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Abstract Hydrologic variables such as evapotranspiration (ET) and soil water storage are difficult to
observe across spatial scales in complex terrain. Streamflow and lidar-derived snow observations provide
information about distributed hydrologic processes such as snowmelt, infiltration, and storage. We use a
distributed streamflow data set across eight basins in the upper Tuolumne River region of Yosemite
National Park in the Sierra Nevada mountain range, and the NASA Airborne Snow Observatory (ASO) lidar-
derived snow data set over 3 years (2013–2015) during a prolonged drought in California, to estimate basin-
scale water balance components. We compare snowmelt and cumulative precipitation over periods from
the ASO flight to the end of the water year against cumulative streamflow observations. The basin water
balance residual term (snow melt plus precipitation minus streamflow) is calculated for each basin and year.
Using soil moisture observations and hydrologic model simulations, we show that the residual term repre-
sents short-term changes in basin water storage over the snowmelt season, but that over the period from
peak snow water equivalent (SWE) to the end of summer, it represents cumulative basin-mean ET. Warm-
season ET estimated from this approach is 168 (85–252 at 95% confidence), 162 (0–326) and 191 (48–334)
mm averaged across the basins in 2013, 2014, and 2015, respectively. These values are lower than previous
full-year and point ET estimates in the Sierra Nevada, potentially reflecting reduced ET during drought, the
effects of spatial variability, and the part-year time period. Using streamflow and ASO snow observations,
we quantify spatially-distributed hydrologic processes otherwise difficult to observe.

Plain Language Summary The amount of evapotranspiration in the Sierra Nevada mountains is
important because this water is not available for downstream uses, supports alpine ecosystems, and may
change in a future climate. Currently there are few measurements of evapotranspiration in the Sierra
Nevada across a diverse landscape. We use a high-resolution snow data set (NASA’s Airborne Snow
Observatory) with multiple stream gauge observations from Yosemite National Park to estimate evapotrans-
piration using a water balance approach. Over 2013–2015 during the California drought, we find that evapo-
transpiration averages 162–191 mm per year, over the time period from peak snowpack in the spring to the
end of the summer. Compared with other estimates of evapotranspiration, we find that the estimates are
smaller, perhaps due to the diverse spatial terrain sampled by this approach. We also find that the estimates
vary only slightly from year to year during the California drought. Our study may help understand how
evapotranspiration, and thus available water supply, may change in a warmer future climate.

1. Introduction

Understanding the spatiotemporal scaling of hydrologic variables in heterogeneous terrain is a major
research challenge. In mountainous areas, complex spatial patterns and relatively sparse observations typi-
cally prevent observing spatially distributed fluxes and storages of water and energy. Spatially distributed
basin water storage, snow water equivalent (SWE), and evapotranspiration (ET) are key hydrologic variables
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that often exhibit high variability, challenging our ability to represent them in hydrologic models and to val-
idate remotely sensed observations.

Distributed measurements of streamflow offer a means by which to observe the spatially integrated
response of a basin to input of water through rain and snowmelt. Streamflow observations allow for evalua-
tion of trends in precipitation that are not observed directly (Luce et al., 2013), the evaluation of precipita-
tion input forcing schemes (Wayand et al., 2013), and the inference of biases in precipitation input forcing
(Henn et al., 2015, 2018a; Renard et al., 2011). Distributed streamflow measurements allow for the observa-
tions of hydrologic fluxes at scales that may otherwise be difficult to capture, such as localized convective
precipitation (Lundquist et al., 2009). In the upper Tuolumne River basin of Yosemite National Park in the
Sierra Nevada mountain range of California, USA, distributed streamflow observations made since 2001
(Lundquist et al., 2016) are unique in that they provide unimpaired information about the hydrology of mul-
tiple nested and adjacent high-elevation basins in a critical water supply region.

Recent advancements in remote sensing of the snowpack have also improved understanding of snow pro-
cesses at a range of spatial scales. Lidar measurement of snow depth can provide observations at spatial
resolutions and scales that would not be feasible with conventional manual and point measurements
(Deems et al., 2013). Airborne lidar systems can cover spatial scales of greater than 1,500 km2 in a single
flight, while still sampling multiple returns per square meter, producing observational data sets with rich
spatial coverage of the land surface. Since the spring of 2013, the NASA Airborne Snow Observatory mission
(ASO; Painter et al., 2016) has combined an airborne scanning lidar to measure snow depth, an imaging
spectrometer to measure snow albedo and identify snow-covered areas, and distributed modeling con-
strained by in situ measurements to estimate snow density, to produce 50 m gridded estimates of SWE for
basins across the Western United States, including in the Tuolumne River.

The combined availability of distributed streamflow and high-resolution SWE observations over an alpine
wilderness region without extensive ground observations allows for comparison of the two data sets in
order to advance the understanding of basin-scale hydrologic processes. Water balance components may
be used to infer unobserved quantities, such as basin soil storage (e.g., Sayama et al., 2011). Studies of
snowmelt and streamflow generation at the point scale have illustrated the timing and physical mecha-
nisms by which snowmelt interacts with the soil to produce streamflow and provide water for ET later in
the warm season (Bales et al., 2011; Flint et al., 2008; Harpold et al., 2015; Rose et al., 2003). However,
extending understanding of these processes and their magnitudes to larger spatial scales has been chal-
lenging due to lack of observations. Previous studies estimating basin storage and ET using water balance
components have generally followed two approaches. First, ET can be estimated from the difference
between precipitation and streamflow over a watershed (e.g., Christensen et al., 2008; Lundquist & Loheide,
2011), though uncertainties in estimating basin-mean precipitation in complex terrain (Henn et al., 2018b)
can confound this approach. Second, where snowpack plays a significant role in the water balance in alpine
watersheds on the scale of several km2, others have used intensive manual snow observations to estimate
basin-mean SWE and compare against observed streamflow volumes (Hood & Hayashi, 2015; Kattelmann &
Elder, 1991; Marks & Dozier, 1992). The spatial pattern of snowpack (and thus basin-mean SWE) can be mea-
sured more precisely than spatially-integrated precipitation accumulations over complex terrain (see precip-
itation uncertainty estimates in section 2), and so this approach may yield more accurate estimates of basin
storage and ET. However, practical considerations limit manual snow survey studies to smaller areas or fairly
coarse sampling density, and inaccessible terrain often prevents representative sampling of SWE across
basins.

Observations of high-elevation ET in the Sierra Nevada are extremely limited. Operating eddy covariance
flux tower instrumentation in snow-dominated areas of complex topography and limited maintenance
access is challenging. Goulden et al. (2012) used observations from flux towers along a large elevation gra-
dient to show an ET maximum around 2,000 m in elevation of the southern Sierra Nevada. Bair et al. (2015)
have used a snow pillow and drainage lysimeters to estimate snowpack sublimation since 2013. However,
these point observations of ET and sublimation are too sparse to sample the heterogeneity of vegetative
cover, local water availability, topographic aspect, and other small-scale features. Remote sensing
approaches based on land surface temperature or vegetative greenness can identify regions associated
with higher or lower ET, but may not capture ET well in energy-limited Alpine environments (Goulden et al.,
2012). Thus, we are not aware of existing approaches that can measure area-averaged evaporative fluxes
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across the mountain landscape. We propose that the combination of spatially-distributed lidar snow and
streamflow observations may be used advance understanding of basin-scale hydrologic processes in the
mountains.

