Projections

archive at http://gdo-dcp.ucllnl.org/downscaled_cmip3_

projections (Maurer et al. 2007a).

All downscaling is to an approximately a 1/8� 9 1/8�
(*12 km) spatial resolution. Table 1 lists the various models

and number of ensemble members used for each downscal-

ing technique. Not all GCMs were downscaled with all

techniques, because of the computer time required and lack

of daily data for some of the GCMs. Only limited time

periods were covered: 1985–94 (the ‘‘historical period’’) and

2060–2069 (the ‘‘future period’’). Also, only the SRES A2

emissions scenario is used. We note that the 2060s is about

the last decade where globally averaged surface tempera-

tures from the A2, B1, and A1B emissions scenarios do not

show a clear separation (IPCC 2007). For the dynamical and

BCCA downscaling, CMIP-3 ensemble number 1 was used

when more than one ensemble member was available.

The 10-year spans are too short to examine natural cli-

mate variability from El Nino/Southern Oscillation (ENSO)

and the Pacific Decadal Oscillation (PDO) in any one model

run. However, we partially make up for this by using 4–16

models at a time (depending on the downscaling technique).

Natural internal climate variability due to ENSO and the

PDO is not synchronized across model runs due to the

chaotic nature of the atmosphere. So, for example, one

model run might be simulating positive ENSO conditions in

model year 2065 while another model run might be simu-

lating negative ENSO conditions. Although both ENSO and

the PDO affect California temperature and precipitation,

averaging across unsynchronized runs randomly samples

different phases of these phenomena, which reduces the net

Table 1 The global general circulation models (GCMs) used in this project, their originating institution, and the number of ensemble members

downscaled by the indicated method

GCM Institution BCSD BCCA WRF RSM RegCM3

BCCR BCM 2.0 Bjerknes Centre Clim. Res., Bergen, Norway 1

CCCMA CGCM3.1 Canadian Centre, Victoria, B.C., Canada 5

CNRM CM3 Meteo-France, Toulouse, France 1 1

CSIRO MK3.0 CSIRO Atmos. Res., Melbourne, Australia 1

GFDL CM2.0 Geophys. Fluid Dyn. Lab, Princeton, NJ, USA 1

GFDL CM2.1 Geophys. Fluid Dyn. Lab, Princeton, NJ, USA 1 1 1 1 1

GISS e_r NASA/Goddard Inst. Space Studies, N.Y., USA 1

INMCM 3.0 Inst. Num. Mathematics, Moscow, Russia 1

IPSL CM4 Inst. Pierre Simon Laplace, Paris, France 1

MIROC 3.2 medres Center Climate Sys. Res., Tokyo, Japan 3

MIUB ECHO-G Meteor. Inst. U. Bonn, Bonn, Germany 3

MPI-ECHAM5 Max Planck Inst. Meteor., Hamburg, Germany 3

MRI CGCM2.3.2 Meteor. Res. Inst., Tsukuba, Ibaraki, Japan 5

NCAR CCSM3 Nat. Center Atmos. Res., Boulder, CO, USA 4 1 1 1

NCAR PCM1 Nat. Center Atmos. Res., Boulder, CO, USA 4 1

UKMO HadCM3 UK Met Office, Exeter, Devon, UK 1

BCSD bias correction with spatial disaggregation, BCCA bias correction with constructed analogues, WRF weather research forecast model, RSM
regional spectral model, RegCM3 Regional climate model version 3
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effect of they have on our estimates of anthropogenic cli-

mate change by the 2060’s. We do not discard these esti-

mates of natural variability; rather we compare our

estimates of anthropogenic climate change to the magnitude

of this natural variability so that a better understanding of

the relative magnitude of each can be obtained.

Fig. 1 Upper temperature

change (�C) from years

1985–1994 to 2060–2069. The

seasonally-averaged data from

all models and downscaling

techniques was averaged across

models to generate the values.

The regions used in this work

are also shown. Lower
temperature climatology (�C)

averaged across the models, and

observed annual mean for

comparison (lower right)
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Results are presented as averages over the 11 California

climate regions identified by Abatzoglou et al. (2009).

These regions do a better job representing California’s

diverse mix of climate regimes than the standard US cli-

mate divisions.

2.1 Bias correction

All T and P fields, whether downscaled statistically or

dynamically, underwent a bias correction procedure (Pan-

ofsky and Brier 1968; Maurer et al. 2002; Wood et al.

