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Abstract Recent, heavy snow accumulation events over Dronning Maud Land (DML), East Antarctica,
contributed significantly to the Antarctic ice sheet surface mass balance (SMB). Here we combine in situ
accumulation measurements and radar-derived snowfall rates from Princess Elisabeth station (PE), located
in the DML escarpment zone, along with the European Centre for Medium-range Weather Forecasts
Interim reanalysis to investigate moisture transport patterns responsible for these events. In particular, two
high-accumulation events in May 2009 and February 2011 showed an atmospheric river (AR) signature with
enhanced integrated water vapor (IWV), concentrated in narrow long bands stretching from subtropical
latitudes to the East Antarctic coast. Adapting IWV-based AR threshold criteria for Antarctica (by accounting
for the much colder and drier environment), we find that it was four and five ARs reaching the coastal DML
that contributed 74-80% of the outstanding SMB during 2009 and 2011 at PE. Therefore, accounting for ARs
is crucial for understanding East Antarctic SMB.

1. Introduction

A small number of high snow accumulation events over the Antarctic ice sheet related to intense snowfall
can contribute significantly to local surface mass balance (SMB), both over the ice sheet interior and over
the escarpment and coastal areas [Braaten, 2000; Fujita et al., 2011; Gorodetskaya et al., 2013; Noone et al.,
1999; Schlosser et al., 2010]. For example, a few strong snowfall events over Dronning Maud Land (DML) in
2009 and 2011 produced a positive mass anomaly over the East Antarctic ice sheet, counterbalancing the
increasing ice discharge from West Antarctica in these years [Boening et al., 2012; King et al., 2012; Shepherd
et al., 2012; Rignot et al., 2014; McMillan et al., 2014]. Using regional climate model output and accumulation
records from firn cores, Lenaerts et al. [2013] showed that the 2009 and 2011 extreme snowfall and SMB
anomalies in East Antarctica were unprecedented in the last 60 years, and only a few other similarly large
SMB anomalies occurred since the mideighteenth century.

Synoptic activity over the Southern Ocean plays an important role in delivering precipitation to the Antarctic
continent, both to the coastal areas and, as many recent studies suggest, further inland [Bromwich, 1988;
Braaten, 2000; Fujita et al., 2011; Hirasawa et al., 2000, 2013; Reijmer and van den Broeke, 2003; Schlosser et
al., 2010; Noone et al., 1999; Tsukernik and Lynch, 2013]. Furthermore, synoptic-scale snowfall events of large
magnitude require significant poleward moisture transport. In midlatitudes the majority of moisture trans-
port is organized in narrow and long band features known as “atmospheric rivers” (ARs) [Zhu and Newell,
1998; Ralph et al., 2004]. The importance of ARs for the coastal precipitation in midlatitudes is tremendous:
in California they can result in severe rainfall events causing floods [Ralph et al., 2006, 2014; Bao et al.,
2006] contributing strongly to the state’s total annual precipitation [Dettinger et al., 2011], and in the South
American Andes they are responsible for most of the heavy winter orographic precipitation events [Viale
and Nufez, 2011]. Lavers et al. [2011] and Lavers and Villarini [2013] linked AR events to recent flooding and
extreme precipitation in Europe. An AR transporting large amounts of warm and humid air generated by
the North American heat wave and subsequent evaporation from the ocean was one of the important fac-
tors behind the anomalous melt event over the Greenland ice sheet in July 2012 [Neff et al., 2014]. ARs can
provide an important linkage between tropical moisture sources and extratropical precipitation in both
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hemispheres [Bao et al., 2006; Ralph et
al., 2011; Knippertz et al., 2013]. Figure
1 illustrates moisture transport pat-
terns over the Southern Hemisphere
on one particular day (19 May 2009),
clearly showing several narrow bands,
where moisture fluxes are tens to
hundreds of times greater than the
mean field.