In this paper, we estimate and compare water budget components for eight alpine basins in and near
Yosemite National Park (Table 1 and Figure 1) over the snow ablation and summer seasons of 2013, 2014,
and 2015. We use distributed streamflow observations (Lundquist et al., 2016), a large-scale lidar/spectrom-
eter snow data set (ASO; Painter et al., 2016), and estimates of precipitation from a network of regional
gauges to constrain the season-scale water budgets for each basin and to estimate the unmeasured terms:
ET and basin surface and subsurface water storage. The observations used were made during historic
drought conditions in California that began during water year 2012. Thus, the findings here may represent
abnormally dry conditions rather than conditions typical of the Sierra Nevada climate. In fact, this period
coincides with a major drought-induced tree mortality event (Bales, 2015), suggesting that the magnitudes
of ET during the drought have been depressed relative to nondrought periods.

For each basin, we estimate cumulative ET over the period from peak SWE and the initiation of snowmelt to
the approximate end of the growing season (30 September). Here we define ET as the sum of land surface
evaporation, vegetative transpiration and sublimation from snow cover occurring between springtime peak
SWE and 30 September; the analysis period does not include any wintertime ET, including sublimation. In
the cold-winter, high-elevation Mediterranean climate, warm season ET likely accounts for the majority of
the landscape productivity (Kurpius et al., 2003). We choose 30 September as the end of the analysis period
because it is approximately the end of the growing season when ET slows as soil moisture and tempera-
tures decline. Changes in basin water storage are also likely minimized over this period, as soil moisture is
typically low before the onset of major snowmelt, and declines to low levels again by the end of summer
(see section 4).

We first discuss the SWE, streamflow and precipitation data sets used to quantify the water balance of each
alpine basin (section 2). Then we describe the methods used to estimate the terms of the water balance and
to estimate unmeasured quantities (section 3). In section 4, we present the estimates of ET and basin storage
across the range of basins and years, and compare them against available observations of soil moisture stor-
age and modeled ET amounts. We then discuss the variability and uncertainty of the ET estimates and com-
pare them against other Sierra Nevada ET observations (section 5), and summarize key findings (section 6).

2. Data

2.1. Distributed Streamflow Observations
Since 2001, a network of sensors have recorded stream stage in the upper Tuolumne River basin in Yosem-
ite National Park (Lundquist et al., 2016). Pressure transducers measure stream stage in tributaries and the
main stem of the Tuolumne River (Figure 1) in the vicinity of Tuolumne Meadows, a large subalpine
meadow surrounded by extensive high-elevation wilderness in the Sierra Nevada. At each site, the stage-
discharge rating curve was established using the depth and discharge observations, surveyed channel
cross-sectional profiles, and a Bayesian parameter estimation technique (Le Coz et al., 2014). This method
provides credible intervals of the rating curve discharge uncertainty as a function of stream stage, calcu-
lated using a 500-sample ensemble of rating curves. See Lundquist et al. (2016) for details on data collection
and processing.

We use times series of streamflow from six sites (Figure 1 and Table 1), with basin areas ranging from 7.6 to
190 km2, and elevations ranging from 2,600 m to just under 4,000 m. We also use two full natural flow time
series, from the Tuolumne River at Hetch Hetchy Reservoir (also described in Lundquist et al. (2016)), and
Rush Creek at Agnew Lake, just outside the Tuolumne basin east of the crest of the Sierra Nevada. Both of
these discharge estimates are derived from measurements of reservoir releases and storage changes made
each day, and were made available by the operators of the reservoirs (Hetch Hetchy Water and Power and
Southern California Edison, respectively). Uncertainties in full natural flow estimates are not known; we
assume that they are of similar magnitude to the distributed streamflow observations (65% for seasonal
streamflow volumes). The Tuolumne River basin above Hetch Hetchy Reservoir is the largest (1,180 km2) of
the basins and includes lower terrain between 2,000 m and the reservoir elevation at about 1,150 m.
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The Lyell and Maclure glaciers, remnants of earlier, more extensive glaciation across the Tuolumne River
basin (Basagic & Fountain, 2011), occupied less than 0.5 km2 of the highest portions of the Lyell Fork below
Maclure Creek basin in 2013 (Stock et al., 2017). Glacier areas thus account for less than 3.2% of the basin of
the Lyell Fork below Maclure Creek gauge, 1% of the Lyell Fork at Twin Bridges basin, and 0.1% of the Tuol-
umne River basin above Hetch Hetchy Reservoir. No ice of similar magnitude has been mapped elsewhere
in the basins considered in this study.

2.2. ASO Snow Observations
Since water year 2013, NASA’s ASO mission has made coupled lidar and spectrometer observations on
regular aircraft flights over the upper Tuolumne River basin in Yosemite National Park. As described in
Painter et al. (2016), for each flight ASO produces gridded estimates of snow depth at 3 m spatial resolu-
tion across the 1,180 km2 watershed that drains to Hetch Hetchy Reservoir (Figure 1), using data process-
ing algorithms that consider the height difference between snow-on and snow-off lidar surface
products, as well as spectrometer identification of snow cover to discriminate against vegetation and
other surfaces producing lidar returns. The snow depth product at 3 m resolution is aggregated to 50 m
resolution, and merged with distributed estimates of snow density derived from in situ observations and
a physically-based snowpack model (iSNOBAL; Marks et al., 1999). This procedure produces 50 m resolu-
tion gridded SWE estimates for each flight. Flights begin near the time of peak SWE during late winter or
early spring, and proceed over the snowpack ablation season, with average intervals between flights of
5–12 days. The timing and number of flights were different in each water year: 6 flights from 3 April to
8 June in 2013, 11 flights from 23 March to 5 June in 2014, and 10 flights from 17 February to 8 June in
2015. Additionally, 6 flights were conducted over the Rush Creek basin in water year 2015, from 26
March to 9 June, and gridded SWE estimates were provided for this basin using the same methods
described above for the Tuolumne basin.

Figure 1. Topographic map of the upper Tuolumne River basin, showing the boundaries of Yosemite National Park in the central Sierra Nevada mountain range of
California. The stream gauges used in this study are shown, along with the basin draining to each gauge. Also shown are regional precipitation, temperature, and
soil moisture observation sites.
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Ground validation of the ASO lidar snow observations showed that uncertainty in snow depth averaged
68 cm at 3 m resolution, with nearly zero mean bias (Painter et al., 2016), and less than 1 cm uncertainty
when aggregated to 50 m resolution. Errors in density from the distributed snow model as compared to
ground validation varied with elevation, and so an elevation-dependent bias correction was applied to the
modeled densities in developing the gridded SWE data sets. ASO SWE data validated against weighing
snow pillows in the Tuolumne watershed suggested unbiased estimates of SWE per grid cell with uncertain-
ties of 5% for moderate to deeper snowpacks and up to 20% for shallow snowpacks (Painter et al., 2016).
Prior work comparing ASO SWE estimates against a regional data set of snow pillows and courses (Henn
et al., 2016) showed that the spatially-averaged ASO SWE amounts tend to be less than that of pillows and
courses at a given elevation interval, a finding that is likely due to the preferential siting of these types of in
situ observations in locations with greater snowpack (Molotch & Bales, 2005; Rice et al., 2011).

