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Abstract Atmospheric rivers (ARs) have a significant role in generating floods across the western United
States. We analyze daily streamflow for water years 1949 to 2015 from 5,477 gages in relation to water
vapor transport by ARs using a 6 h chronology resolved to 2.5° latitude and longitude. The probability that an
AR will generate 50 mm/d of runoff in a river on the Pacific Coast increases from 12% when daily mean water
vapor transport, DVT, is greater than 300 kg m�1 s�1 to 54% when DVT > 600 kg m�1 s�1. Extreme runoff,
represented by the 99th quantile of daily values, doubles from 80 mm/d at DVT = 300 kg m�1 s�1 to
160 mm/d at DVT = 500 kg m�1 s�1. Forecasts and predictions of water vapor transport by atmospheric
rivers can support flood risk assessment and estimates of future flood frequencies and magnitude in the
western United States.

1. Introduction

Atmospheric rivers (ARs) are long (>2,000 km) corridors in the lower troposphere where water vapor is trans-
ported poleward at high rates that have been identified as the primary cause of flooding in the western
United States (U.S.) (Barth et al., 2017; Dettinger & Ingram, 2013; Dettinger et al., 2011; Florsheim &
Dettinger, 2015; Neiman et al., 2011, 2013; Ralph et al., 2006). Geographic variation in the frequency of AR-
related flooding across the western U.S. reflects the strong west-to-east gradient in AR-forced precipitation
(Barth et al., 2017; Ralph & Dettinger, 2012; Rutz et al., 2014). ARsmake landfall on the Pacific Coast more often
than floods occur, so there is a great practical need to determine which ARs are most likely to generate floods
(Neiman et al., 2008; Ralph et al., 2013) and how changes in water vapor transport by ARs (Lavers et al., 2016;
Warner & Mass, 2017) would likely affect flooding. We approach this problem by estimating the probability of
high runoff conditioned on water vapor transport in ARs. The results can inform the near-term forecasting of
floods, estimation of inflows to reservoirs, and the prediction of changes in flood magnitude and frequency
across the western U.S.

2. Data Sets and Analytical Methods

We examine the daily streamflow responses of rivers to atmospheric rivers for water years (1 October to 30
September) 1949 to 2015 over the contiguous U.S. west of the continental divide including the Columbia
River basin, the Great Basin, the Colorado River basin, and coastal California, Oregon, and Washington. The
analysis is conducted at three spatial scales: individual gaged river basins, grid cells centered at intervals of
2.5° latitude and 2.5° longitude, and the subset of 10 cells that cover the Pacific Coast including the western
slope of the Cascade Range and Sierra Nevada (Figure 1). Cells covering the Oregon Coast (�125°W, 45°N) to
extreme northern Washington (�122.5°W, 50°N) are excluded due to the small land area of the streamflow
gaging network.

2.1. Streamflow and Water Vapor Data

Records of daily mean streamflow spanning at least 10 years from 5,547 gages operated by the U.S.
Geological Survey in the western U.S. were compiled for WY 1949–2015 (U.S. Geological Survey, 2016).
Streamflow was divided by drainage area at each gage and reported as runoff (mm/d) to standardize river
responses to atmospheric rivers. Gages on regulated rivers were included as part of the network for detecting
maximum runoff in each 2.5° cell because reservoir releases are unlikely to increase maximum daily runoff at
a site during a flood. Regulation may reduce flooding at a site in response to ARs.
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We use the National Centers for Environmental Prediction-National
Center for Atmospheric Research Reanalysis chronology of vertically
integrated water vapor transport (IVT) for 2.5° cells reported at 6 h inter-
vals (Kalnay et al., 1996, and updates thereto) with ARs identified by the
method of Rutz et al. (2014) as contiguous regions >2,000 km in length
that transport water vapor at vertically integrated rates>250 kgm�1 s�1

for at least 6 h (data accessed at http://www.inscc.utah.edu/~rutz/ar_
catalogs/ncep_2.5/timeseries/ on 23 May 2016). Coordinated Universal
Times for IVT were converted to Pacific Standard Time (PST). Mean
24 h IVT with lead times of +8, +14, and +20 h was compared to daily
streamflow to identify the lead time that best accounted for the
generation and routing of runoff from source areas to the reporting
gage. Mean 24 h IVT with a 14 h lead best correlates with increased
streamflow and is generally representative of the time of concentration
of Pacific Coast rivers (Warner et al., 2012), so daily mean vertically inte-
grated water vapor transport (DVT) on day d refers to the mean of IVT
from 10:00 a.m. PST on day d � 1 to 10:00 a.m. on day d.

