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 Recent advances in the field of metagenomics have allowed for a boom of research in the 

field of microbial community ecology. Using DNA extraction techniques, Illumina sequencing, 

and advanced statistical software, scientists are now able to examine the community composition 

of microbiomes existing throughout the world. My research examines the microbial communities 

of Puget prairie plants, which have remained largely unexplored until now. I performed a field 

study to identify the bacterial communities that comprise the stem microbiomes of 16 native 

prairie plant species. I discovered that the bacterial communities within Puget prairie plants often 

differ significantly between plant species, but plant species belonging to the same family often 

have similar bacterial communities. Additionally, I discovered that bacterial communities 

differed between samples taken from different sampling locations. I also found that bacterial 

communities are only affected by disturbances applied several years prior to sampling, and in 

disturbance regimes applied continuously to research plots, for Cerastium arvense. I explored the 

theory that the bacterial community within Puget prairie plants could be influenced by parasitic 



 

 

 

root connections established by Castilleja levisecta, a hemiparasitic plant that attaches root 

connections to other prairie plants. Testing all samples that could be assigned to trios regardless 

of species sample size, I found that plant parasitism significantly affects the bacterial 

communities of Puget prairie plants overall. Testing individual species with large sample sizes, I 

found an effect of plant parasitism on the microbiomes of parasitic plant C. levisecta for 

Eriophyllum lanatum and Lomatium utriculatum, and further study of this system with larger 

sample sizes could reveal an effect of parasitism for Balsamorhiza deltoidea and Festuca 

roemeri. This research provides valuable information about the types of bacteria that exist within 

the stem tissues of native Puget prairie plants, and insights into the role that parasitic plants may 

play in the colonization of bacteria across the Puget prairie ecosystem. 
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Introduction  

On March 1st, 2019, the United Nations General Assembly declared 2021-2030 to be the 

UN Decade on Ecological Restoration (United Nations 2019). This statement from the United 

Nations, as a respected and powerful international institution, reflects a societal scale recognition 

of the importance of ecological restoration in the modern era. The concept of ecological 

restoration has been documented throughout history and has existed for centuries, yet had only 

just begun to be defined as a practice in the early 1980’s (Martin 2017). The Society for 

Ecological Restoration (SER) is often referred to as the current authority on aspects involving 

restoration ecology. The SER defines ecological restoration as, “the process of assisting the 

recovery of an ecosystem that has been degraded, damaged, or destroyed” (Gann et al. 2019). 

The definition of ecological restoration is contrasted against the definition of restoration ecology, 

which is described as, “the science that supports the practice of ecological restoration, and from 

other forms of environmental repair in seeking to assist recovery of native ecosystems and 

ecosystem integrity” (Gann et al. 2019). While ecological restoration is the process of assisting 

the recovery of ecosystems, restoration ecology is the science that supports these recovery 

efforts. The field of restoration ecology has increased in popularity in recent years, and has 

become a foundational source of information for landscape managers seeking to restore native 

ecosystems.  

Ecosystems that have been threatened and endangered by environmental degradation are 

of particular focus for ecological restoration. One such threatened system is the Puget prairie 

ecosystem, which exists in the Pacific Northwest region of the United States. These landscapes 

occur in Mediterranean climate systems, which experience hot, dry summers and mild, warm 

winters (Klausmeyer and Shaw, 2009). Puget prairies, also known as South Sound prairies, are 
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rich in biodiversity, but have declined to less than 10% of their historical range (UFWS 2010). 

Altered fire regimes, climate change, land use change, invasions of non-native species, and 

habitat fragmentation, amongst other threats, imperil the survival of Puget prairie ecosystems. 

Without immediate changes in management, it is likely that Puget prairie ecosystems will 

continue to decline and these systems may fail to persist into the future (Dunwiddie and Bakker 

2011). As a result, natural resource management organizations across the Pacific Northwest have 

considered prairie ecosystems to be high priority areas for ecological restoration (UFWS 2010). 

Puget prairie ecosystems are high in species diversity and host many threatened and 

endangered plants and animals. These Prairie ecosystems are renowned for their spectacular 

spring blooms, and are celebrated annually on the second Saturday of May during Prairie 

Appreciation Day (“Prairie Appreciation Day” 2020). Modern Puget prairie ecosystems are 

typically comprised of at least 190 native herbaceous plant species, and given the historical 

decline of these prairies in recent decades, it is expected that many more plant species once 

occupied these ecosystems (Dunwiddie et al. 2014). Euphydryas editha taylori is a butterfly 

species listed as endangered that frequents Puget prairie ecosystems (UFWS 2010). Castilleja 

levisecta is a perennial plant that inhabits Puget prairies and is listed as a threatened species. C. 

levisecta plants support important pollinators, such as the endangered butterfly E. editha taylori 

(Dunwiddie et al. 2016). Several other butterfly and plant species that occur in Puget prairies are 

also considered as either candidates for the Endangered Species List or are considered a 

conservation concern. 