2.3. Precipitation and Temperature Observations
In each streamflow basin, we estimate basin-mean precipitation falling over the snow ablation and summer
seasons in each water year. We use a network of 12 precipitation gauges located around the Yosemite
region (Figure 1). The gauges are of different types (weighing and tipping bucket) and part of a variety of
observational networks (National Weather Service Cooperative Observer, Natural Resources Conservation
Service Snow Telemetry, and California Department of Water Resources (CDWR) networks), and their cover-
age is sparse relative to the complex terrain of the upper Tuolumne River basin. All of the gauges are at ele-
vations of 1,000–2,800 m within a region spanning the western foothills of the Sierra Nevada to its eastern
slope near Mono Lake. Each gauge provided daily precipitation accumulations, though about 7 percent of
the daily data were missing and were not filled. The estimation of daily basin-mean precipitation accumula-
tions from this network of gauges uses Parameter-elevation Regression on Independent Slopes Model
(PRISM) 1971–2000 monthly precipitation climatology grids (Daly et al., 1994, 2002, 2008), and is described
in section 3.1. Daily high and low temperature observations from the same set of meteorology sites are also
used to force hydrologic models of the streamflow basins. More detail on the models and the meteorologi-
cal data used to drive them is provided in section 3.3.

2.4. Soil Moisture Observations
Soil moisture probes measured vertical profiles of volumetric water content (VWC) at two sites in or near
the upper Tuolumne River basin, Dana Meadows and Gin Flat (Figure 1). Dana Meadows is located near the
headwaters of the Dana Fork of the Tuolumne River at an elevation of just under 3,000 m, while Gin Flat is
located outside of the basin to the southwest, at an elevation of 2,149 m. At both sites, the soil moisture
probes are located under a grass surface near CDWR snow pillows, with nearby conifer over-story, at depths
of 10, 36, 53, and 79 cm (Dana Meadows) and 10, 36, and 71 cm (Gin Flat) (Flint et al., 2008). Hourly observa-
tions of soil moisture were made at each sensor. We averaged the soil moisture observations to daily values,
and estimated the soil moisture storage in the top 100 cm via an average of each probe’s VWC weighted by
the vertical distance between probes.

3. Methods

3.1. Calculation of Basin-Mean SWE, Precipitation, and Temperature
We consider quantities averaged spatially within each of the eight basins shown in Figure 1. We do this to
apply the water balance approach using control volumes established by the drainage areas of each stream
gauge. We assume that the observed streamflow represents nearly all of the liquid water leaving the basin,
as the region is underlain by a major granite batholith (United States Department of Agriculture Natural
Resources Conservation Service, 2007) that prevents significant percolation of groundwater into deep aqui-
fer systems. For ASO SWE, we average all of the 50 m grid cells centered within the watershed boundaries
shown in Figure 1, including cells with zero SWE, providing estimates of basin-mean SWE.

Precipitation estimates for each basin are calculated in the following manner. First, the 800 m resolution
PRISM monthly precipitation climatology is extracted for the cells with precipitation gauges. Second, the
PRISM climatology cells located entirely or partially within the boundaries of each basin are used to com-
pute basin-mean precipitation for each month, with fractional weights given to cells partially within the
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basin. Third, the ratio of the basin-mean PRISM precipitation to the PRISM precipitation at the gauge grid
cell is calculated for each combination of gauges and basins, for each month:

Ri;j;k5
Bi;k

Gj;k
(1)

where Bi;k is the basin-mean PRISM precipitation for basin i, and Gj;k is the PRISM precipitation for the grid
cell containing gauge j, all for month k.

The PRISM-scaled estimate of basin-mean precipitation (for basin i, gauge j, and month k) is calculated by
multiplying accumulations at the gauge by Ri;j;k . As we use 12 precipitation gauges (Figure 1), this produces
an ensemble of PRISM-scaled estimates of basin-mean precipitation. We take the mean of the 12 estimates to
produce single PRISM-scaled precipitation estimates. Because it is difficult to quantify the representativeness
and reliability of each gauge, we weight each equally. We also calculate the standard deviation of the ensem-
ble of PRISM-scaled estimates, using an assumption that precipitation accumulations are log-normally distrib-
uted (to avoid negative accumulations within the 95% bounds and to reflect their skewed nature).

Daily high and low temperatures at the 12 precipitation sites are also converted to estimates of the basin-
mean daily high and low temperature for each basin. This is done in the same manner described above for
precipitation, except that temperature is adjusted via an additive PRISM temperature offset instead of multi-
plicative scaling. The offset for high and low temperature is calculated based on PRISM monthly climatolo-
gies, and the PRISM-adjusted estimates produced at each observation site are averaged to produce daily
high and low temperature series for each basin.

3.2. Estimation of Water Balance Terms and Residuals
We estimate terms of the water balance for each of the 8 basins in Figure 1 and Table 1, over the snow abla-
tion and summer seasons over 2013–2015. We can write the water balance for each basin over a time
period as:

DSWE1
X

P2
X

Q2
X

ET5DS (2)

where SWE is snow water equivalent, P is precipitation, Q is streamflow, ET is evapotranspiration, and S is basin
water storage (e.g., soil moisture, surface depression, lake and channel storage). ET as defined here includes all
losses to the atmosphere (surface evaporation, plant transpiration and sublimation from snow). We calculate
the water balance from the date of the lidar flight to 30 September of the same year. Because all snow mea-
sured during the lidar flight is assumed to have melted by 30 September, snowmelt for the full period (DSWE)
is simply the amount of SWE measured by ASO. ET in (2) is calculated over the warm season and excludes win-
tertime snow sublimation. Glacier mass balance change is neglected in (2); Table 1 shows that mapped glacier
fractions are small within the basins, with the exception of the Lyell Fork below Maclure Creek. Estimates of
recent glacier mass loss in this basin were not yet available but are being produced (Stock et al., 2017).

Over each period, we compute PRISM-scaled precipitation accumulations (
P

P) and streamflow accumula-
tions (

P
Q). We sum the streamflow time series to produce seasonal streamflow volumes (

P
Q), and we

sum the daily variances of the streamflow ensemble to estimate the uncertainty of
P

Q:

r2P
Q
5
Xn

i51
var Qið Þ (3)

where n is the number of days in the seasonal period, and var Qið Þ is the variance of the ensemble of daily
streamflow volumes, assuming that

P
Q is normally distributed and daily streamflow volume errors are

independent.

The other terms in (2) are the sum of evapotranspiration from the basin over the period (
P

ET ) and the
change in soil moisture from the beginning of the period to the end (DS). As the first two terms in (2) are
water inputs to the basin, and the second two are outputs, the difference must equal changes in storage.
All variables in (2) are basin-mean quantities and have units of mm.

To illustrate the estimation of the terms of the basin water balance under this framework, we provide an
example using snow, streamflow and precipitation data for the basin of the Tuolumne River at Highway 120
in water year 2013 (Figure 2). The ASO SWE map for the 3 April flight is shown in Figure 2a. In Figure 2b,
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time series of SWE, streamflow and precipitation are plotted over the snow ablation and summer period for
this basin. The basin-mean SWE for the 3 April flight (DSWE) is highlighted, and the trace of cumulative
streamflow beginning on that date and ending 30 September (

P
Q) is shown. We also show the upper and

lower 95% intervals on the cumulative streamflow amounts. A similar trace of cumulative precipitation
(
P

P) is also plotted in Figure 2b. The 95% bounds on cumulative precipitation show that the uncertainty
produced by PRISM-scaled precipitation gauge estimates is large compared to the uncertainty in SWE and
streamflow. Qualitatively, Figure 2b shows that over the snow ablation season, streamflow responds to
snowmelt with higher flows during the spring; there is much less streamflow once snowmelt ends as pre-
cipitation is limited during the region’s relatively dry summers.