Here we analyze for the first time the
impact of AR’s on the East Antarctic
precipitation and accumulation, using
in situ measurements of snow accu-
mulation and radar-derived snowfall
estimates from Princess Elisabeth sta-
tion (PE) located in the escarpment
area of DML (71°57'S, 23°21'E, 1.4 km
above sea level, 173 km from the
coast). Combining in situ measure-
MT, kg m™s1 ments with the European Centre for

Fi . i J | M. k ! Medium-range Weather Forecasts
igure 1. Vertically integrated total moisture transport ,kgm™'s7; . . .
equation (3), colors and arrows) and 500 hPa geopotential heights (meters, (ECMWF) Interim (ERA-) reanal){SIS
contours) for 20°5-80°S on 19 May 2009, 00 UTC. Positive MT indicates data [Dee et al.,, 2011], we examine
north and eastward directions, negative MT indicates south and west- moisture transport patterns that
ward directions. Gray line shows the daily mean sea ice boundary at 20% produce high-accumulation events.
threshold. Thick red lines show continental contours. Based on the ERA-I
reanalysis data.

-1.

After detailed analysis of two partic-
ularly high accumulation cases that
involved ARs, we investigate the role
of ARs in other high-accumulation events during the 4 year period (2009-2012) covered by accumulation
measurements at PE. Further, we evaluate moisture transport into the East Antarctica in a broader temporal
and spatial context and confirm that the anomalous moisture transport in 2009 and 2011 resulted from its
extreme meridional nature.

2. Data and Methods

Snow accumulation during 2009-2012 is calculated based on hourly snow height measurements using an
acoustic depth gauge installed as part of an automatic weather station (AWS) 300 m east from PE during

2 February 2009 to 31 December 2012 [Gorodetskaya et al., 2013, 2014]. Snow height measurements are
converted to water equivalent (w.e.) using snow density measurements performed every summer near the
AWS [Gorodetskaya et al., 2013]. Daily mean accumulation is calculated as the difference between daily mean
cumulative snow height changes between each pair of consecutive days. High-accumulation events are
identified if daily accumulation exceeds 10 mm w.e., which is the 95th percentile (commonly used to char-
acterize extreme precipitation, e.g., Kopparla et al. [2013] and Viale and Nuriez [2011]) based on 2009-2012
daily mean positive accumulation values.

Large-scale circulation and moisture transport patterns are investigated using the ERA-l data at 79 km
horizontal resolution further interpolated on 0.25° x 0.25° horizontal grid. The tropospheric layer of
900-300 hPa is used for the analysis as the layer containing the majority of the poleward moisture flux reach-
ing the Antarctic grounding line (i.e., coastline excluding ice shelves [Van Lipzig and van den Broeke, 2002]).
We chose not to include the layer between the surface and 900 hPa to avoid contamination of the signal
by the katabatic flow directed equatorward, which is very prominent near the edge of the continent

[e.g., Van Lipzig and van den Broeke, 2002; Tsukernik and Lynch, 2013]. ERA-l shows the best performance
compared to other reanalysis products in simulating main characteristics of ARs in midlatitudes [Wick et al.,
2013], as well as Antarctic precipitable water and precipitation [Nicolas and Bromwich, 2011].
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Table 1. Mean Daily Snow Accumulation (Acc) Amount and Snowfall Rates (S) for
Each High-Accumulation Event at PE Associated With ARs, From 2 February 2009 to
31 December 20122

Contribution to

Year and Dates  Annual Acc, %; AR

of High Acc Acc Each Event, S Each Event Date AR Coastal
Events With AR (mmw.e.d™') (mmw.e.d™") Detected Longitude
2009 74%

18 and 19 May 25 N/A 18 and 19 May 59°E
25 May 24 N/A 25 May 10°E
15and 16 Jun 23 N/A 16 Jun 52°E
5and 6 Jul 24 N/A 6 and 7 Jul 40°E, 45°E
2010 No AR Events

2011 80%

14-16 Feb 24 14-25 15 Feb 30°E
24 Jun 30 N/A 24 Jun 15°E
20 and 21 Nov 13 N/A 22 Nov 58°E
15-17 Dec 14 16-30 16 Dec 32°E
19 and 20 Dec 20 3-5 19 Dec 60°E
2012 46%

6 Nov 24 9-15 5and 6 Nov 7°E

aSnowfall rate is given as a range based on Z,-S relationships for dry snow
according to Matrosov [2007] (see section 2). Contribution of all events to the
annual accumulation (%) is given in italics for each year. AR coastal longitude
indicates mean location of AR when reaching the coast.