Parasitic plants -plants that are able to derive nutrients, energy, and other resources from 

their host plants- are components of ecosystems found throughout the globe, including Puget 

prairie ecosystems (Kuijt 1969; Heide-Jørgensen 2008; Westwood et al. 2010). While many 
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parasitic plants depend entirely on their host plant for resources, others are hemiparasites: plants 

that are able to both photosynthesize and take up resources from host plants. Castilleja levisecta 

is one such hemiparasitic plant. Relatively little information about community interactions 

between hemiparasitic plants and their hosts exists in current peer-reviewed literature, 

demonstrating a gap in scientific knowledge concerning hemiparasites. To fill this gap, the 

Terrestrial Restoration Ecology Lab at the University of Washington (UW) has studied 

community interactions between C. levisecta and its host plants as a model hemiparasitic plant 

(Rafay 2018; Dunwiddie et al. 2016; Delvin et al. 2012; Schmidt 2016). Research on C. levisecta 

interactions has been used to assist the recovery of C. levisecta populations throughout Western 

Washington, as this species is listed as threatened under the Endangered Species List 

(Wentworth 1994; Clark 2015). In previous studies, the Terrestrial Restoration Ecology Lab has 

identified several potential mechanisms that drive C. levisecta growth and reproduction success 

(Dunwiddie et al. 2016). 

One exciting mechanism that may influence hemiparasite performance, and plant 

performance in general, is the plant microbiome. The microbiome of a plant has been described 

as an extension of the host genome, as these microbes can have considerable effects on plant 

protein synthesis, chemical signaling, nutrient acquisition, and other crucial biological processes 

(Turner et al. 2013; Vandenkoornhuyse et al. 2015; Rho et al. 2018). The microbiome of a plant 

is comprised of microorganisms that exhibit pathogenic, non-pathogenic, or beneficial traits that 

influence the growth of the plant in which it lives. Non-pathogenic and beneficial bacteria and 

fungi that live within plant tissues are referred to as endophytes, and many endophytes are 

known to have plant growth promoting properties (Glick 2012).  
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Ecologists and land managers aiming to restore Puget prairie ecosystems have conducted 

research experiments on Puget prairies for decades, accruing a wealth of information on subjects 

such as plant and animal species composition, applications of land management techniques, 

interspecific interactions, the effects of land use change, and future projections for Puget prairie 

ecosystems, among other studies (Bachelet et al 2001; Stanley et al. 2011; Delvin 2013; 

Klausmeyer and Shaw 2009; Dunwiddie and Bakker 2011). However, there remains a lack of 

knowledge of community interactions on smaller scales; the microbial ecology of Puget prairie 

ecosystems remains an understudied aspect of these systems. Bacterial endophytes and 

pathogens have been detected in the plant tissues of every plant ever surveyed for the presence of 

bacteria (Afzal et al. 2019). These bacteria are known to have complex interactions with their 

hosts and with the other microbes that share inner plant tissues, and can have profound effects on 

the health of individual plants. Thus, it is of critical importance to understand the microbial 

community of Puget prairie plants. 

Bacterial endophytes are species of bacteria that are able to colonize and exist within 

plant tissues without causing disease. Common definitions of an endophyte generally include 

bacteria, fungi, and other microorganisms that inhabit plant tissues. Bacteria that negatively 

impact plants are considered to be pathogens and do not fall within the definition of endophytes; 

instead, endophytes either have neutral or positive effects on their host plants. Bacterial 

endophytes that are able to sustain and supplement plant physiological processes are considered 

to have plant growth promoting traits. Plant growth promoting traits encompass a diverse array 

of properties, including nutrient provisioning, nutrient solubilization, disease resistance, 

modulation of phytohormone levels, and production of cytokinins, among other direct and 

indirect mechanisms (Glick 2012). Nutrient deficiencies, water limitations, and pathogenic 
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bacteria induce stress in plants that can be ameliorated by plant growth promoting bacteria (Mei 

and Flinn 2010). Bacterial endophytes that promote plant growth in their host plants are of 

particular research interest for their potential application to the fields of agriculture, horticulture, 

and restoration ecology. 

As well as promoting plant growth by producing hormones and acquiring nutrients, 

bacterial endophytes can also promote plant growth by competing with pathogenic bacteria. 

Losses in crop yield of every agricultural product can be attributable to plant pathogens, many of 

which are bacterial plant pathogens. While advances in biological pathogen resistance methods 

have led to recoveries in crop yields, pesticides and artificial fertilizers are still the most 

prevalent mechanisms used to protect crop yields. However, bacterial endophytes have also been 

developed for use as biological control agents to reduce the spread of pathogenic bacteria, since 

bacterial endophytes occupy similar niches within plant tissues as pathogenic bacteria (Ryan 

2008; Compant et al. 2005). Competition for space and substrates contained within plant tissues 

and production of anti-bacterial compounds are the primary ways in which plant growth 

promoting endophytic bacteria are able to limit pathogenic bacteria living within plant tissues 

(Compant et al. 2005).  

Bacterial endophytes are known to occur in an extensive number of plant species, and 

have been recorded living in the space between cells within plant stem, leaf, and root tissues. 

Many of these stem and leaf inhabiting bacterial endophyte species have been determined to 

have nutrient provisioning plant growth promoting traits (Hardoim et al. 2008). The microbiome 

that can be found within the stem and leaf tissue is typically less diverse than that of root tissue, 

and generally hosts a smaller abundance of bacteria than root tissue (Zhang et al. 2019; Liu, 

2017). The majority of bacterial endophytes discovered within plant tissues are derived from the 
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surrounding environment, since vertical transmission (transmission of bacteria from parent plant 

to seed) is selective in the type and amount of bacteria that colonize the seed (Walitang et al. 

2018). The rhizosphere acts as a main contact zone for root inhabiting endophytes (Yan et al. 

2016). Exposed entrances to inner plant tissues, such as stomata or wounds, allow both 

pathogenic and endophytic bacteria to colonize the intercellular space (Frank et al. 2017). 