2.2. Minimum Number of Gages Per Cell

We rely on the U.S. Geological Survey streamflow gaging network to
detect the daily maximum runoff response in each 2.5° cell but recog-
nize that the spatial coverage of the network may not be adequate on
some days in some cells, which will lead to underestimation of the max-
imum runoff on a given day. We impose a minimum number of gages as
a condition for including a 2.5° cell on a given day based on the likeli-
hood of not detecting high runoff as a function of the number of gages

in a cell. Days when a gage met one of four runoff-based criteria were designated as “flood days”: (1) daily
runoff,Q, greater than 50mm/d and an increase in runoff from the previous day; (2) an increase from the prior
day in daily runoff, ΔQ, greater than 30 mm/d; (3) cumulative 3 day runoff, Q3d, greater than 150 mm and an
increase in runoff from the prior day; or (4) cumulative increase in 3 day runoff from the prior day, ΔQ3d,
greater than 90 mm. Cumulative 3 day runoff was assigned to the first day of each 3 day period for compar-
ison with DVT. Overlapping 3 day periods meeting criteria 3 or 4 were filtered to retain only the period with
the greatest 3 day runoff or increase in runoff, respectively. While these criteria are used to establish a mini-
mum number of gages as a condition for the analysis and to describe broad patterns of flooding, they are not
used to calculate conditional probabilities or runoff responses.

When there are only two gages in a cell, the probability is 18% that both gages met flood criteria conditioned
on days when one gage met flood criteria. The conditional probability of two gages recording a flood when
one gage records a flood increases rapidly with the number of gages to 52%when there are 5 gages and then
gradually to 65%when there are at least 150 gages. We selected 15 gages per cell as a minimum threshold for
including observations from a cell on a given day in the analysis.

2.3. Likelihood of Flooding and Limits on Runoff in Relation to Water Vapor Transport

Conditional probabilities that the maximum ΔQ was greater than a threshold, ΔQ*, when DVT was greater
than a threshold, DVT*, were estimated using observations from Pacific Coast cells on days with at least 15
active gages in a cell based on Bayes theorem (Hoel, 1971):

P ΔQ > ΔQ�jDVT > DVT�ð Þ ¼ P DVT > DVT�jΔQ > ΔQ�ð Þ P ΔQ > ΔQ�ð Þ
P DVT > DVT�ð Þ : (1)

Likewise, the probability that DVT > DVT* when maximum ΔQ > ΔQ* was calculated is as follows:

P DVT > DVT�jΔQ > ΔQ�ð Þ ¼ P ΔQ > ΔQ�jDVT > DVT�ð Þ P DVT > DVT�ð Þ
P ΔQ > ΔQ�ð Þ : (2)

30

35

40

45

Longitude

La
tit

ud
e

day−

day−

day−

day−

day−

Figure 1. Median annual maximum daily runoff based on available records
for water years 1949 to 2015 at 5,477 gages in the western United States.
Pacific Coast cells are outlined in black.
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2.4. Maximum Runoff as a Function of Water Vapor Transport

Observation of the maximum increase in runoff for a given rate of water
vapor transport can help bracket potential runoff response given incipi-
ent AR conditions or forecasts. We relate maximum ΔQ to DVT for each
2.5° cell on days when there was an AR and at least 15 active gages. We
apply quantile regression (Koenker et al., 2016) to estimate a linear rela-
tion between the 99% quantile of maximum ΔQ and DVT for 2.5° cells on
the Pacific Coast (Figure 1).

3. Results

There were 6,351 events (cell days) when runoff in a cell met flood cri-
teria during WY 1949–2015, and 5,417 events (85%) co-occurred with
an AR. Multiday ARs were particularly effective at generating floods:
4,373 of 6,351 (76%) events occurred on the second day of an AR.
Nearly all events where ΔQ was greater than 100 mm/d (240 of 249 cell
days) occurred in response to an AR over the cell. All flood days at 1,187
gages were attributable to ARs.

While most flooding was associated with ARs, many ARs including some that were relatively intense
(DVT > 500 kg m�1 s�1) did not produce floods. The fraction ARs with DVT> 500 kg m�1 s�1 that produced
floods in Pacific Coast cells increased from 26% in September to 81% in January (Figure 2) potentially indicat-
ing diminishing storage capacity of soils and reservoirs from late summer into the winter or the seasonally

variable dynamics of ARs (Neiman et al., 2008; Ralph et al., 2013). The
fraction of ARs that produce runoff meeting the flood criteria also varies
spatially, decreasing from over 30% in the northern Sierra Nevada (40°N,
120°W) and Olympics and western Cascades (47.5°N, 122.5°W) to less
than 10% in the interior reflecting lower DVT and less orographic forcing
of precipitation.