We rearrange the terms of the water balance equation (3) to find the residual of snowmelt, precipitation
and streamflow:

DSWE1
X

P2
X

Q5
X

ET1DS: (4)

We calculate the residual for the time period from each ASO flight to 30 September. We estimate the uncer-
tainty in

P
ET1DS due to uncertainties in SWE, streamflow and precipitation by summing their variances:

rP ET1DS5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var

X
ET1DS

� �r
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var DSWE1

X
P2
X

Q
� �r

5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

DSWE1r2P
P
1r2P

Q

r
(5)

where rDSWE , rP P and rPQ are the standard deviations of the ASO SWE, basin-mean PRISM-scaled
precipitation accumulations, and streamflow accumulations, respectively. rDSWE is derived from the 610%
uncertainty for SWE at 95% confidence estimated in Painter et al. (2016). As we assume

P
P to be log-

normally distributed, its standard deviation is given by:

rP P5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var

X
P

� �r
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e r2½ �21ð Þ e 2l1r2½ �ð Þ

q
(6)

where l and r are the mean and standard deviation, respectively, of the log-transformed precipi-
tation accumulations. Equation (5) assumes that the errors in ASO SWE, the precipitation

Figure 2. (a) ASO lidar-derived 50 m SWE map for 3 April 2013, over the basin of the Tuolumne River at Highway 120. (b)
Example plot for this ASO flight, showing how the basin’s water balance is quantified. All SWE from the 3 April flight is
assumed to melt by 30 September (DSWE); cumulative streamflow (

P
Q) and precipitation (

P
P) between the flight date

and 30 September are then calculated. Uncertainty bounds at 95% confidence are shown for each variable.
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estimates and the streamflow volumes are independent, as each comes from an independent
data source.

3.3. Hydrologic Model Simulations
In (5), the residual is the sum of two terms that lack observations at the scale of the basins: ET and basin
storage. Therefore, in order to partition the residual term between

P
ET and DS, we use hydrologic models

to simulate basin water storage and evapotranspiration, given the same observations of streamflow, snow
and precipitation used in the water balance calculations. We use lumped, conceptual hydrologic models to
represent the basin, with the goal of qualitatively understanding the timing and magnitude of changes in
soil storage and in evapotranspiration. The modeling setup follows that in Henn et al. (2015), and we refer
readers there for full details.

We use the Framework for Understanding Structural Errors hydrologic model (FUSE; Clark et al., 2008, 2011),
which represents basin storage as upper and lower zones. An elevation-banded, temperature index snow
model based on Snow-17 (Anderson, 2006) is used to simulate SWE; the temperature index parameters
include the rain-snow partition temperature, the base melting temperature, and winter and summer tem-
perature melt factors. Snow accumulation and melt are simulated over 100 m elevation bands, and basin-
mean quantities are the average of each band weighted by its fraction of basin area. We use a configuration
of the model (FUSE-070; Clark et al., 2008) that has relatively few tunable parameters and was previously
found to reproduce daily streamflow and ASO SWE observations in the Tuolumne River basin with Nash-
Sutcliffe coefficients of 0.8–0.9 (Henn et al., 2015, 2016).

Snowmelt and rain are partitioned into surface runoff and infiltration as a function of upper zone soil stor-
age similar to that of the VIC model (Liang et al., 1994). Percolation from the upper to lower zone is a func-
tion of upper zone storage above field capacity, and baseflow from the lower zone is a linear function of
storage, similar to that of the PRMS model (Leavesley et al., 1983). Evapotranspiration is allowed only from
the upper zone and is a function of potential evapotranspiration (PET) scaled by the saturation of the upper
zone. Streamflow is routed using a single delay parameter. For each basin the FUSE model is driven by daily
time series of temperature, precipitation and PET. The precipitation and temperature data have been
described in section 2.3; the PET forcing series is estimated from the daily minimum and maximum temper-
ature series using a combination of the Bristow-Campbell approximation (Bristow & Campbell, 1984) to esti-
mate available shortwave radiation and the Makkink equation (e.g., Cristea et al., 2013) to estimate PET
from shortwave and temperature. Calibration coefficients for both equations were estimated from meteoro-
logical data at Dana Meadows, as described in Henn et al. (2015).

We calibrate the FUSE model for each basin using a Bayesian parameter estimation framework (BATEA;
Kavetski et al., 2006a, 2006b). BATEA estimates the probability distributions of the model parameters given
observations of streamflow and SWE, with the assumption that both forcing (i.e., precipitation) and
response (streamflow and SWE) data may have biases. Specifically, BATEA accounts for precipitation forcing
biases with a multiplicative error parameter, which is constant with each water year but is independent for
each year. BATEA uses prior distributions on the parameters; in the case of the multipliers, these are normal
distributions with mean of 1 and standard deviations derived from the PRISM-scaled precipitation gauge
ensemble. The goal of the multiplicative error parameters is to allow for adjustment in the highly uncertain
basin-mean winter precipitation, such that model simulated SWE can match ASO observations, allowing for
more realistic simulation of water balance terms (ET and storage) during the melt season.

The upper and lower soil storage capacities are each fixed at 200 mm for all basins, which approximates the
shallow, relatively porous soils of the upper Tuolumne basin (United States Department of Agriculture Natu-
ral Resources Conservation Service, 2007). For each basin, the model is calibrated to maximize the parame-
ter posteriors, which combine goodness of fit of the model to streamflow and SWE and the priors of the
parameters. Observational uncertainties in SWE and streamflow are set using subjective weights shown to
produce model matches to both in Henn et al. (2016).

We calibrate the FUSE models for each of the seven watersheds in the Tuolumne River basin, for water years
2014 and 2015; Rush Creek is not simulated as only 1 year of ASO flights is available, and water year 2013 is
not included in the modeling due to uncertainties in the ASO SWE products in that year (see section 5.1).
The models are calibrated to the period from the first ASO flight to 30 September of each year; daily
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streamflow observations and all ASO flights during that period are included in the calibration. Spin-up is
accomplished using water years 2012 and 2013. Due to the climate of the Sierra Nevada (cold, wet winters
and warm, dry summers), we hypothesize that there is only minimal carry-over of soil moisture and SWE
from year to year, making each year’s simulation relatively insensitive to its initial conditions on 1 October.

In summary, the goal of modeling in this study is to differentiate between soil storage changes and ET at
different times over the snow ablation season. By forcing the models to match the observed terms of the
water balance (SWE, streamflow and precipitation), they should estimate the relative magnitudes of the
unobserved terms (

P
ET and DS).

4. Results

4.1. Comparison of ASO SWE and Distributed Streamflow Observations
Figures 3–5 show ASO SWE plotted against distributed streamflow across the basins over 2013, 2014, and
2015, respectively. In each subpanel, an individual basin is shown, with each point representing a time
period beginning with an individual lidar flight. Cumulative streamflow is on the y-axis, and ASO SWE (open
circles), or ASO SWE plus cumulative precipitation (filled circles), is on the x-axis. Time advances toward the
origin from the upper right, as the SWE and the cumulative precipitation and streamflow between the lidar
flight date and 30 September all decline over the ablation season. The 1:1 line indicates where cumulative
streamflow is equal to SWE plus cumulative precipitation, and the distances from the 1:1 line to the SWE
plus precipitation data points indicate the residual term from (2),

P
ET1DS.