In this study, I focus specifically on bacteria (including endophytes) that inhabit the plant 

stem, as these bacteria are thought to readily disperse throughout the plant via xylem and phloem 

(Frank et al. 2017). When root targeting hemiparasites like C. levisecta attach to a host plant, 

they form haustoria. Haustoria are specialized root connections that facilitate the movement of 

xylem solute from the host plant to the hemiparasitic plant (Yoshida et al. 2016). Bacteria that 

disperse throughout a host plant via xylem may be able to use xylem connections between 

hemiparasitic C. levisecta and its host plant to travel between these plants. Furthermore, 

hemiparasites generally have reduced root systems, and thus are less likely than non-parasitic 

plants to acquire bacteria from the rhizosphere. As a result, host plants may have significant 

influence over the number and type of bacteria that colonize the hemiparasite, and thus impact 

the “extended genome” of hemiparasitic plants.  

However, even if no evidence of bacterial transfer was found, the information derived 

from this study generates important fundamental knowledge about the microbiomes of numerous 

plant species that have never been studied in this fashion. Characterizing the bacterial taxa that 

can be found to naturally occur within C. levisecta and its hosts stems improves our 

understanding of this threatened species and its ecological interactions. A greater understanding 

of the microbiome within a healthy C. levisecta population may help us improve the resilience of 

less healthy remaining populations and contribute to the recovery and delisting of this threatened 
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species. Just as restoration project managers often use reference ecosystems to determine what 

flora and fauna should characterize their restoration site, restoration project managers can use 

reference bacterial taxa information to shape their restoration management techniques (Gann et 

al. 2019).  

The objective of my field study was twofold. First, I intended to characterize the 

microbial communities that exist in 16 Puget prairie plant species. These bacterial communities 

have never been examined using non-culture dependent techniques, and thus this research serves 

as the first Illumina based investigation of bacteria existing in the stems of these 16 Puget prairie 

plants. Additionally, I intended to discover if bacterial communities arrange themselves in 

particular patterns across plant species. I theorized that plant samples derived from the same 

species would likely share similar bacterial Operational Taxonomic Init (OTU) compositions. I 

also theorized that microbial communities may differ between plant species, as plants are likely 

to have coevolved with certain species of beneficial endophytes and pathogens and thus associate 

more often with some bacteria over others. Additionally, I investigated if bacterial communities 

of Puget prairie plants differ based on the type of disturbance treatment that is applied to research 

plots. I theorized that the different soil conditions generated by different restoration treatments 

would create unique challenges and opportunities for bacteria, and thus bacterial communities 

even within the same plant species may differ based on disturbance treatment.  

The second objective of my field study was to investigate if hemiparasitic plants can 

exchange bacteria with their host plants. Haustorial root connections may provide a pathway for 

bacteria to travel between hemiparasitic Castilleja levisecta and its various host plant species. 

Therefore, I expected that the microbiomes of host and hemiparasitic plants connected via 

haustoria would more closely resemble each other than the microbiomes of these same plant 
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species where parasitism via haustoria does not occur. The application of microbiome genetic 

analysis to restoration ecology will develop the field of conservation genetics in a novel research 

direction, providing all three fields with crucial information that can be used to help preserve the 

health of threatened and endangered plant communities.   
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Chapter 1: Bacterial Composition of Puget Prairie Plants 

Abstract 

 The Puget prairie ecosystem is a charismatic and ecologically important feature of North 

America’s Pacific Northwest ecosystems, but faces mounting threats from land use change, 

invasion of non-native plant species, and climate change. Solutions to these threats require 

enhanced knowledge of these systems, and novel approaches to the particular challenges that 

impede the recovery of prairie ecosystems. Ecological restoration efforts are beginning to 

develop and implement practices that enhance plant growth by capitalizing on beneficial 

relationships formed between plants and endophytes. However, the bacterial endophyte 

community of many plant systems remains unexplored, as well as the ways in which bacterial 

endophytes may be traveling within these systems.  

I performed a field study to identify what bacteria exist in Puget Sound prairie systems, 

and to investigate if disturbance treatments affect the bacterial community contained within 

Puget prairie plants. I processed 335 plant stems of 16 different Puget prairie plant species from 

research plots in Glacial Heritage Preserve and Smith Prairie in Washington State. I extracted 

bacterial DNA from these samples and sequenced the 16s rRNA gene to identify bacteria 

existing within these stems. I used Illumina sequencing, CLC Workbench, and R programming 

technologies to compare the community profile of bacterial Operational Taxonomic Units 

(OTUs) between species, and to investigate similarities between the bacterial community profiles 

of hemiparasitic plants and their hosts.  

7,365 different bacterial OTUs were identified across 292 plant samples, and nearly half 

of these OTUs were not previously identified (de-novo OTUs). I discovered that the bacterial 

communities within Puget prairie plants often differ significantly between plant species, but 
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often not between plant species belonging to the same family. I also found that there were 

significant differences in bacterial OTU composition based on sampling location (Glacial 

