
Data Declarations to Class Definitions

Daniel Dı́az

October 2010

First version

Contents

1 Summary 2

2 Construction 2

2.1 Construction notes . 3

3 Examples 3

3.1 Maybe example . 3

3.2 Record example . 4

3.3 Recursive example . 5

3.4 Mixed example . 6

4 Final notes from the author 7

1

2 CONSTRUCTION

1 Summary

These notes explain how a data declaration can be transformed to a class

definition, preserving the meaning of the original type. The method here

explained is implemented in the DTC (Data To Class) package, which you can

found in Hackage.

2 Construction

Given a data declaration:

data T v1 ... vn = C1 a11 ... a1n1
| ... | Cm am1 ... amnm

we can construct the following class definition:

class T t where

c1 :: a11 -> ... -> a1n1
-> t v1 ... vn

...

cm :: am1 -> ... -> amnm
-> t v1 ... vn

d1 :: t v1 ... vn -> (a11, ... ,a1n1
)

...

dm :: t v1 ... vn -> (am1 , ... ,amnm
)

If T is a recursive type, one or more a
j
i are equal to T. When this happens,

each one is replaced by t.

2

2.1 Construction notes 3 EXAMPLES

2.1 Construction notes

Since we have m data constructors in the data declaration of T, we have m

constructor functions in the T class definition, each one represented by ci,

with i = 1, . . . ,m. Deconstructors (represented by di) are only built if the

correspondent data constructor have one or more arguments.

3 Examples

Using the DTC package we can see some examples.

3.1 Maybe example

Given the original source code:

module MaybeExample where

data Maybe a = Just a | Nothing

We obtain the following module:

module MaybeExample where

class Maybe m where

just :: a -> m a

fromJust :: m a -> a

nothing :: m a

3

3.2 Record example 3 EXAMPLES

3.2 Record example

Given the original source code:

module RecordExample where

data Point = Point { pointX :: Int, pointY :: Int }

We obtain the following module:

module RecordExample where

class Point p where

point :: Int -> Int -> p

pointX :: p -> Int

pointY :: p -> Int

4

3.3 Recursive example 3 EXAMPLES

3.3 Recursive example

Given the original source code:

module RecursiveExample where

data Tree a b = Leaf b | Node (Tree a b) a (Tree a b)

We obtain the following module:

module RecursiveExample where

class Tree t where

leaf :: b -> t a b

fromLeaf :: t a b -> b

node :: t a b -> a -> t a b -> t a b

fromNode :: t a b -> (t a b, a, t a b)

5

3.4 Mixed example 3 EXAMPLES

3.4 Mixed example

Given the original source code:

module MixedExample where

data Mixed a b c = Null | Record { comp1 :: a , comp2 :: Int }

| One b | Rec c (Mixed a b c) (Mixed a c b)

We obtain the following module:

module MixedExample where

class Mixed t where

null :: t a b c

record :: a -> Int -> t a b c

comp1 :: t a b c -> a

comp2 :: t a b c -> Int

one :: b -> t a b c

fromOne :: t a b c -> b

rec :: c -> t a b c -> t a c b -> t a b c

fromRec :: t a b c -> (c, t a b c, t a c b)

6

4 FINAL NOTES FROM THE AUTHOR

4 Final notes from the author

The purpose of these notes1 is to show a way to define a class from a data

declaration, and to be a documentation complement to the DTC package.

The interest of DTC is more theoretical than practical. But, if you have a

practical usage in mind, I will be interested in know it. As usually, I’m open

to suggestions of any type.

Greetings,

Daniel Dı́az

1These notes was created with HATEX 2.1.2.

7