2002, 2004; Maurer 2007; Maurer and Hidalgo 2010). This

is necessary because the project’s focus was on hydrolog-

ical and other applications, and even current state-of-the-

art GCMs/RCMs generate T and P fields with biases, often

due to biases in the original global fields (e.g., Wood et al.

2004; Duffy et al. 2006; Liang et al. 2008). Details of the

bias correction procedure are given in the Supplemental

Material, Sect. 3.

3 Results

The probabilistic framework requires that several model

runs be included to provide a distribution of projected

outcomes. In this work we weight all combinations of

global model and downscaling technique equally (except

for the multiple ensemble members available from a single

global model using BCSD, as described below), following

the approach used in the last IPCC assessment (IPCC

2007). Pierce et al. (2009) looked specifically at the wes-

tern US and concluded that weighting by model quality

does not make a difference to climate projections until after

the time period considered here (the 2060s).

Bias correction with spatial disaggregation was the only

downscaling technique that had multiple downscaled

ensemble members available from the same global model

(Table 1). When analyzing mean quantities, we combined

multiple BCSD downscaled results from the same global

model into a single model mean before analysis, so that

Fig. 2 Correspondence between percentiles of monthly-averaged

temperature in the historical period (x axis) and future period

(y axis), for January (left) and July (right). For instance, the blue cross

in panel a for the Sacramento/Central valley shows that the 50th

percentile temperature in the historical period will become the 17th

percentile value in the 2060s. The grey line shows what the result

would be if there were no changes in the distributions. The regions are

plotted in roughly geographic order (Northwest locations in the top
left, etc.). The figure is made with monthly data from all 45 model

runs
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each global model contributes equally to the BCSD result

despite the disparate number of ensemble members. When

computing variability measures this averaging is not

appropriate, since averaging reduces the range of vari-

ability. In these cases we used a Monte-Carlo approach,

constructing 1,000 random sets of BCSD results where

each model contributed one randomly picked ensemble

member. Results shown here are the average obtained

across the 1,000 random trials. In practice however this

makes little difference, as the BCSD results are well

sampled even excluding the extra ensemble members.

3.1 Temperature changes

Figure 1 (upper) shows the temperature changes by the

2060s, averaged across all models and downscaling tech-

niques. The yearly-averaged warming is on the order of

2.4 �C. The coastal regions experience less warming due to

the ocean’s moderating influence, with a typical value of

about 1.9 �C. Inland locations show warming approaching

2.6 �C, which may have the potential to suppress coastal

warming further via enhanced sea breezes in some loca-

tions (Snyder et al. 2003; Lebassi et al. 2009). The lower

panels of Fig. 1 show climatological fields for reference.

The mean warming has a pronounced seasonal signa-

ture, with the most warming (*3 �C) in the summer

(June–July–August), and the least warming (\2 �C) in the

winter (Dec–Jan–Feb). Since energy use in California is

dominated by summer cooling loads rather than winter

heating loads, this warming pattern suggests that peak

energy use could increase faster than would be expected if

only the yearly averaged temperature changes were taken

into account.

Figure 2 shows the change in individual monthly dis-

tributions of temperature, displayed as a mapping between

historic and future percentiles. For example, the blue cross

in panel a for the Sacramento/Central valley shows that

the 50th percentile temperature in the historical period

(x axis) will become the 17th percentile value in the

2060s (y axis). The curves in Fig. 2a start at the origin,

which means that the coldest January monthly average

temperatures in the historical period will still be experi-

enced in the 2060s. Relative to the evolving mean, the

coldest months become much more dramatic in the future,

which might have implications for moving to crops better

adapted to hotter conditions. Of the 45 runs (Table 1), 16

have at least one January in the 2060s that is about as

cold, or colder, than the coldest historical January in the

same model. Despite this, Fig. 2a shows that the median

monthly January temperature in the future will be warmer

than 8 or 9 out of 10 Januarys today, and the warmest

Januarys in the future are completely off the historical

distribution.