For AR analysis we use vertical profiles of specific humidity (g, kg kg™"), temperature (T, K), and horizontal
wind components (u and v, ms~") at pressure (p, Pa) levels from 900 to 300 hPa to calculate integrated water
vapor (IWV, cm), saturated IWV (IWV,,, cm), and total moisture transport (MT, kgm~"s71):

300hPa
wy = 12 qdp, M
P JooohPa
300hPa
100
WVgpe = — q,(Mdp, (2)
P JooohPa
1 300hPa 300hPa
MT = — </ qudp +/ qup) . €)
9 \JooohPa 900 hPa

Here g, is the saturation specific humidity for corresponding T at each p level according to Clausius-
Clapeyron relation, p is liquid water density, and g is gravitational acceleration. In addition, the ERA-I
reanalysis is used to calculate monthly mean meridional moisture flux averaged over 55°5-72°S, 20°W-90°E
sector by integrating the meridional component of MT across the total column of the troposphere
(following Tsukernik and Lynch [2013]). The seasonal cycle is removed from the data prior to calculating the
meridional MT.

Snowfall rate is estimated using Micro Rain Radar 2 (MRR) measurements—uvertically profiling 24 GHz
precipitation radar operating at PE since January 2010 (the only precipitation radar currently operating
over the Antarctic ice sheet) [Gorodetskaya et al., 2014]. MRR measurements for the 2009-2012 analysis
period are available during 18 January to 31 March 2010, 10 December 2010 to 10 April 2011, and

4 December 2011 to 31 December 2012 (data gaps are due to the power failures at PE). Radar effective
reflectivity factor (Z,, mm® m=3) vertical profiles at 1 min resolution are derived from raw MRR measure-
ments of spectral signal power per range based on the algorithm by Maahn and Kollias [2012] developed
specifically for solid precipitation. Daily snowfall rate (S, mm w.e.) is calculated as the sum of hourly mean S
based on Z, at 400 m above ground level (the lowest useful range of MRR with 100 m range resolution). We
applied a range of Z,-S relationships established by Matrosov [2007] for dry snow (ranging from Z, = 34S"!
toZ, = 675" see Table 1 therein), expected to be most suitable for PE, where snow always forms at
temperatures below —8°C.
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3. Results

3.1. Two High-Accumulation Events

of 2009 and 2011

Significant contribution to the total local PE
SMB during 2009 and 2011 comes from two
events—on 18 and 19 May 2009 and 14-16
February 2011. During both events snow
height measured by the PE AWS increased by
48-51 mm w.e., thereby contributing a large
percentage—up to 21 and 22%—of the total
SMB for each year.

Both events were associated with a deep

500 hPa trough, corresponding to a very strong
and deep surface cyclone situated north of
DML blocked by a high-pressure ridge to its
east (Figures 2a and 2b). During the 2009 event,
the 500 hPa trough was near 30°E, directing
the moisture flux into the ice sheet along 60°E.
During the 2011 event, the 500 hPa trough was
even more pronounced and was centered near

€ = . - S .
C) S i —— 19 May 2009 - the prime meridian, while directing the mois-
% ---15Feb2011 .’ ture flux along 30°E. In both cases, not only the
< 3 * . . . I
2 ) immediate vicinity of PE but also a significant
£ part of DML were characterized by elevated
§ ! IWV (Figures 2a and 2b). Thus, measurements
= _070 60 -50 -40 -30 -20 at PE can be considered representative of a
Latitude larger area and therefore may reflect the aver-
Figure 2. Maps of IWV (cm, equation (1)) at 00 UTC on (a) a.ge.accumulat.ion over the .WhOIe DML region.
19 May 2009 and (b) 15 February 2011. Red arrows indi- Similar synoptic patterns with a deep 500 hPa
cate vertically integrated total MT (equation (3)) within each trough and a blocking high-pressure ridge
AR as identified using the definition adapted for Antarctica downstream as observed in both 2009 and

(section 3.2). Black contours are 500 hPa geopotential heights,
where L shows a closed trough at 500 hPa influencing DML
and H shows the blocking high-pressure ridge downstream
of the low. White square shows PE location. (c) IWV threshold
as a function of latitude based on equation (4). Based on the
ERA-I reanalysis.