3.1. Probability of Floods in Relation to Water Vapor Transport by
Atmospheric Rivers

The probability of floods on the Pacific Coast is generally related to
both the frequency and intensity of ARs. The mean annual number
of ARs is 186 days per year and decreases to ~15 days per year for
ARs when DVT > 500 kg m�1 s�1 (Figure 3a). Conversely, the
conditional probability that ΔQ will exceed a given value increases
steadily with DVT for a 2.5° cell. For example, the probability that
ΔQ > 50 mm/d increases from 12% when DVT > 300 kg m�1 s�1 to
52% when DVT > 600 kg m�1 s�1 (Figure 3b). A similar pattern holds
for larger increases in runoff, but the probabilities are lower (e.g.,
P(ΔQ > 100 mm d�1 | DVT > 600 kg m�1 s�1) = 27%).

The probability that DVT exceeds a threshold when runoff increases
above a specified level (Figure 3b, dashed curves) indicates the relative
contribution to flooding of ARs with DVT above and below the thresh-
old. When ΔQ > 50 mm/d in a 2.5° cell, the probability that
DVT > 300 kg m�1 s�1 is greater than 80% and the probability that
DVT > 400 kg m�1 s�1 is 50%. Thus, ARs with DVT < 300 kg m�1 s�1

generally do not produce ΔQ > 50 mm/d, but many of the occurrences
when ΔQ > 50 mm/d are a result of DVT between 300 and
400 kg m�1 s�1. Intense but infrequent ARs are almost certain to pro-
duce flooding, but many floods are generated by ARs that are less
intense but more common.
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Runoff responses to water vapor transport by ARs vary within the
region. For example, P(ΔQ > 50 mm/d|DVT > 500 kg m�1 s�1) ranges
from more than 50% in the western North Cascades and northern and
central Sierra Nevada to less than 10% in some of the surrounding cells
(Figure 4). The spatial variation in this conditional probability does not
depend on AR frequency since “unresponsive” cells represent places
spanning the range of AR frequencies. Instead, it appears to represent
the combined effects of topographic barriers with the prevailing AR
trajectories that force precipitation from ARs.

3.2. Maximum Runoff Response of Pacific Coast Rivers to Water
Vapor Transport

Maximum daily increase in runoff observed in a 2.5° cell on the Pacific
Coast generally is limited by DVT (Figure 5) and, therefore, can be
expected to reflect spatial patterns in DVT, which generally decreases
inland (Figure 5a). Annual maximum ΔQ generally decreases from north-
west to southeast (Figure 5b). The 99% quantile of ΔQ, ΔQ0.99, can be
estimated as an increasing, linear function of DVT:

ΔQ0:99 ¼ 0:4 DVT� 100ð Þ; (3)

where the probability that the daily increase in runoff will exceed ΔQ0.99

for any river in a 2.5° cell is 1% given DVT for that cell. When DVT
~ 500 kg m�1 s�1 in a 2.5° cell, for example, ΔQ has ~ 1% probability
of exceeding 160 mm for a river in that cell. The estimate of ΔQ0.99 does
not account for geographic variation in AR characteristics or in runoff
across the Pacific Coast. This estimate likely is upward biased under
dry antecedent conditions of fall and for rivers draining lowland areas

and leeward aspects of mountain ranges on the Pacific Coast, with downward biases at higher elevations
on the windward aspects of mountain ranges.

4. Discussion of Conditional Flood Responses to Atmospheric Rivers in a
Changing Climate

High runoff in the western U.S. from WY 1949 to 2015 occurred primarily during ARs and was restricted lar-
gely to coastal ranges and the western Sierra Nevada and Cascade Ranges. This pattern reflects the spatial
distribution of frequency of ARs and the increasing intensity of precipitation over high-elevation terrain
(Dettinger, 2011; McCabe et al., 2007; Neiman et al., 2008; Ralph & Dettinger, 2012; Rutz et al., 2014). While
lowland streams on the Pacific Coast have lower rates of maximum runoff (e.g., Puget Trough, Willamette,
and Sacramento River valley), annual maximum streamflow (peaks and mean daily) in these streams is still
largely a response to ARs (Barth et al., 2017; Figure S1 in the supporting information).