In July (Fig. 2b), the curves still start nearly at the ori-

gin, but inspection showed that such a cold July only

existed in two of the 45 runs. On the other hand, the dif-

ference in the warmest months is profound. Over most of

the state, the warmest monthly average July found in the

entire historical distribution of any model is only a 15–40th

percentile event in the future period. i.e., a July that is

Fig. 3 Yearly temperature change (�C) (2060–2069 minus 1985–1994) from each downscaling technique applied to the GFDL 2.1 global model

(upper) and CCSM3 global model (lower). The yearly temperature changes from the global models are shown in (f) and (k), for comparison

844 D. W. Pierce et al.

123



record-breaking hot by current historical standards will

become modestly cool in comparison to the new mean.

The yearly warming simulated by the various downscaling

techniques is shown in Fig. 3. Results are illustrated for the

GFDL 2.1 and CCSM3 global models. Global model results

are displayed in Fig. 3f and k for comparison. The down-

scaling techniques generate similar values, and capture the

decrease in warming near the coast that is poorly resolved in

the global field. BCCA produces a somewhat weaker trend

than the other methods for GFDL, although not for CCSM3

(cf. Maurer and Hidalgo (2008), their Fig. 5).

3.1.1 Distributions of seasonal temperature change

The exceedence probability of each year’s seasonally

averaged temperature change in the future period is

shown in Fig. 4. The data in this figure have been re-

sampled using the method described in Dettinger (2005),

which fleshes out the distributions using a principal

component analysis-based resampling technique applied

to the variability around the model-mean climate change

signal.

Figure 4 shows a distribution composed of one value per

year (2060–2069) from each model, so each model run

contributes 10 values. The values are presented this way to

include the effects of interannual natural internal climate

variability. Over most of the domain, there is a 90 %

chance of experiencing a warming of at least 1 �C by the

2060s, and a 10 % chance the warming will reach 3–4 �C

(depending on the season). Although summer (JJA)

warming is largest in most of the domain, across the

southern regions the differences between the seasons

Fig. 4 Probability of a

temperature change of the

indicated value or greater, by

region and season. The regions

are plotted in roughly

geographic order (Northwest

locations in the top left, etc.).

Monthly data from all 45 runs is

used to make the figure

Probabilistic estimates of future changes in California 845
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lessens, and autumn (Sep–Oct–Nov, SON) warming mat-

ches the JJA warming.

3.1.2 Forced versus natural changes in temperature

The distributions in Fig. 4 have contributions from three

sources: (1) the average warming across models; (2) the

difference in warming between models; and (3) natural

internal climate variability. We estimate each simula-

tion’s mean warming as the mean of the 10 yearly values

in the future period minus the mean of the 10 values in

the historical period. Each simulation’s natural internal

climate variability is estimated from the difference

between the 10 individual yearly values in the future

period and the mean of the 10 values in the future per-

iod. This method underestimates the true natural internal

variability since the 10-year average in the 2060s will

itself be influenced by low-frequency natural variability.

The error introduced by this procedure can be estimated

from the historical record, as outlined in the supplemental

material (Sect. 4). Errors are modest, on the order of

6–14 % (Table SM2, column b). The displayed

confidence intervals in Figs. 5 and 9 (blue bars) have

been widened by these corrections.

Figure 5 shows the average warming, model spread, and

estimate of natural internal climate variability across the 11

climate regions. The annual mean model-estimated

warming by the 2060s (Fig. 5a green bars, �C) is larger

than the 90 % confidence interval of natural internal vari-

ability (blue bars) in all regions. In practice, this means that

the warming will be easily noticeable in the yearly average.

The red lines show the 90 % confidence interval in esti-

mated warming across the models. The model-to-model

variability is small compared to the magnitude of the

projected warming. Even if we knew that one of the models

used here was perfect and the rest wrong, it would make

little difference to the warming estimates.

The seasonal results in Fig. 5 tend to show a larger

contribution from natural variability, which is under-

standable since fewer days are being averaged over. This is

most pronounced in winter (DJF, Fig. 5b), where the typ-

ical scale of year-to-year natural fluctuations in seasonally-

averaged temperature is roughly twice the expected shift in

temperatures. The uncertainly across models (red line) is a

Fig. 5 A comparison of the

contribution of natural internal

climate variability and model

uncertainty to yearly and

seasonally averaged projected

temperature changes by the

2060s. Blue bars show the 90 %

confidence interval of natural

internal climate variability in

near surface air temperature

(�C) estimated across all

models. Green bars show the

mean model warming projected

in the period 2060–2069. The

red line shows the 90 %

confidence interval in the

projected warming across

models. Note that each inset

plot has a different scale for the

Y axis, in �C. Monthly data from

all 45 runs is used to make the

figure
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larger fraction of the mean warming as well. These ten-

dencies are minimized in summer (JJA, Fig. 5d), where the

temperature shifts are as large compared to the natural

internal climate variability as seen in the yearly average.