The data for water year 2013 (Figure 3) show that the water inputs and outputs are strongly correlated. The
R2 values of linear relationships fitted between ASO SWE plus precipitation and streamflow range from 0.87
to nearly 1 across the seven basins with data in 2013. Most of the data points fall near the 1:1 line, with
DSWE1

P
P >

P
Q for nearly all basins and ASO flights. The progression of points toward the origin for

each basin in Figure 3 suggests that the basins store only small quantities of water outside of the snow-
pack. As periods beginning later in the melt season are considered, the SWE, precipitation, and stream-
flow volumes all decline toward zero. However, Figure 3 also shows that precipitation falling during the
snow ablation and summer seasons has a nontrivial role in the basins’ water balance. The open circles in
each panel show that SWE, while much greater than spring and summer precipitation in 2013, is at times
less than observed streamflow. Thus, consideration of both ASO SWE and precipitation falling after the
flight date is necessary to estimate total water inputs to each basin.

One basin shows markedly different results from the others in terms of the sign of
P

ET1DS in 2013, the
Lyell Fork below Maclure Creek. Most or all of the ASO flight dates produce negative

P
ET1DS, i.e., stream-

flow volumes are greater than the sum of SWE and cumulative precipitation. In the Lyell Fork below Maclure
Creek, receding glaciers are likely providing this ‘‘extra’’ water input to the basin; we do not quantify melting
ice in this study, but we discuss its role in the water balance in section 5. We also plot the error bounds of
the sum of ASO SWE and cumulative precipitation (horizontal), as well as of cumulative streamflow (vertical)
in Figures 3–5. The error bars indicate that there is substantial uncertainty in the magnitude of the residualP

ET1DS (even in its sign in some cases). We discuss uncertainties in the different data types, and the
resulting effects on estimating ET, in section 5.

We next consider the same water balance comparison in the snow ablation season of 2014 (Figure 4). As
seen in 2013, there are high correlations across all of the basins between SWE plus cumulative precipitation
and cumulative streamflow between the flight date and 30 September (R2 from 0.87 to 0.96). The contribu-
tion of precipitation relative to SWE in the total water input of each basin is greater in 2014 than 2013. Peak
SWE amounts are less in 2014 than in 2013 across most basins, and cumulative spring and summer precipi-
tation is greater, consistent with decreased wintertime precipitation, increased temperatures, and increased
spring precipitation in 2014. A consistent shift is also apparent in the data points, with the residual

P
ET1DS

greater in water balance estimates based on the earlier ASO flights (23 March, 7 April and 13 April, in particu-
lar). Data points from later flight dates approach, but do not reach, the 1:1 line indicating

P
ET1DS50.

In water year 2015, a substantially different hydrologic regime is seen in the relative magnitudes of water
balance terms (Figure 5). The winter was the warmest on record in the Sierra Nevada, with mean January,
February and March temperatures 3–138C warmer than climatology (PRISM Climate Group, 2015).
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Combined with below-average precipitation, the lack of normal Sierra Nevada snowpack in 2015 was esti-
mated to have at least a 500 year return period (Belmecheri et al., 2016). The lack of snow is evident across
all of the study basins in Figure 5; however, in terms of streamflow, it is partially offset by spring precipita-
tion falling after the initiation of ASO flights on 17 February. Much of this precipitation fell as rain, and
uncertainties in estimating precipitation across high-elevation basins are seen in the larger horizontal uncer-
tainty bounds in 2015.

Nonetheless, 2015 shows many similarities with the prior 2 years in terms of the relationships between
water inputs and outputs. The correlations between SWE plus precipitation and streamflow remain high
(R2> 0.87 except for the Lyell Fork below Maclure Creek). The sum of SWE and precipitation is greater than
streamflow for all basins and flight dates (again excluding the Lyell below Maclure basin). The residual

P
ET

1DS is largest for time periods beginning with the earlier ASO flights, and declines as the beginning of time
period extends through the snow ablation season. The results are qualitatively similar across all basins,
including the Rush Creek basin located just east of the Tuolumne in the eastern Sierra Nevada.

4.2. Time Series of DSWE1P2Q and Soil Moisture
In Figures 3–5, we plot SWE and cumulative precipitation against cumulative streamflow from the flight
date to 30 September, but we can also consider changes in these variables between successive ASO flight
dates. Figure 6 shows these progressions for a subset of four basins (Lyell Fork at Twin Bridges, Dana Fork at
Bug Camp, Tuolumne River at Highway 120, and Tuolumne River at Hetch Hetchy). For each basin, we calcu-
late the quantity DSWE1

P
P2
P

Q from the date of one ASO flight to the next, taking into account the
change in SWE between flights (defined to be positive for declines in SWE, i.e., snowmelt, and negative for
increases in SWE), as well as the accumulated precipitation (whether snow or rain) and accumulated stream-
flow over the time between flights. (Note that precipitation falling as snow should be captured by increases

Figure 3. 2013 comparison of water inputs (DSWE and
P

P) and streamflow (
P

Q), computed from each ASO flight date to 30 September, for each of the seven
basins with available streamflow and SWE data. The color of the point indicates the ASO flight date used to begin the estimation period; open circles show SWE
only, and filled circles show SWE plus precipitation estimated from PRISM-scaled gauge observations. The 1:1 line and a best-fit line are shown for each basin,
along with 95% confidence intervals derived from SWE and precipitation uncertainty (horizontal) and streamflow uncertainty (vertical, where available).
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in ASO SWE, defined here as negative, whereas precipitation falling as rain may produce a streamflow
response, so in calculating changes between ASO flights of the residual DSWE1

P
P2
P

Q, it is not neces-
sary to discriminate between rain and snow). For the last ASO flight of each water year, we calculate these
quantities from the flight date to 30 September. We divide this quantity by the number of days between
flights to yield a daily rate of water that is made available to the basins but does not exit via streamflow, i.e.,
a rate of water flux to the residual term,

P
ET1DS.

Figures 6a–6d show that the time series of this flux are quite consistent across the different basins in each
of the 3 years. In 2013, each basin had positive rates of change of the residual between the first several ASO
flights (3 April, 29 April, and 3 May), meaning that more water was provided to the basins by snowmelt and
precipitation than left them by streamflow. This was followed by smaller positive and negative values
between the next three flights. From the last flight on 5 June to 30 September shows rates of DSWE1

P
P

2
P

Q of 0.23–0.44 mm d21 across the four basins over this summertime period. In 2014, the periods
between ASO flights during snowmelt show larger and more variable rates of the residual, but similar agree-
ment on sign and timing between basins. The four basins show positive values between the 23 Mar, 7 April,
and 13 April flights, followed by small or negative values between the next three flights, and then positive
values of 7–10 mm d21 between 28 April and 2 May. The 2014 summertime (5 June to 30 September) val-
ues range from 0.33–0.81 mm d1. Finally, in 2015, the basins show a similar pattern of alternating between
low negative rates of DSWE1

P
P2
P

Q and brief periods of higher values (reaching 11 mm d21) likely
associated with rapid snowmelt and infiltration in spring. All basins show small (0.35–0.76 mm d21) residual
values averaged between the last ASO flight (9 June) and 30 September. The agreement between basins in
the timing of the residual rates (estimated from data that is largely independent between basins) suggests
that the water balance approach is capturing physical signals of the region’s hydrology, not simply noise in
the observational data.