Heritage Preserve and Smith Prairie). Finally, I found that these bacterial communities did not 

consistently reflect disturbances applied several years prior to sampling, nor to disturbance 

regimes applied continuously to research plots; only Cerastium arvense revealed an effect of 

initial disturbance or continuous disturbance regime. This work provides the first survey of 

bacterial diversity within plants in the Puget prairie ecosystem and highlights the importance of 

spatial distance between sampling locations. With further investigation into the identity of these 

bacterial OTUs, the knowledge gained through this research may one day benefits land managers 

who assist the recovery of ecosystems containing hemiparasitic plants, as well as land managers 

applying microbial diversity and community interaction enhancing techniques within restoration 

sites.  
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Introduction 

Ecologists and land managers aiming to restore Puget prairie ecosystems have conducted 

research and experiments on Puget prairies for decades, accruing a wealth of information on 

subjects such as climate conditions, plant species composition, successful land management 

techniques, and interspecific interactions, among other subjects (Stanley et al. 2011; Delvin 

2013; Klausmeyer and Shaw 2009; UFWS 2010; Dunwiddie and Bakker 2011). However, there 

remains a lack of knowledge of community interactions on smaller scales; the microbial ecology 

of Puget prairie ecosystems remains an understudied aspect of these systems. Bacterial 

endophytes and pathogens have been detected in the plant tissues of every plant ever surveyed 

for their presence (Afzal et al. 2019; Santoyo et al. 2017; Stone et al. 2000). These bacteria have 

complex interactions with their hosts, and can have profound effects -both positive and negative- 

on the health of individual plants (Vandenkoornhuyse et al. 2015; Hardoim et al. 2008; Dheilly 

2014). Thus, it is of critical importance to understand the microbial community of Puget prairie 

plants (Carthey et al. 2020). 

Common definitions of an endophyte generally include bacteria, fungi, and other 

microorganisms that inhabit plant tissues (Wani et al. 2015). Specifically, bacterial endophytes 

are bacteria that are able to colonize and exist within plant tissues without causing disease (Wani 

et al. 2015). Bacteria that negatively impact plants are considered to be pathogens and do not fall 

within the definition of endophytes; instead, endophytes either have neutral or positive effects on 

their host plants. Bacterial endophytes that are able to sustain and supplement plant physiological 

processes are considered to have plant growth promoting traits (Berg 2009). Plant growth 

promoting traits encompass a diverse array of properties, including nutrient provisioning, 

nutrient solubilization, disease resistance, modulation of phytohormone levels, and production of 
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cytokinins, among other direct and indirect mechanisms of influence (Glick 2012). Nutrient 

deficiencies, water limitations, and pathogenic bacteria induce stress in plants that can be 

ameliorated by several different known plant growth promoting bacteria (Mei and Flinn 2010). 

Bacterial endophytes that promote plant growth in their host plants are of particular research 

interest for their potential application to the fields of agriculture, plant nurseries, and restoration 

ecology. 

Bacterial endophytes are known to occur in an extensive number of plant species, and 

have been recorded living in the space between cells within plant stem, leaf, and root tissues 

(Afzal et al. 2019). Many of these stem and leaf inhabiting bacterial endophyte species have been 

determined to have nutrient provisioning plant growth promoting traits (Santoyo et al. 2016). 

The microbiome that can be found within the stem and leaf tissue is typically less diverse than 

that of root tissue, and generally hosts a smaller abundance of bacteria than root tissue (Zhang et 

al. 2019; Liu et al. 2017). The majority of bacterial endophytes discovered within plant tissues 

are derived from the surrounding environment, since vertical transmission (transmission of 

bacteria from parent plant to seed) is selective in the species of bacteria that colonize the seed 

(Walitang et al. 2018). The rhizosphere acts as a main contact zone for root inhabiting 

endophytes (Yan et al. 2016). Exposed entrances to inner plant tissues, such as stomata or 

wounds, allow both pathogenic and endophytic bacteria to colonize the intercellular space (Frank 

et al. 2017). 

Soil conditions and chemistry play a critical role in influencing the composition of the 

plant microbiome (Burns et al. 2015; Yan et al. 2016). As horizontal transmission of bacteria 

(transmission of bacteria from the surrounding environment to plant tissues) is the most common 

method of bacterial transfer, the bacterial communities present in the soil largely determine the 
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species and abundances of bacteria a plant may acquire. Soil pH has been investigated as a factor 

that influences rhizosphere inhabiting bacterial communities, as certain bacterial biological 

processes depend on a specific range of pH values; in a study of North American soils, different 

species of bacteria were found to occupy different ranges in pH values (Lauber et al. 2009). Soil 

moisture is also a factor that effects the composition of rhizosphere inhabiting bacterial 

communities; in a study of wheat plants, Pseudomonas bacteria were abundant at low and 

medium soil moisture levels, while Arthrobacter, Bacillus, and Cytophaga were abundant at high 

soil moisture levels (Peterson et al. 1965). Bacteria are also preferential to different nutrient 

concentrations in the soil, where bacterial species can be found occupying different nutrient 

gradients in the soil (Buee et al. 2009). Plants capitalize on this relationship between bacteria and 

soil nutrient levels by producing root exudates which selectively benefit certain bacteria over 

others, attracting bacteria which may have plant growth promoting properties (Haichar et al. 

2008). In sum, the rhizosphere -which provides plants with many of the bacteria that colonize 

their inner tissues- is  capable of hosting a range of bacterial species which have unique 

preferences for soil pH, moisture, and nutrient concentrations.  