3.1.3 Changes in daily temperature

Only data pooled across the BCCA and dynamical down-

scaling techniques (which are based on the GCM’s daily

data) have been used for daily analyses of temperature and

precipitation.

Figure 6a shows the cumulative distribution function of

daily maximum temperature in July for the historical per-

iod (blue) and future period (red). An error function

transformation is used on the Y axis, so a Gaussian distri-

bution would form a straight line. All regions show a shift

to a higher likelihood of warmer daily maximum temper-

atures at all probability levels. The shift is smallest at the

warmest temperatures in the Northern and central coastal

regions, perhaps because of the moderating influence of

cool ocean temperatures typically seen in summer along

California’s coast. Similar curves for daily July minimum

temperature display more Gaussian behavior (straighter

lines) and lack the reduced warming along the coast (not

shown).

By contrast, January daily minimum temperatures

(Fig. 6b) show more warming at the highest percentile

values and little change below the median. The experience

on the ground in January will not be an increase in every

day’s minimum temperature so much as the appearance of

rare days with temperature several degrees warmer than

experienced before. While the slopes of the lines in Fig. 6a

(July) tend to be the same or slightly steeper in the future,

indicating similar or slightly reduced daily variability, the

slopes of the lines in Fig. 6b (Jan) tend to be flatter in the

future, indicating greater daily variability in projected

Fig. 6 Cumulative distribution functions of July daily maximum

temperature (left) and Januray daily minimum temperature (right)
across the regions (plotted roughly geographically). The Y axis shows

the probability (zero to one) of experiencing the indicated temperature

or lower on any particular day. Results from the historical run are in

blue; the future run is in red. Large solid dots show where the two

curves are different at the 95 % significance level, evaluated using a

bootstrap technique. Open circles indicate statistically indistinguish-

able values. Data from the 9 runs with daily data was used to make the

figure
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January daily minimum (and maximum, not shown)

temperatures.

Three-day averages of maximum daily temperature in

summer (Fig. 7) are of interest to the energy industry,

because people are more likely to use air conditioning by

the third hot day. The shifts seen here are proportionally

much greater than in Fig. 6. Also, in all the inland loca-

tions the divergence between the historical and future

distribution becomes more pronounced at the warmest

temperatures. In the San Joaquin valley, a 3-day run of

40 �C or warmer temperatures is only a 1-in-100-year

occurrence in the historical simulations, but is a 1-in-2-

year occurrence in the future simulations. The simulated

3-day average warmest temperature in the Anza-Borrego

region is 46 �C in the historical era, but 51 �C in the

future era. Increases along the coast are *2 �C, although

even there the incidence of 3-day maximum temperatures

with a probability of \0.01 in the historical era increases

by a factor of 10.

3.2 Precipitation changes

The upper panels of Fig. 8 shows the mean precipitation

change (%) by the 2060s, averaged across all models and

Fig. 7 Cumulative distribution

functions of the highest 3-day

average temperature in the year.

The Y axis shows the probability

(zero to one) of having the

warmest 3 days in a year be the

indicated temperature or lower.

Results from the historical run

are in blue; the future run is in

red. Panels are plotted roughly

geographically. Large solid dots
show where the two curves are

different at the 95 %

significance level evaluated

using a bootstrap technique.

Data from the 9 runs with daily

data was used to make the figure
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downscaling techniques (45 runs total). Lower panels show

climatological fields for comparison. In the annual average

(8a), the overall tendency is for small decreases in pre-

cipitation in the southern part of the state (\10 %), and

negligible changes in the North. The patterns by season are

more pronounced, with the northern part of the state

experiencing wetter conditions in winter that are nearly

offset by drier conditions in the rest of the year. The

southern part of the state shows moderate fractional

decreases in precipitation in fall, winter and spring but a

strong increase in summer precipitation, which will be

discussed more below. Bear in mind that California is

Fig. 8 Upper panels
Precipitation change (%), mean

over the period 2060–2069

compared to mean over the

period 1985–1994. Data from

all models and downscaling

techniques was averaged to

generate the values. Lower
panels model climatological

precipitation (tenths of mm/

day), and annual average from

observations for comparison

(lower right)
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climatologically dry in the summer, so the large percentage

increases found at that time represent small amounts.