To estimate how the timing of soil moisture changes may influence the residual term, we compare the time
series of the residual with the in situ measurements of soil moisture made at Dana Meadows and Gin Flat

Figure 4. Same as Figure 3, but for 2014.
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over the same time periods (Figures 6e and 6f). We plot both the daily soil column moisture storage (lines,
Figures 6e and 6f), as well as the change in soil moisture storage between flights divided by the number of
days between them (bars, Figures 6e and 6f), an equivalent to the average residual changes plotted in Fig-
ures 6a–6d.

First, we note the differences in the soil moisture observational time series between Dana Meadows,
located at 2,988 m elevation in the sub-alpine zone, and Gin Flat, located at 2,149 m elevation in conifer-
ous forest. The seasonal cycle of soil moisture at Dana Meadows shows low values during the fall and
winter, followed by a rapid increase and peak in late spring associated with snowmelt, and a fairly rapid
decline over the summer. At Gin Flat, there is higher wintertime soil moisture, presumably due a mix of
rain and snow during the winter at the lower site. Next, during the early ablation season of each year
(March and April), the positive changes in DSWE1

P
P2
P

Q across the basins approximately corre-
spond to periods of increases in soil moisture at the Dana Meadows site. This suggests that when snow-
melt and precipitation exceed streamflow during spring, the difference is being stored in the soil
column, i.e., that the residual

P
ET1DS is dominated by the latter term. However, as the year progresses,

the relationship between the water balance residual and changes in soil moisture shifts. Changes in soil
moisture over the summer are negative, while

P
ET1DS is positive across all basins. In other words, DS

< 0 and
P

ET1DS > 0, and so
P

ET exceeds the residual over late summer by drawing down soil
moisture.

It should be noted that the soil moisture sites are not representative of the basin storage as a whole. For
example, the magnitude of the in situ soil moisture changes is larger than the changes in the basins’ resid-
ual terms (note different axis scale between Figures 6a–6d and Figures 6e and 6f), which is likely due to the
siting of the soil moisture observations in meadows with deeper soils than the typical steep, rocky terrain.
However, the soil moisture observations are likely indicative of the relative seasonal patterns of basin water
storage, which is largely driven by snowmelt and winter rains. In the section 4.4, we present modeling
results of basin-mean storage and ET.

Figure 5. Same as for Figures 3 and 4, but for 2015. Rush Creek is included as ASO flights are available for this basin in 2015, although for a different set of dates
than in the Tuolumne basins.
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4.3. Observed and Modeled Estimated ET Across Years and Basins
We present the terms of the water balance for each basin and year in Table 2, and plot the residual term for
each basin and year in Figure 7, calculated from the first ASO flight date of each year to 30 September. In
the observations, the residual values range from below zero (in the Lyell Fork below Maclure Creek, likely
due to glacier melt; see section 5), to 227 mm in the Dana Fork basin and 231 mm in the Rush Creek basin
in 2015. The differences in the residual term are fairly consistent across the basins in for each year, when
the Lyell Fork below Maclure Creek basin is excluded. In 2013, the residuals range from 125 to 213 mm, in
2014, they range from 118 to 203 mm, and in 2015 they range from 127 to 231 mm. Note the scale of the
95% confidence uncertainty bounds for the residual terms (Figure 7 and Table 2), estimated from uncertain-
ties in SWE, cumulative streamflow and cumulative precipitation. The uncertainties have the greatest mag-
nitudes in 2014, largely due to greater spring and summer precipitation. Most of the combined uncertainty
is due to the estimation of basin-mean precipitation from gauge observations and PRISM. In 2014, the
bounds suggest that the true values may fall from near zero to nearly double the estimated values, whereas
in 2013 and 2015, the bounds are relatively smaller (about 675% of the estimated values). We discuss the
robustness of the water balance terms, and the implications for the spatial and annual variability of basin-
mean ET, in section 5.

Figure 6. (a–d) Times series of the residual term DSWE1
P

P2
P

Q between ASO flight dates, divided by the number of
days between flights to yield a rate of change of the residual, for four basins over 2013–2015. (e and f) Time series of
column-integrated soil moisture storage (red lines) at the Dana Meadows and Gin Flat sites, respectively; the bar plots
show the rate of changes in soil moisture divided by the number of days between ASO flights.
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4.4. Hydrologic Model Results
In sections 4.1–4.3, we infer the basins’ water balance residual,

P
ET1DS, by comparing ASO SWE, distrib-

uted streamflow, and precipitation observations. However, we lack methods of observing basin-mean soil
moisture and ET, and so we also use the FUSE hydrologic model simulations to distinguish between the
two over the course of the snow ablation and summer seasons. The model simulations across the basins
are qualitatively similar, and so we present detailed model output for one basin (Lyell Fork at Twin Bridges),
while presenting a summary of the modeled and observed water balance terms.

Figure 8 shows model output for the Lyell Fork basin. SWE observations over the ablation season, and the asso-
ciated streamflow peak, are simulated well by the calibrated model (Figure 8a). The Nash-Sutcliffe of the
streamflow simulation over 2014 and 2015 is 0.91, and the SWE simulation shows little bias, though the rate of
snowmelt is somewhat overestimated each year in the model. The match to observed streamflow and SWE
suggests that the FUSE model reproduces the magnitudes of the water balance over the snow ablation season.
Thus, we consider the simulation of basin water storage and ET (Figure 8b). The simulated storage shows a
strong seasonal peak in May of 2014; storage peaks in early June 2015 but at a lower value. It ranges from less
than 10 mm in the winter to 76 mm around peak snowmelt in 2014. The seasonal cycle of modeled basin stor-
age matches the timing of the soil moisture observations at Dana Meadows. Note, however, that the observed
soil moisture is plotted at 1/5 of its magnitude for better visual comparison to the observations; as was previ-
ously noted, the soil moisture sites are likely not representative of the basin-mean storage magnitude.

The model estimates of storage and ET allow for evaluation of the relative magnitudes of these terms in the
basin’s water balance estimates. For the Lyell Fork at Twin Bridges basin, modeled changes in storage
between the first ASO flight and 30 September are 2 and 251 mm over 2014 and 2015. In contrast, mod-
eled

P
ET is 211 and 205 mm for those years. Thus, the residual term

P
ET1DS is likely dominated by

P
E

T when integrated from peak SWE to 30 September, as net differences in soil moisture are small in compari-
son, despite larger changes within the period. The negative values of DS suggest that

P
ET may be slightly

larger than
P

ET1DS, as the net decline in storage provides additional water for ET. The modeled ET time
series in Figure 8b shows peaks around 1 mm d21 approximately corresponding to peak storage in spring,
declining with soil moisture by an order of magnitude by late summer.