2011 are commonly found in midlatitude cases
leading to AR formation [Bao et al., 2006].

A large-scale circulation pattern, similar for
both cases, steered an intense narrow mois-
ture flux into DML, with the band of enhanced
IWV stretching from subtropical latitudes
(from the southern Indian Ocean east of Madagascar in 2009 and from the south central Atlantic in 2011)
to the East Antarctic ice sheet (Figures 2a and 2b). During the 2011 event the high IWV band reached

the coast directly at the longitude of PE, whereas during the 2009 event it reached the coast further east
and then continued westward along the escarpment zone bringing elevated IWV to PE from the east
(Figures 2a and 2b).

3.2. Redefining the ARs for Antarctica

Long narrow corridors of enhanced IWV as were observed in the two cases above are characteristic of ARs
[Ralph et al., 2004, 2006; Bao et al., 2006]. Zhu and Newell [1998] identified midlatitude ARs as outstanding
total MT compared to the mean zonal value at each latitude organized into filamentary forms with their
length several times larger than their width (visible in Figure 1). Ralph et al. [2004, 2006] demonstrated
that IWV can be used to define AR cases as narrow (<1000 km in width), elongated (>2000 km in length)
bands of enhanced IWV with IWV values in the along-plume and cross-plume direction exceeding 2 cm.
The two Antarctic cases described in the previous section satisfy Zhu and Newell [1998] criteria and con-
fine large IWV values to the geometric boundaries defined by Ralph et al. [2004, 2006]. However, IWV within
these bands decrease below 2 cm approaching Antarctica, while still showing large values compared to
zonal means.
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Year After a detailed study of the presented
800—'Shi3vo:eigﬂt L — _ Antarctic cases on 18 and 19 May
¢ 70 <.> ::g: :zzz::::::z: :?t:iR '_§' 2009 and 14-16 February 2011, we
2 6001 4 snowfall (High Acc no AR) ¢ defined a new IWV threshold to iden-
E 500L ¢ Snowfall (High Acc with AR) ; tify ARs by taking into account the
g 400t i decreased saturation capacity of the
T 300] ® polartroposphere:
g 2000 S W w AR et WV
(‘,:) 100% § = sat,mean+ coeff( sat,max
o No snowfall data ' Exix ix & n - IWVsat,mean)’
M JSDMJSDMUJSDMUJISD
Month where WV, .., is @ zonal mean
Figure 3. Daily cumulative snow height change and radar-based IWV,,, (equation (2)) along each lati-
snowfall rate (S) at PE during 2009-2012. High-accumulation events tude, IWV, nax is the maximum value
(>10mmw.e.d~") are marked with circles: filled red circles for the of IWV,,, along the same latitude, and
events associated with ARs (corresponding S are shown as red dia- AR, is a coefficient determining rela-

monds), and open blue circles for the rest (corresponding S are shown

as blue diamonds). Vertical magenta line shows uncertainty in S tive strength of an AR. After a series of

depending on different Z,-S relationships [Matrosov, 20071. Note the trials, AR or = 0.2 was found to be the
logarithmic scale for snowfall. Horizontal red bar and crosses at bottom  best in identifying all cases when large
show periods of missing S data. IWV values were organized into narrow

bands reaching the East Antarctic coast.