3.2.1 Forced versus natural changes in precipitation

Projected changes in seasonal-mean precipitation tend to

be small compared to natural internal climate variability

(Fig. 9). The blue bars (90 % confidence interval of natural

variability, tenths of mm/day) are generally an order of

magnitude larger than the mean model changes (green

bars). At the same time, the spread across the models (red

lines) is typically larger than the mean model change,

except for the JJA decrease in precipitation across the

northern part of the state (Fig. 9d). However, even pre-

cipitation shifts that are small compared to the inter-sea-

sonal or inter-annual variability can be important for the

long term water balance of a region, especially where the

water supply has little room for reduction. California

droughts can last 5–10 years, a long enough averaging

period to reduce natural variability sufficiently to expose

small but systematic precipitation shifts.

3.2.2 The influence of downscaling technique

The effect of downscaling technique on precipitation must

be interpreted cautiously, since not all models were

downscaled with all techniques. As a group, the global

models downscaled with a daily technique (either dynam-

ical or BCCA) happened to be drier than the average global

model by about 10 percentage points in the annual average.

In general, the BCCA and dynamical downscaling tend to

make the simulation wetter than the original global model

field in all regions, typically by about 9–14 percentage

points. In the monsoon-influenced region in the southeast

of the state this tendency is so strong, the downscaling

reverses the sign of the global model projections.

The difference between downscaling techniques can be

isolated by using a single global model at a time. Figure 10

shows the yearly precipitation change (%) simulated by the

different downscaling techniques applied to the GFDL 2.1

and CCSM3 global model runs, along with the global fields

for comparison. The downscaling methods all gave similar

results for temperature (Fig. 3). However, for precipitation

Fig. 9 A comparison of the

contribution of natural internal

climate variability and model

uncertainty to yearly and

seasonally averaged

precipitation changes. Blue bars
show the 90 % confidence

interval of natural internal

climate variability in seasonally

averaged precipitation (tenths of

mm/day) estimated across all

models, for the period

2060–2069. Green bars show

the mean model precipitation

change projected in the period

2060–2069. The red line shows

the 90 % confidence interval in

the projected precipitation

change across models. Note that

each inset plot has a different

scale for the Y axis. Monthly

data from all 45 runs is used to

make the figure
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the agreement depends on the global model. The top row of

Fig. 10 shows the different downscaling techniques give

similar results when applied to the GFDL 2.1 global model.

However the bottom row of Fig. 10 shows that different

downscaling methods give quite different results for

CCSM3 (i.e., Fig. 10g vs. j), with the statistical methods

most similar to the global GCM signal.

The diversity of responses in CCSM3 can be under-

stood, in large part, by considering the details of precipi-

tation changes in each season. Figure 11a and b show the

statistical downscaling methods applied to CCSM3, while

Fig. 11c and d show the dynamical methods. Each panel

shows the regions in roughly geographical order, and each

region has a set of 4 bars showing the climatological sea-

sonal precipitation in mm (DJF, MAM, JJA, and SON,

counting the bars from left to right) and the change in

precipitation in mm projected by the downscaling tech-

nique (colored portion of the bars). Both dynamical

methods show 20–30 % precipitation increases in winter,

while the statistical methods show increases of less than

10 %. Both statistical methods show MAM and SON

decreases in precipitation of 20–30 %, while the dynamical

methods show precipitation decreases of \10 %. In other

words, the statistical and dynamical downscaling technique

are showing the same patterns, but with different weighting

by season. Depending on how the oppositely-signed ten-

dencies are weighted, the yearly average difference can be

positive or negative.

What determines the differences between a global model

trend and the corresponding dynamically downscaled

trend? This is addressed in Fig. 12, which shows a selec-

tion (DJF and JJA) of seasonally downscaled fields driven

by the GFDL and CCSM3 global models. The values

plotted are the differences (percentage points) between the

dynamically downscaled precipitation changes and the

changes found in the original global model. In other words,

they are differences of differences, and show not the future

precipitation changes, but rather how dynamical down-

scaling alters the original global model trends. In DJF, the

consistencies between the downscaled fields using GFDL

(Fig. 12a, e, i), and the consistencies between the down-

scaled fields using CCSM3 (Fig. 12c, g) are greater than

the consistencies using the same downscaling technique

but a different global model (Fig. 12a vs. c, and e vs. g).