Table 2
Summary of Observed and Modeled Water Balance Terms for Each Basin and Year

Basin Year

Observations Residual Model

SWE Precipitation Streamflow Mean
95%

CI-low
95%

CI-high
Streamflow

bias (%)
Storage
change ET

Lyell Fk. Tuolumne R. below Maclure Cr. 2013 701 112 763 49 255 153 -
2014 421 260 714 233 2196 130 214 28 106
2015 152 299 531 280 2213 52 6 219 104

Lyell Fk. Tuolumne R. at Twin Bridges 2013 434 100 389 145 67 222 -
2014 252 230 365 118 231 266 22 2 115
2015 100 269 242 127 23 257 10 216 106

Dana Fk. Tuolumne R. at Bug Camp 2013 382 105 274 213 131 294 -
2014 209 238 245 203 27 378 24 10 127
2015 84 277 134 227 68 386 18 214 128

Tuolumne R. at Highway 120 2013 412 101 334 180 101 259 -
2014 232 232 299 165 7 324 1 3 131
2015 93 270 182 181 41 321 20 226 132

Budd Cr. at Tuolumne Meadows 2013 646 103 555 194 99 289 -
2014 270 231 376 124 235 284 18 2 210
2015 111 277 167 221 80 362 52 251 205

Delaney Cr. at Tuolumne Meadows 2013 398 107 379 125 41 210 -
2014 251 246 311 186 5 367 15 7 121
2015 95 288 188 196 31 360 9 228 117

Tuolumne R. at Hetch Hetchy Reservoir 2013 398 114 359 153 69 238 -
2014 212 261 297 176 16 335 5 220 179
2015 86 308 241 153 33 273 7 241 189

Rush Cr. at Agnew Lake 2015 219 264 252 231 83 379 -
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We present the modeled basin storage and cumulative ET over seven basins in Table 2 (modeled ET also
shown as squares in Figure 7). Net changes in modeled soil moisture average 212 mm across the basins
over 2014 and 2015, and range from 251 mm to 128 mm. Modeled ET, in comparison, averages 141 mm.
Thus, the modeling also supports the hypothesis that the majority of the water balance residual

P
ET1DS

from peak SWE to 30 September comprises
P

ET . The average modeled residual
P

ET1DS is 129 mm over
the simulated basins in 2014 and 2015; compared to the averaged observed residual of 140 mm over these
basins and years, it suggests that the models generally capture the magnitudes of the water balance terms.
The streamflow volume biases in the models across basins and years (bias magnitudes average 613%,
Table 2) also suggest that the model capture the magnitudes of the water balance terms.

Despite the fairly consistent storage and ET amounts, the calibrated model parameters do show variability
between basins. In particular, the precipitation multiplier ranges from 0.59 to 1.23; differences between
basins in this parameter are fairly consistent between 2014 and 2015. For example, the Lyell Fork at Twin
Bridges basin had multipliers of 0.82 and 0.64 in 2014 and 2015, while Budd Creek had multipliers of 1.23
and 0.92. This suggests that PRISM-based precipitation estimate biases may differ from basin to basin but
be consistent from year to year. Other hydrologic model parameters show variability between basins,
including the percolation rates between the upper and lower soil zones and the snowmelt factors. We dis-
cuss the variability in model parameters between basins further in section 5.3.

5. Discussion

5.1. Data Uncertainty and Estimates of ET
The uncertainties in the different data sources used to estimate the water balance terms impact the robust-
ness of the estimates of ET and storage. As shown by the error bars in Figures 225 and 7, we estimate
uncertainty in ASO SWE, basin-mean precipitation accumulations, and cumulative streamflow volumes. For
precipitation, the uncertainties are on the order of 675% of the cumulative amounts over the ablation and

Figure 7. 2013–2015 basin estimates of the residual term (DSWE1
P

P2
P

Q) calculated over the period from the first
ASO flight date of each year to 30 September. Error bars indicate uncertainties in the residual. Modeled ET amounts are
shown with squares for 2014 and 2015. Error bars for Budd Creek, the Tuolumne at Hetch Hetchy and Rush Creek are cal-
culating using assumed 65% uncertainty in streamflow volumes, as no estimates of streamflow volume uncertainty are
available for those basins. See Table 2 for numerical values of the observed and modeled water balance terms.
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summer seasons, a result of the disagreements between the different PRISM-scaled gauge estimates of
basin-mean precipitation in a region of topographic complexity and orographic effects. In particular, sum-
mer convective precipitation over high terrain is poorly captured by the sparse observational network (Fig-
ure 1; also see Lundquist et al. (2009)), which produces divergent estimates of basin-mean precipitation. For
streamflow, we use the gauges’ rating curve uncertainty estimates to generate bounds on the cumulative
volumes, which produces uncertainties of 63 to 6% at 95% confidence. The uncertainties in the ASO SWE
estimates are spatially variable, but here are assumed to be 610% based on ground validation from
meadow areas presented in Painter et al. (2016), where snow depth errors were small and errors in the
modeled snow density estimates were found to be 8–13% at the 50 m grid cell. The uncertainty for the
residual is the sum of the variances of the other terms of the water balance in equation (5), and the results
of these methodological choices are the bounds shown in Figure 7. It is important to rigorously quantify the
uncertainties in the terms of the basins’ water balance in order to apply the residual approach used here, in
particular the uncertainty in basin-mean precipitation.

To some extent, we can attribute the relative contributions of the uncertainties from the streamflow, snow,
and precipitation observations. For example, in 2013 relatively little precipitation was observed during the
spring and summer months, and so nearly all of the water input to the basins over this period came from
snowmelt. Thus, the uncertainty contribution from precipitation is smaller compared to 2014 and 2015
(though still significant), and this is reflected in the smaller uncertainty magnitudes in estimated ET. Addi-
tionally, there are uncertainties in lidar estimates of snow depth and modeled snow density under the forest
canopy. ASO used a lower quality lidar instrument in 2013 than the Riegl Q1560 dual laser scanning system

Figure 8. Observations and model simulations for the Lyell Fork at Twin Bridges over 2014 and 2015. (a) SWE, precipitation and streamflow data: ASO and FUSE
modeled SWE are shown in light blue; modeled and observed streamflow are shown in thin and heavy dark blue lines; precipitation shown with green bars. (b)
Basin water storage and ET simulation: FUSE model basin-mean storage shown against the Dana Meadows and Gin Flat soil moisture storage observations; note
that the soil moisture observations are shown at 1/5 of their values for visibility. FUSE simulated basin-mean ET is shown in red bars.
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used in subsequent years, and methods for snow/no-snow discrimination under the forest canopy, as well
as in in the snow density modeling methodology, have been evolving based on experience. These uncer-
tainties may impact the ET estimates presented here. For example, the Delaney Creek basin, which had the
lowest ET estimate in 2013 outside of the glacier-affected Lyell Fork below Maclure Creek basin, has the
highest fraction of forest cover among all of the study basins (Table 1). Explaining inter-annual variability of
the ET estimates may be aided by observations from more basins and from additional years with greater
variability in precipitation, snow and streamflow magnitudes.

5.2. Glacier Melt Effects on Lyell Basin Water Balance
Extensive mass loss from the Lyell and Maclure glaciers resulted from the California drought that began in
2012. During the low-snow winters of water years 2014 and 2015, multiple meters of ice downwasting were
reported each year (Stock et al., 2017). The additional streamflow is apparent in the points above the 1:1
line in the Lyell Fork below Maclure Creek each year (Figures 3–5), i.e., where DSWE1

P
P <

P
Q. The

effect of the additional melt grows smaller as the basins’ areas increase moving downstream, but may
slightly impact the results in other basins: for example, if 1 m of ice melted over 0.5 km2 during the warm
season, it would result in up to 32 mm of streamflow in the Lyell Fork below Maclure Creek basin, 5 mm in
the Lyell Fork at Twin Bridges basin, and <1 mm for the basin of the Tuolumne River at Hetch Hetchy.