Climate warming and moistening of the atmosphere in response to increased greenhouse gas concentra-
tions are expected to increase the frequency of ARs and their transport of water vapor (Dettinger, 2011;
Lavers et al., 2013). Warner et al. (2015) predict that DVT exceeding ~ 500 to 600 kg m�1 s�1 along the
Pacific Coast will be 3 times more frequent by the end of the 21st century. Changes in flooding can be
inferred from projections of enhanced water vapor transport (Lavers et al., 2016; Salathé et al., 2014) by apply-
ing the conditional probabilities (Figure 4) and maximum runoff responses (Figure 5) for the Pacific Coast.
Such estimates would only be approximate. Actual changes in flooding will depend on the seasonal distribu-
tion of changes in water vapor transport (Warner & Mass, 2017) that influence relations between water vapor
transport and precipitation (Hagos et al., 2016; Neiman et al., 2008) and between precipitation and runoff
(Ralph et al., 2013) and future AR trajectories (Gao et al., 2015; Payne & Magnusdottir, 2015; Radić et al.,
2015; Warner et al., 2015). Nevertheless, increased transport water vapor by ARs would likely produce addi-
tional flooding runoff along their path. Qualitatively, the projected increases in IVT and AR intensities and
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frequencies as the world warms are consistent with increased frequency and magnitude of future flooding in
the western U.S. (Das et al., 2013; Dettinger, 2011; Lavers et al., 2015).

Less intense ARs also represent flood hazards if the ARs make landfall when antecedent soil moisture is high
and, in particular, if they occur on consecutive days effectively extending AR duration over a given location
(Lamjiri et al., 2017; Ralph et al., 2013; Warner et al., 2012). The cumulative effect of long duration ARs is evi-
dent: 76% of AR-associated flooding occurred when an AR persisted for more than a day, but these persistent
ARs comprise only 49% of ARs. Even without increased peak rates of water vapor transport, increased fre-
quency and persistence of ARs during wet seasons would increase flooding (Ivancic & Shaw, 2015; Lamjiri
et al., 2017; Lavers et al., 2013; Neiman et al., 2013; Vahedifard et al., 2017).

Expectations about precipitation and runoff responses to water vapor transport at a particular location do not
have to be bound to a single realization of either observed or simulated ARs at that location (Kunkel et al.,
2013; Salathé et al., 2014) but should be tempered by the systematic spatial variation in both AR trajectories
and orographic forcing (Figure 4), which influence the amount of runoff generated by landfalling ARs of a
given magnitude (Bracken et al., 2015; Dettinger et al., 2004; Hagos et al., 2016; Neiman et al., 2011, 2013;
Ryoo et al., 2015). Uncertainties in the future trajectories of ARs, changes in their seasonal timing and water
vapor transport, and landscape conditions prevent robust predictions of site-specific changes in flood
frequency (Mundhenk et al., 2016; Ralph et al., 2013; Salathé et al., 2014) at this time.
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While the flooding impact from changes in moderate ARs (e.g., DVT < 300 kg m�1 s�1) would likely depend
on seasonal timing and may be limited to river basins with a high propensity for orographic forcing, the
increased frequency of larger ARs would very likely increase the frequency of floods particularly on the
Pacific Coast. Flooding in the interior West depends on the extent to which ARs will penetrate further inland
(Rutz et al., 2015) and, as a result, will be sensitive to future trajectories of ARs and their water vapor transport.
Robust quantitative estimation of future flood frequencies for the western U.S. remains a challenge that will
require improved prediction of water vapor transport rates, duration, and locations along with its vertical
distribution and the vertical distribution of air temperature (Neiman et al., 2013; Payne & Magnusdottir,
2015; Ulbrich et al., 2008; Warner et al., 2015).

5. Summary

ARs generated most of the observed high daily runoff in the western U.S. during water years 1949–2015 par-
ticularly along the Pacific Coast. The probability of such floods increases with both the intensity and duration
of water vapor transport by ARs. When DVT by an AR exceeds 300 kg m�1 s�1, there is a 12% probability that
runoff will exceed 500 mm/d in a 2.5° cell under the AR, which increases to 52% when DVT exceeds
600 km m�1 s�1. High runoff in response to ARs is more likely during winter months and in locations where
land surface topography and AR trajectories force the orographic lift of air laded with moisture. ARs that do
not generate floods generally are less intense, shorter duration, have less orographic forcing of precipitation,
or occur under dry antecedent conditions. Changes in frequency andmagnitude of flooding in the region will
depend on the rate and vertical distribution of water vapor transport by ARs in the future and also their sea-
sonal timing and duration over particular locations.
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