Bacterial communities are not always stable after initial colonization of plant tissues; 

several communities have been shown to change in abundance and composition from season to 

season in several studies (Shen and Fulthorpe 2015; Ou et al. 2019). In a study of Mulberry 

cultivars, bacterial OTU abundance, alpha diversity, and bacterial community complexity were 

significantly higher for bacterial endophytes collected from branch samples collected in spring 

than from branch samples collected in autumn (Ou et al. 2019). It is thought that the bacterial 

community that colonizes plant tissues, particularly above ground plant masses, could be 

affected by seasonal changes in abiotic environmental conditions such as temperature. Also, 
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seasonality is theorized to influence bacterial community composition as plant physiology 

responds to changing seasons, such as changes in the availability of sugars, amino acids, and 

other crucial nutrients within the plant (Cox and Stushnoff 2001). As the bacterial community 

changes seasonally, it would follow that disturbances to systems applied in different seasons may 

influence the bacterial community in different ways.  

Bacterial community assemblages are driven by a wide variety of factors, where an 

individual plant can be thought of as its own “ecosystem” that presents different opportunities 

and challenges for potential bacterial colonizers. Host plant specificity is one factor that varies 

between endophyte species; while some endophytes are found to quickly colonize plants where 

the endophyte has not been known to naturally occur, other endophytes have strong specificity 

for individual plants, and even to particular organs within a plant (Afzal et al. 2019). In a recent 

review of the literature, it was found that bacterial communities existing within plants exhibiting 

different growth patterns interact with tissues differently; in woody plants, stem tissue was rich 

in bacteria while in graminoids, the roots were the richest tissues (Harrison and Griffin 2020). 

Within species, plants of different genotypes have been observed to accommodate different 

bacterial communities (Rodríguez-Blanco et al. 2015). In sum, bacterial interactions with 

potential host plants are complex, and depend on a variety of biological factors including 

colonization specificity, host plant identity, genotype, and growth pattern. 

While it is recognized that microbes play important roles in many ecosystem functions 

and have dynamic interactions with plant species, the microbiome of Puget prairie plants remains 

understudied. A study of bacterial endophytes in plants exposed to PHC’s included an analysis of 

the culturable bacterial endophyte community of Achillea millefolium, which revealed the 

relative proportions of cultured bacteria found in A. millefolium plant stems (Lumactud et al. 
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2016). However, as the A. millefolium plants in Lumactud et al. 2016 were collected in Ontario, 

only surveyed culturable bacteria, and plants were exposed to surface oil deposits, there are 

likely large differences between A. millefolium plants existing in Puget prairie ecosystems that 

makes this study irreflective of Puget prairie A. millefolium bacterial endophytes. So far as I can 

determine, information on the fungal endophytes of Festuca roemeri has been investigated, but 

not the bacterial microbiome of this species (Bailes et al. 2020). Information on bacteria 

associated with Lupine spp. have been investigated, but commonly with a tight focus on the 

bacterial endophytes associated with root nodules developed by this leguminous plant (Ferchichi 

et al. 2019). I was unable to find information on the bacterial microbiome that may comprise any 

of the other 13 Puget prairie plants that I examined in my study. 

To better understand the bacterial communities of the Puget prairie ecosystem, I collected 

bacterial DNA from 16 different Puget prairie species. First, I wanted to investigate if there were 

observable differences in the composition of the bacterial OTUs contained within different plant 

species. Second, I wanted to investigate if large scale differences in sampling location, between 

Glacial Heritage Preserve and Smith Prairie, generated differences in bacterial OTU 

compositions between plants of the same species. Third, I wanted to investigate if site 

disturbance treatments, either applied at the beginning of the restoration treatment study or 

applied continuously throughout the study, generated differences in bacterial OTU composition 

between plants of the same species. After reviewing the scientific literature, I posed the 

following hypothesis about the composition of the bacterial communities of the Puget prairie 

ecosystem: 

H1: Effect of plant species on bacterial community composition. I predicted that bacterial 

OTU composition will significantly differ between Puget prairie plant species. 
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 H2: Effect of sampling location on bacterial community composition. 

  H2a: I predicted that bacterial OTU composition will differ between plants of the 

same species collected at different sampling sites (Glacial Heritage Preserve and Smith Prairie). 

  H2b: I predicted that bacterial OTU composition will differ within plants of the 

same species collected from plots that received different initial disturbance treatments. 

  H2c: I predicted that bacterial OTU composition will differ within plants of the 

same species that were taken from plots that received different disturbance treatment regimes. I 

also expected these results to be stronger than the effect of the initial disturbance treatments, as 

the disturbance regimes were applied to the sites closer in time to plant sampling and subsequent 

bacterial OTU composition analysis.
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Methods 

Study Area 

I studied two locations in western Washington State (Figure 1.1). The primary study site, 

from which the majority of the samples were collected, are research plots that had already been 

established in the Glacial Heritage Preserve (GHP) (Figure 1.2). GHP is owned by Thurston 

County and the Washington Department of Fish and Wildlife, and managed by the Center for 

Natural Lands Management. The second study site is at Smith Prairie (SM), on Whidbey Island 

in Island County. SM is owned and managed by the Pacific Rim Institute for Environmental 

Stewardship (Figure 1.3). Experimental restoration plots were established at both sites about a 

decade ago (Figures 1.2, 1.3; Appendix 1.A, Appendix 1.B).  Research plots were established for 

use as restoration experiments in July 2008 and are a part of an ongoing study of Puget prairie 

restoration. Site preparation and seeding mix differ between plots within the prairie; data on the 

plot that each plant sample was collected was recorded in the metadata. Plants removed from 

these plots would not have a detrimental impact on one of the few remaining natural Puget 

prairies existing in Washington State.  