This suggests that in DJF, the effect of dynamical down-

scaling is influenced primarily by the global model char-

acteristics (e.g., the large-scale atmospheric circulation),

and is less sensitive to the dynamical downscaling model

used.

In summer, in the southern half of the state, RSM

(Fig. 12f, h) tends to show much wetter changes than the

global models (either GFDL or CCSM3), while WRF

(Fig. 12, d) shows much drier changes than the global

models (either GFDL or CCSM3). The changes produced

by RegCM3 lie in between (Fig. 12j). This indicates that

summer precipitation is influenced more by the particular

Fig. 10 Yearly precipitation change (%, 2060–2069 compared to

1985–1994) from each downscaling technique applied to the GFDL

2.1 (top row) and CCSM3 (bottom row) global models. The yearly

precipitation changes from the global models are shown in panels

f and k, for comparison. Since the effect of downscaling on the global

model fields is being illustrated, only one BCSD ensemble member is

shown, the one corresponding to the illustrated global model and used

for the dynamical downscaling
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parameterizations used by an individual dynamical down-

scaling model than by the global driving model. In the case

of RSM, this is despite the fact that spectral nudging is

used to keep the regional model results from diverging too

greatly from the original global model fields.

3.2.3 Changes in daily precipitation

Three-day accumulations of precipitation can be used to

understand the potential for flooding (e.g., Das et al. 2011),

as it typically takes a few days for the soil to saturate

during a storm. The distributions of the maximum three-

day accumulation in a calendar year are shown in Fig. 13.

Nearly all of California shows striking increases in maxi-

mum three-day accumulations, in many instances gener-

ating values far outside the historical distribution. Similar

results were found in Kim (2005), although that work

considered snow/rain distinctions that we are not examin-

ing here. Along the Northern coast, the historical

distribution tops out at 80 mm/day with a 0.01/year chance.

In the future, that same value has a greater than 0.1/year

chance, and the distribution now extends up to 120 mm/

day.

For planning purposes it can be useful to know whether

the distributions of temperature and precipitation change

are related. For example, perhaps the warmest projections

are also the driest. However, we find no evidence that the

changes in temperature and precipitation distributions are

linked in any season.

4 Summary and conclusions

Our purpose has been to present probabilistic projections of

temperature (T) and precipitation (P) changes in California

by the 2060s. We have included daily distributions, since a

number of important applications in energy demand, water

management, and agriculture require daily information. We

Fig. 11 Changes in

precipitation for the different

downscaling methods applied to

the CCSM3 global model. In

each panel a–d, the subpanels

show the precipitation changes

by region, arranged roughly

geographically. The bars show

each region’s seasonal

precipitation (mm) in DJF,

MAM, JJA, and SON (left to

right) in the future and historical

periods. The difference between

the future and historical

precipitation is colored, with the

color determined by the

percentage change using the

same scale as Fig. 10 (yellows/

oranges show less precipitation,

blue/green show more

precipitation). Note that every

set of bars has a different Y axis,

in mm
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focused on probabilistic estimates and included natural

internal climate variability, because it is useful for planners

to understand the range of climate projections and how

those compare to natural climate fluctuations.

We downscaled data from 16 global models using a

combination of two statistical techniques (BCSD and

BCCA) and three nested regional climate models (WRF,

RCM, and RegCM3), although not all GCMs were down-

scaled with all techniques. In total, we analyzed 9 runs with

daily data, plus another 36 with monthly data. As expected,

the statistically downscaled fields tend to be closer to the

original global model simulations than do the dynamically

downscaled fields. All downscaling techniques were com-

bined with equal weighting; exploring the implications of

weighting schemes for different downscaling techniques

would be a useful future extension of this work. We ana-

lyzed a historical (1985–1994) and future (2060–2069)

time period, using one emissions scenario, SRES A2. Our

estimates of natural internal variability are computed from

the available 10-year time slices and adjusted upwards

(based on an analysis of observations) to correct for the

limited time period included. As appropriate given our

focus on applications, all model output was bias corrected.