The Lyell Fork below Maclure Creek basins is also subject to greater uncertainty in precipitation than the
other basins. Due to its high elevation, the PRISM-derived estimates diverge more in this basin (Figures
3–5), and so it is possible that the low residual values are partly due to precipitation uncertainty, if precipita-
tion amounts are strongly underestimated at high elevations. An additional, smaller uncertainty occurs
when changes in the glacier ice surface elevation produce biased lidar snow-off surface elevations, and
thus errors in ASO snow depths. We attribute the inconsistent results in the Lyell Fork below Maclure Creek
basin primarily to glacier melt effects, and argue that these effects are smaller in the other basins.

5.3. ET Climatic and Spatial Distributions
Assuming that the basins’ water balance residual terms in Figure 7 approximate basin-mean ET over the
spring and summer seasons, this study can assess the variability of ET between different basins and years.
First, we note that the magnitude of variations in the residual between basins each year are relatively small
and inconsistent from year to year, though some basin differences do appear robust, such as the Dana Fork
basin having greater residual values than the Lyell and combined Tuolumne at Highway 120 basins. This could
be due to the Dana Fork having a greater fraction of forest cover (Table 1; see previous discussion of the lidar
uncertainties under the canopy), to the Dana Fork having greater area underlain by metamorphic rock rather
than granodiorite that results in deeper and more developed soils, or to the Lyell Fork having greater glacial
melt contributions. As noted above regarding data uncertainty, we do not find a positive relationship between
the degree of forest cover in each basin and its ET estimate, as more heavily forested basins (e.g., Delaney
Creek, Table 1) do not correspond to higher ET estimates (Figure 7).

Additionally, the residuals are not obviously correlated with elevation, though most of the basins here span
relatively similar elevations (Table 1). The larger basin of the Tuolumne River at Hetch Hetchy, which unlike
the other basins contains terrain below 2,600 m, does not have significantly different ET magnitudes
(Figure 7 and Table 2), and so we do not find evidence of a strong ET-elevation gradient. However, the
mean elevation of the Hetch Hetchy basin is only slightly lower than the other basins, which makes it diffi-
cult to assess any relationship; the Hetch Hetchy basin also includes significant exposed rock (Table 1). The
differences between 2013, 2014, and 2015 are relatively small as well, though the residual values are slightly
greater in 2015, a year with lower precipitation than 2013 and 2014 but warmer temperatures in the central
Sierra Nevada. Thus, the increase in estimated ET from 2014 to 2015 could support the hypothesis that
higher temperatures drive greater ET in high-elevation Sierra Nevada ecosystems due to an increase in the
growing season length (Goulden & Bales, 2014). Overall, however, an extension of this approach to a wider
range of basins and years would better estimate inter-annual and elevation-driven differences in ET.

The FUSE model simulations presented in section 4.4 suggest that uncertainty remains in the water balance
terms and their differences across basins. While the observed and simulated ET is fairly consistent across
years and basins, model parameters such as the precipitation multiplier and percolation rates vary between
basins. The differences in the multiplier between basins may be attributed to discrepancies between the
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basin-mean precipitation inputs to the model derived from gauges and PRISM, and the lidar-derived ASO
SWE observations; in these case the multiplier allows the model to match SWE observations given uncertain
precipitation. Given these uncertainties, it is difficult to interpret hydrologic model parameters in terms of
physical differences between basins. Instead, we use the model findings to support our assumptions about
the regional timing and magnitude of basin storage and ET.

5.4. Comparisons to Other ET Estimates
Finally, we place our findings in the context of other observations of ET in the Sierra Nevada. Goulden et al.
(2012) found ET of 350–550 mm yr21 at a flux tower site at 2,700 m elevation over 2 water years with
above-average precipitation, and estimated mean ET of 400–450 mm yr21 over the Kings River basin using
a NDVI-based extrapolation of flux tower observations. Kurpius et al. (2003) found ET of 600–800 mm over a
year at a forest canopy flux tower and sap flow site (Blodgett Forest, 1,300 m elevation). Using potential ET
and water availability accounting to estimate actual ET, Kattelmann and Elder (1991) found ET of 400 mm
yr21 over an above-treeline alpine basin, and found that the basin’s water balance closed when also consid-
ering streamflow, snow and precipitation observations. Marks and Dozier (1992) used a Monin-Obukhov
approach to estimate snowpack sublimation losses from two snow sites at 500 mm. Bair et al. (2015) used a
snow pillow and drainage lysimeters to estimate that sublimation averaged 477 mm yr21 over 2013–2015
at Mammoth Mountain, approximately 40 km southeast of Tuolumne Meadows. That study is perhaps most
comparable to this one, in location and methodology.

Here we estimate ET from peak SWE through September, and so those wintertime sublimation amounts
would not be included in our estimates. However, our results may show lower amounts of ET, even account-
ing for the partial-year period of our study. This may be due to a combination of factors, including the spa-
tial variability of ET and sublimation. The flux tower sites are located above forest canopies, whereas forests
cover less than half of the basins here; (Table 1). The drought conditions over 2013–2015 that may have
reduced ET as evidenced by large-scale drought-induced tree mortality in the Sierra Nevada over this time
(Bales, 2015). The partial-year analysis conducted here that does not include wintertime sublimation losses
from the snowpack, such as those observed by Bair et al. (2015). Further work is needed to constrain ET
magnitudes and variability over the alpine basins of the Sierra Nevada, given their crucial water supply role
and susceptibility to changes in climate. This includes comparisons of ET estimates derived from basin water
balance, flux towers and other point measurements, and remotely-sensed energy balance approaches.

6. Conclusions

In this study, we compare water balance components based on streamflow observations and ASO SWE in
the upper Tuolumne River basin of Yosemite National Park, during drought conditions for water years
2013–2015. We estimate the difference between cumulative streamflow and the sum of ASO SWE and
cumulative precipitation from the date of the first ASO flight near peak SWE to 30 September. The sum of
water inputs (snowmelt and precipitation) exceeds outputs (streamflow) by amounts that range from 118
to 231 mm. By considering soil moisture observations and a hydrologic model that simulates basin water
storage over the snowmelt and summer seasons, we show that this residual term in the water balance
largely represents cumulative ET from the basin, as changes in basin water storage are relatively small from
the time of peak SWE to late summer.

We find that high-elevation ET amounts are fairly robust from basin to basin, and that the amounts are
greater in 2015 (average 191 mm, range 48–334 mm) relative to 2013 (average 168 mm, range 85–252 mm)
and 2014 (average 162 mm, range 0–326 mm). The reasons for a shift between years is not clear, as it does
not correspond to the assumption that ET is water-limited during drought years, and could be due to obser-
vational uncertainties in the data. Uncertainties in the estimated ET amounts, primarily due to uncertainty
in precipitation, are significant, with 95% bounds on the ET estimates ranging from near zero to nearly dou-
ble the values presented here. The presence of small, receding glaciers in one basin is seen in the basin
water balance in the form of additional streamflow.

We also find that ET amounts are less than those found from point observations of ET over forested areas of
the Sierra Nevada, a finding that may be due to a combination of the spatially variable nature of ET and
drought effects over 2013–2015. We also find that basin-mean ET from peak SWE to the end of the water
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year is less (with at least 95% confidence across all of the basins studied) than the 400–500 mm per full year
found in high-elevation Sierra Nevada basins in prior studies.

Finally, the findings above show that distributed streamflow and ASO snow observations can be used to
advance understanding of hydrologic processes across a range of scales in complex terrain. In this study,
we produce physically-based estimates of the temporal evolution of basin water storage and basin-mean
ET in alpine watersheds, quantities that are otherwise difficult to observe and are crucial for improving
hydrologic process understanding.
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