 

Figure 1.1: Map of Washington State Counties, featuring the locations of Glacial Heritage Preserve (GHP) 

and Smith Prairie (SM). The Glacial Heritage Preserve is located at 46.8655° N, 123.0537° W. Smith Prairie is 

located at 48.2043ᵒ N, 122.6310ᵒ W. 

GHP 

SM 
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Figure 1.2: Map of Glacial Heritage Preserve research plots. The Collection Site codes used in the metadata refer to 

this map and the Smith Prairie plot map. A more detailed view of the plots is available in Appendix 1.A. 
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Figure 1.3: Map of Smith Prairie research plots. The Collection Site field of the metadata refer to this map and the 

Glacial Heritage plot map. A detailed map of the initial site treatment and continuous disturbance regime is available 

in Appendix 1.B. 

Initial disturbance treatments were applied to Glacial Heritage Preserve and Smith Prairie 

sites in 2009, 2010 and 2011 to examine the prairies response to restoration treatments. Initial 

disturbance treatments were applied to Glacial Heritage Preserve and Smith Prairie sites in 2009, 

2010 and 2011. An array of 35 plots was established at each site in each year, for a total of five 

arrays (GHP 2009, GHP 2010, GHP 2011, SM 2010, SM 2011). Each plot was 40 m2 at GHP 

and 25 m2 at SM. Three experimental initial disturbance treatments were applied to the plots: 

solarization, two-year herbicide, and broadcast burning. Beginning in 2014, a fire frequency 

experiment was overlaid onto the plots at GHP (J.D. Bakker, unpub. data). Arrays entered the 

fire frequency experiment in different years, so plots differ in terms of how long they have been 
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treated. Five continuing disturbance treatments are being tested: broadcast burned annually in 

early summer, annually in late summer, triannually in early summer, triannually in late summer, 

or mowed annually. Detailed maps of the fire frequency treatments applied to each plot within 

each array are available in Appendix 1.A. 

Sample Collection 

 In May and June 2019, 328 prairie plant stem samples were collected from GHP and 59 

samples were collected from SM. Each sample was either a leaf or a stem of a plant, but only 

stems were used in the set of samples submitted for sequencing. I recorded data on the date the 

sample was collected, its collection location (site, array, and plot number), and the taxonomic 

identity of the plant. Plant samples were taken from 16 different prairie plant species (Appendix 

1.C). 

The sampling process was as follows. Eight trips to the Glacial Heritage Preserve were 

made throughout the months of May and June. A healthy plant was identified and selected for 

use in the field (plants with unknown identity were collected and preserved for later 

identification upon return to Seattle). Each sample was collected by taking a stem cutting of the 

plant with sterilized scissors, close to where the stem reaches the roots. As much stem material as 

could fit in one Eppendorf tube was collected. Samples were surface sterilized in the field to 

remove external bacteria present on the surface of the plant. Surface sterilization was performed 

by soaking the stem in 70% ethanol for 10 minutes then rinsing the plant in sterile water before 

placing the stem immediately in a sterile Eppendorf tube. Samples were temporarily preserved 

for transport in a cooler, and held for long term storage in -20ᵒC in an industrial freezer until they 

were processed. I attempted to collect at least 25 of samples from each plant species. However, 

due to the nature of the Puget prairie system, not all plant species occurred in the research plots 



30 

 

 

in equal numbers. Erigeron speciosus and Symphoricarpos albus were among the species that 

were the most difficult to find, and thus I was unable to collect many samples from these species.  

Sample Processing 

Samples were screened for quality of preservation and relevance for the questions asked. 

Because there was a budgetary limit to the number of samples that I could sequence, I choose 

only to sequence samples that were well preserved in sterile conditions and that allowed me to 

investigate my hypothesis. Plant samples that were stored in cracked Eppendorf tubes, samples 

that thawed before processing, and samples that were processed under questionably sterile 

conditions were not selected for sequencing by the UMGC. Additionally, samples from plants 

that had an abundance of replicates and samples from plant species that did not have enough 

replicates were not selected for processing or sequencing. The samples that were not selected for 

processing or sequencing, but that were still preserved in sterile conditions, were prepared for 

long term storage at -80ᵒC for potential use in future studies. Of the 328 samples that were 

collected from the Glacial Heritage Preserve, 293 were selected for processing and analysis. Of 

the 59 samples that were collected from the Smith Prairie, 42 were selected for processing and 

analysis. A total of 335 plant samples were processed. 13 negative controls (“Blanks”) were also 

submitted for sequencing as controls to check for sterility during processing and sequencing of 

the plant samples. 

Table 1.1: Total number of samples processed from each species. Samples are identified as either derived 

from Glacial Heritage Preserve or Smith Prairie. The code translation for each species, as well as species taxonomic 

information, can be found in Appendix 1.C. 

Scientific Name Species 

Code 

Samples Processed 

GHP 

Samples Processed 

SM 

Total 

Achillea millefolium ACMI 18 10 28 
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Aquilegia formosa AQFO 15 0 15 

Aster curtisii ASCU 14 0 14 

Balsamorhiza deltoidea BADE 17 0 17 

Castilleja levisecta CALE 40 12 42 

Camassia quamash CAQU 20 0 20 

Cerastium arvense CEAR 30 0 30 

Delphinium menziesii DEME 15 0 15 

Eriophyllum lanatum ERLA 26 9 35 

Festuca roemeri FERO 10 11 21 

Lomatum triternatum LOTR 18 0 18 

Lomatium utriculatum LOUT 20 0 20 

Lupinus lepidus LULE 18 0 18 

Potentilla gracilius POGR 18 0 18 

Symphoricarpos albus SYAL 12 0 12 

Blank BLANK N/A N/A 13 

TOTAL  293 42 335 

 