We find that January-averaged temperatures as cold as

any found in the historical period are still seen in the 2060s,

although rarer. Januarys warmer than any found in the

historical period are seen about 20 % of the time. By

contrast, cold Julys (judging by current historical

Fig. 12 Difference (percentage points) between the change in seasonal precipitation projected by the dynamically downscaled simulations and

the change found in the original global model (GFDL 2.1 or CCSM3, as labeled). Only winter (DJF) and summer (JJA) fields are shown
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standards) nearly disappear by the 2060s, and the hottest

July average temperature found in any simulation’s his-

torical period becomes a moderately cool event (15–40th

percentile) by the 2060s.The warmest Julys are likely to be

far outside the historical experience; proportionally, the

gain in warm months will be much larger than the loss of

cold months.

The downscaled T projections tend to agree across

downscaling techniques. Year-to-year variability in sea-

sonally averaged T is about twice as large as the mean

seasonal climate warming in winter, and about half the

mean warming in summer. In either season, the model

range in projected warming is about half the mean warming

signal.

Distributions of July daily maximum T shift more or less

uniformly towards warmer values, except along the

Northern coast, where maximum values are less changed

from today. In January, the distributions are little changed

below the median, but show a shift towards a greater

incidence of a few particularly warm winter days. Distri-

butions of the warmest 3-day average T, which drive air

conditioner demand, show approximately uniform shifts of

?2 �C across the distribution.

Averaged across all models and downscaling tech-

niques, weak annual mean decreases in precipitation are

found in the southern part of the state, and near zero P

change in the northern part of the state. The disagreement

across models is large, however. Winters tend to become

Fig. 13 Cumulative

distribution functions (CDFs) of

the maximum 3-day mean

precipitation in a calendar year.

Regions are plotted roughly

geographically. Y axis is

probability (0–1) of

experiencing the indicated

average 3-day precipitation rate

(mm/day), or lower. Large solid
dots show where the two curves

are different at the 95 %

significance level, evaluated

using a bootstrap technique.

Open circles indicate

statistically indistinguishable

values. Data from the 9 runs

with daily data was used to

make the figure
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wetter in the north, spring and autumn show strong

decreases in precipitation, and summer (when the actual

values of P are quite small) shows less precipitation in the

north but more in the south. Natural variability is typically

more than an order of magnitude greater than these sea-

sonally-averaged changes, and the range of projections

across models includes zero, except in summer and the

southern part of the state in spring.

The different downscaling techniques agree less for

annual P changes than they do for T changes. This is due to

the annual P change in most models being made up of

competing effects, with a tendency towards more winter

precipitation and less spring/autumn precipitation. Differ-

ent models and downscaling techniques weight these

competing seasonal effects differently, which can result in

a positive or negative change in the yearly average.

The dynamical downscaling techniques show larger

increases in summer P in the region affected by the North

American monsoon than found with the statistical down-

scaling techniques. Regional dynamical models are able to

amplify monsoon effects that are only coarsely represented

by the GCM’s, but statistical downscaling has no way to

sharpen these features. In general, the winter P response

seems more sensitive to which GCM was used, while the

summer P response seems more sensitive to which RCM

was used. A similar finding was reported in Pan et al.

(2001).

There is a substantial increase in 3-day maximum pre-

cipitation, with peak values increasing 10–50 %, in

agreement with Kim (2005). The increases are largest in

the northern part of the state, where values that have only a

0.01 probability of occurrence in the historical period

become 10 times more likely by the 2060s.

Our results have wide application to the needs of

resource managers and other decision makers when

adapting to forthcoming climate change in California. In

the realm of water management, the pronounced increase

in maximum 3-day precipitation accumulation has impli-

cations for flooding. Likewise, these results shed more light

on the global model finding that California will generally

experience small changes in annual mean precipitation. We

show that these small annual mean changes are hiding

much larger seasonal changes, with wetter conditions in

winter and sharply drier conditions in spring and autumn,

although even these seasonal changes are small compared

to the natural variability. Generally the simulations suggest

that the extreme southeast of the state will experience more

summer rainfall as the North American monsoon intensi-

fies, although not all the different downscaling techniques

agree as to the magnitude and sign of this response.

Probabilistic multi-model climate change evaluations such

as those developed here will enable a better understanding

of how to adapt to climate change’s effects over California.
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