As demonstrated for the two selected
cases (Figure 2¢), this newly defined IWV threshold satisfies the 2 cm value at 40°-50°S as defined by Ralph
et al. [2004] for midlatitude ARs but drops to slightly below 1 cm at 70°S near the Antarctic coast. ARs that
have the potential to influence DML SMB are identified if IWV exceeds the threshold defined by equation (4)
near the Antarctic coast within 20°W-90°E longitudinal sector (coastal latitude varying with longitude),
and is present continuously at all latitudes for at least 20° equatorward from the coastal latitude (length >
2000 km), within a limited width of 30° longitude (~1000 km at 70°S increasing equatorward). Such geo-
metric boundaries define the dominant meridional direction of ARs influencing Antarctica. The red arrows
in Figures 2a and 2b indicate MT (equation (3)) within the AR boundaries as defined above for the two cases
in 2009 and 2011, clearly demonstrating that the large IWV values within the narrow elongated corridor are
associated with high poleward MT reaching the coast of the DML.

3.3. High-Accumulation Events and ARs During 2009-2012

AWS measurements of snow accumulation at PE recorded total annual SMB of 230, 23, 227, and 52 mm w.e.,
during 2009, 2010, 2011, and 2012, respectively. Interannual variability of the PE accumulation is in
accordance with the interannual SMB variability over the larger DML region, all featuring the anomalous
accumulation during 2009 and 2011 [Boening et al., 2012; Gorodetskaya et al., 2014; Lenaerts et al., 2013].
Large interannual variability in annual SMB at PE is closely related to the number and intensity of high-
accumulation events every year (defined as days > 10 mmw. e.d™"; see section 2). Figure 3 shows daily
cumulative snow height change at PE during 2009-2012 period with all high-accumulation events marked
with circles. Applying the definition of AR adapted for Antarctica to all days during 2009-2012, we found
that ARs are responsible for the most extreme among high-accumulation events (with the mean of

22 mmw.e.d™"). Almost all of the AR-associated high-accumulation events occurred during 2009 and 2011.

All high-accumulation events associated with ARs detected during 2009-2012 are listed in Table 1. These
events lasted for up to 3 days, and the amount of accumulation and snowfall rates (when available) are given
as daily mean value for each event. ARs were detected on specific days during or sometimes the day after
these high-accumulation events (Table 1). In the latter case we consider that PE was under the influence of
AR development as each AR affects much larger area.

While all high-accumulation events (six in 2009 and eight in 2011) account for almost 100% of the total
yearly accumulation, four events associated with ARs in 2009 contribute 74% and five events in 2011 con-
tribute 80% to the total yearly accumulation. In contrast, during 2010 there is only one high-accumulation
event detected (not associated with an AR), and during 2012 there are seven high-accumulation events
with only one event associated with an AR (with the highest snowfall rate and accumulation of all 2012
events, Figure 3). Radar-based snowfall rate estimates, which only became available in 2010, confirm that
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[\S)
o

PRI RN RV ERUEN RN SR ST S the highest accumulation events are
] ]flf?,:?nylﬂq ff,?nmg mean 1 related to intense snowfalls (Table 1
E and Figure 3). Thus, the yearly accu-
mulation depends strongly on the
number of high-accumulation events
and intensity of each particular event.
Our results show that anomalously
high snow accumulation in 2009
LSRN N LA N LA NLNLNLEY IR LN B and 2011 can be attributed to a few
1979 1983 1987 1991 1995 1999 2003 2007 2011 extreme accumulation events, all
ear of which were associated with ARs
reaching Antarctic coast with their
core axes within 7°E-60°E (Table 1).

16

N
1

T[T T[T T[T r[rrrrrrs

Meridional mositure flux, kg m-1 s-1
(o]
|

Figure 4. Vertically integrated meridional moisture flux across the
55°-72°S, 20°W-90°E section of the Southern Ocean based on the ERA-I
reanalysis for 1979-2012. The seasonal cycle is removed from the data
(values are fluctuating around the yearly mean). Gray zone indicates 3.4. Poleward Moisture Flux
2009-2012 period of PE data analysis (Figure 3). The year markers show the During 1979-2012

two largest fluxes during the record in May 2009 and June 2011. .
9 9 y To put the recent years with anoma-