Samples were processed throughout September and December 2019. Plant samples were 

ground into powder by immersing the stems in liquid nitrogen and crushed using sterilized 

mortars and pestles. Mortars and pestles were only used on one sample per batch, and were 

washed in hot water and wiped with paper towels soaked in 70% ethanol before being placed in 

autoclavable plastic bags and sterilized via autoclave after each use. In batches 1 and 2 (removed 

from analysis due to contamination), mortars and pestles were not autoclaved in plastic bags, and 
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were instead autoclaved with tin foil sealing the top of the mortars and pestles wrapped in tin 

foil. I decided to autoclave mortars and pestles in plastic bags after batches 1 and 2 were found to 

be contaminated, as it was thought that small breaks in the tin foil could have allowed bacteria to 

contaminate samples from the lab environment. The following procedure was performed as 

described in the DNeasy PowerSoil Pro Kit Handbook, which accompanies the Qiagen DNeasy 

PowerSoil Pro Kit (Qiagen 2019). Ground plant samples were placed immediately in a 

PowerBead Pro Tube containing Solution CD1 and microbeads. Solution CD1 protects nucleic 

acids from degradation and dissolves humic acids. Samples were vortexed using a Vortex Genie 

with a horizontal plastic clip microtube holder attachment at maximum speed for 15 minutes, in 

order to further break down the plant material. Mechanical shaking and chemical agents in 

Solution CD1 lyse bacterial cells, which can increase DNA yields. The PowerBead Pro Tube was 

centrifuged at 15,000*g for 1 minute to concentrate the excess plant material and beads to the 

bottom of the tube.  

600 ul of supernatant was transferred to clean 1 ml microcentrifuge tubes, and 200 ul of 

Solution CD2 was added to the supernatant, then vortexed for 5 seconds. Solution CD1 

precipitates non-DNA organic and inorganic material, removing contaminating substances that 

reduce DNA purity and interfere with downstream DNA applications. The microcentrifuge tubes 

were centrifuged at 15,000*g for 1 minute to pellet the non-DNA organic and inorganic material. 

600 ul of supernatant was transferred to a clean microcentrifuge tube. 600 ul of Solution CD3 

was added to the supernatant and vortexed for 5 seconds. Solution CD3 contains a high 

concentration of salt, which allows for the binding of silica to DNA but not to non-DNA organic 

and inorganic material. 600 ul of this supernatant and Solution CD3 lysate was added to a silica 
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membrane containing MB Spin Column and centrifuged at 15,000*g for 1 minute. This allows 

contaminants to pass through the filter membrane, leaving only DNA bound to the filter.  

The flow through was discarded, and an additional 600 ul of the solution -or the rest of 

the solution if less than 600 ul- was added to the MB Spin Column and centrifuged again at 

15,000*g for 1 minute. The flow through was discarded, and the MB Spin Column was placed 

into a clean 2ml Collection Tube. 500 ul of Solution EA was added to the MB Spin Column and 

centrifuged at 15,000*g for 1 minute. Solution EA is designed to wash protein and other non-

aqueous contaminants from the filter membrane, further purifying the DNA on the filter. The 

flow through was discarded, and 500 ul of Solution C5 was added to the MB Spin Column then 

centrifuged at 15,000*g for 1 minute. Solution C5 removes residual salts, humic acids, and other 

contaminants from the filter membrane. The flow through was discarded and the MB Spin 

Colum was placed into a clean 2 ml Collection Tube. The MB Spin Column was centrifuged at 

16,000*g for 2 minutes, to ensure that all residual solutions were removed from the filter as 

ethanol contained in Solution C5 can interfere with downstream DNA applications. 100 ul of 

Solution C6 was added to the MB Spin Column and centrifuged at 15,000*g for 1 minute. 

Solution C6 contains no salt, which allows the DNA that was bound to the filter to release into 

solution. The MB Spin Column was discarded, and the 100 ul of DNA extract was stored in an 

industrial freezer at -20ᵒC until it was needed for further use.  

After all samples were processed, the DNA extracts were thawed and DNA concentration 

was calculated using a NanoDrop Spectrophotometer (ND1000). The NanoDrop 

Spectrophotometer readouts provide data on the quantity and purity of the nucleic acids present 

in each sample. A concentration of 1-100 ng/ul was required for sequencing; all samples were 

quantified, and no samples with lower than 1 ng/ul were present. 30 ul of each extract was 
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loaded into 96-well plates. Samples were submitted to the University of Minnesota Genomics 

Center (UMGC) for sequencing. 

PCR and Sequencing 

Sample extractions were submitted to the UMGC for Dual-Index microbiome 

amplification and sequencing in September and December 2019. Based on established protocols 

developed by the Earth Microbiome Project, the sample extractions were sequenced using 

primers 515F/806R, targeting the hypervariable V4 region of the conserved 16s bacterial 

ribosomal RNA gene (“16s Illumina Amplicon Protocol”, 2018). The 16s gene is frequently used 

for identification of bacteria in microbiome studies (Patwardhan et al. 2014). mPNA and pPNA 

blockers were used during PCR to prevent mitochondria and chloroplast from interfering with 

DNA sequencing (Table 1.2). The UMGC workflow for sample processing is available in 

Appendix 1.D. The UMGC completed indexing, library preparation and Illumina protocols for 

sequencing. The Miseq Standard v.3 Chemistry 2x300bp sequencing platform was used to 

sequence pooled DNA.  