lously high accumulation into

long-term context, we examined the
meridional moisture flux time series averaged monthly over 1979-2012 period and spatially over a sector
of the Southern Ocean (55°5-72°S, 20°W-90°E; Figure 4). Poleward MT is primarily associated with synop-
tic activity; and therefore, it is highly variable on daily, monthly, and interannual time scales. Although DML
sector of the Southern Ocean is known for its synoptic activity, it mostly favors zonal transport of cyclones,
while meridional propagation of synoptic systems is rare [Simmonds and Keay, 2000; Uotila et al., 2013].
Therefore, AR events, as manifestations of poleward MT, can be expected to influence monthly and region-
ally averaged data. For example, the May 2009 anomaly of the mean integrated meridional moisture flux
(18.4kgm~"s7!, which is about 2 times the mean over the entire period of 9.2 kg m~' s71), associated with
two very high accumulation events produced by ARs, stands out in the 34 year record as unprecedented
(Figure 4). The 18-19 May and 25 May 2009 AR events not only were strong enough to dominate over a
monthly average, these narrow channeled ARs also managed to dominate meridional MT across a wide lon-
gitudinal sector. The monthly peaks of 2011 are less prominent, with the annual maximum flux in June 2011
(15.2kgm~"s7") and a secondary maximum in February (13.2 kg m~' s7"). Both of these months in 2011 and
May 2009 stand out in Figure 3 as high-accumulation events associated with ARs. Such enhanced poleward
moisture fluxes are expected to translate into regional accumulation anomalies, which is consistent with the
modeling study of Lenaerts et al. [2013], showing positive SMB anomalies in the 10°W-70°E sector.

4, Conclusions and Outlook

Measurements of SMB and snowfall at Princess Elisabeth station, located in the escarpment area of DML,
East Antarctica, during 2009-2012 were combined with the ERA-I large-scale meteorological fields, in
order to investigate the relationship between atmospheric rivers and high-accumulation events, leading to
anomalously high annual accumulation during 2009 and 2011. Two specific cases, each strongly contribut-
ing to the total annual accumulation at PE, on 18 and 19 May 2009 and 14-16 February 2011, were analyzed
in terms of moisture transport patterns and associated large-scale circulation. Strong moisture fluxes and
associated enhanced IWV values were concentrated along a narrow and long corridor directed toward the
East Antarctic coast at the eastern flank of a deep cyclone centered north of DML and blocked on the east
by a high-pressure ridge. The importance of such blocking events in the heat and moisture transport toward
the Antarctic interior was emphasized in earlier studies [e.g., Hirasawa et al., 2000, 2013; Frezzotti et al., 2007].
We show that such synoptic and associated moisture flux patterns of meridional nature are characteristic of
ARs and introduce a modified definition for ARs in Antarctica, which considers a lower saturation capacity
of the polar troposphere. Applying this definition to the entire period 2009-2012, we find that the anoma-
lously high accumulation observed at PE in 2009 and 2011 can be attributed to a few extreme accumulation
events (four to five per year), all of which were associated with ARs reaching the Antarctic coast within the
7°E-60°E longitudinal sector.

Only a subset of the ARs identified within the 20°W-90°E longitudinal sector was associated with high accu-
mulation at PE (in total, there were identified 13, 8, and 3 ARs during 2009, 2011, and 2012, respectively).
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The sector within which these ARs reach the East Antarctic coast makes them potentially important for DML
SMB, and further analysis using other high-resolution accumulation measurements in DML may show even
larger impact of ARs on DML accumulation. The relationship between ARs and high-accumulation events

is of great importance for understanding interannual variability and trends of the total Antarctic ice sheet
SMB, with implications for future SMB changes and also paleorecord interpretation. The large contribution
of ARs to DML SMB implies that the difference in the regional total annual SMB is determined by the fre-
quency of occurrence of ARs. This analysis, indicating the important role of ARs in the Antarctic ice sheet
mass balance, suggests that climate models simulating Antarctic SMB require adequate representation

of ARs.
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