Table 1.2: Primer/Blocker Names, Sequences and Purpose. The following primers and blockers were used during 

PCR by the University of Minnesota Genomics Center.  

Primer/Blocker Name Sequence Purpose 

515F Primer GTGCCAGCMGCCGCGGTAA Forward Primer  

(16s-specific portion) 

806R Primer GGACTACHVGGGTWTCTAAT Reverse Primer  

(16s-specific portion 

Meta_V4_515F Primer TCGTCGGCAGCGTCAGATGTGTATA

AGAGACAGGTGCCAGCMGCCGCGG

TAA 

Full Forward Primer 

sequence 

Meta_V4_806R Primer GTCTCGTGGGCTCGGAGATGTGTAT

AAGAGACAGGGACTACHVGGGTWT

CTAAT 

Full Reverse Primer 

sequence 

Forward Indexing 

Primer 

AATGATACGGCGACCACCGAGATC

TACAC[i5]TCGTCGGCAGCGTC 

Forward Indexing 

Primer 
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Reverse Indexing 

Primer 

CAAGCAGAAGACGGCATACGAGAT

[i7]GTCTCGTGGGCTCGG 

Reverse Indexing 

Primer 

mPNA GGCAAGTGTTCTTCGGA Mitochondria Blocker 

pPNA GGCTCAACCCTGGACAG Chloroplast Blocker 

Nextera Adapter Read 1 CTGTCTCTTATACACATCTCCGAGC

CCACGAGACNNNNNNNNATCTCGT

ATGCCGTCTTCTGCTTG 

Sequences used for 

post-run trimming 

Nextera Adapter Read 2 CTGTCTCTTATACACATCTGACGCT

GCCGACGANNNNNNNNGTGTAGAT

CTCGGTGGTCGCCGTATCATT 

Sequences used for 

post-run trimming 

 

Data Processing 

 Two fastq files were generated per sample: a pair of forward sequence and reverse 

sequence reads for each sample. Compressed fastq files (.gz) were retrieved from the UMGC. 

The raw sequence reads were processed using a genomic pipeline generated in CLC Genomics 

Workbench 12.0.3, a data analysis package created by Qiagen. The Microbial Genomics Module 

for CLC Genomics Workbench software is designed to process and analyze “16s rRNA and 

other commonly used metagenome derived amplicon data.” (CLC Microbial Genomics Module 

User Manual). The Microbial Genomics Module was used to trim, filter, and cluster reads into 

OTUs. The process for read editing is described below. 

 First, I uploaded the forward and reverse paired-end Illumina files to Workbench. In the 

Import wizard, the import type was set to Paired Reads, the minimum distance was set to 200, 

the maximum distance was set to 550, and quality scores associated with the reads were imported 

as well. Then, reads with quality scores less than 0.05 were trimmed. The Trim Reads tool was 

also used to trim ambiguous nucleotides with a maximum number of ambiguities set to 2.  Reads 

shorter than 5 nucleotides in length were discarded.  
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 The processed reads then were clustered into OTUs. Using the OTU Clustering tool, I 

chose to use the SILVA 16S v132 97% reference database, with the similarity percent specified 

by the OTU database option selected (Balvočiūtė and Huson 2017). 97% similarity is a standard 

value for microbial 16s analysis, although it should be noted that recent research has questioned 

the validity of this value (Stackebrandt and Ebers 2006). The creation of novel OTUs was 

enabled (Nguyen et al. 2015). An abundance table displaying the number of reads from each 

OTU discovered in each sample was generated by CLC Workbench and exported as a .csv file to 

R Studio for further examination. The R script for the following analysis can be found in 

Appendix 3.  

Statistical Analysis 

 After processing the raw reads through the CLC Workbench genomic pipeline, I 

performed statistical analysis on my data. R Studio was used to perform the subsequent 

calculations, data transformations and statistical analysis. A file containing abundance data for 

each OTU present in each sample was imported to R Studio. An additional file containing 

metadata for each sample was also imported to R Studio. This file was examined by multiple 

parties for errors and was cleaned prior to analysis. While rarefaction has been used in previous 

microbiome studies to normalize abundance data, this technique is no longer recommended for 

use as reads, and the valuable information they contain, are lost in the process (McMurdie and 

Holmes 2014). Calle 2019 recommends analyzing microbiome abundance data alongside 

presence/absence of microbial OTUs within the same dataset, so the OTU abundance table 

generated in CLC Workbench was used to create a presence/absence table (Calle 2019; Quinn 

2018; Weiss 2017). 
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Each batch of samples (samples that were extracted using the same Qiagen kit on the 

same day) is associated with a negative control (a “Blank”) that acts as a way to detect 

potentially contaminating bacterial DNA (Goodrich 2014). Bacterial DNA can contaminate 

samples by drifting from surfaces and into samples before or during processing. These blanks are 

processed alongside each batch in an attempt to capture OTU abundances that did not originate 

from a plant sample. Blanks 1 and 2 captured a large amount of contamination, likely due to 

improper sterilization techniques used on mortars and pestles. The process to sterilize mortars 

and pestles was adjusted after Blanks 1 and 2 revealed contamination; instead of autoclaving 

mortars and pestles in tin foil, they were instead autoclaved in autoclavable plastic bags that were 

sealed. Blank 1 contained 723 OTUs and 31,007 total reads, while Blank 2 contained 702 OTUs 

and 27,264 total reads. These values are remarkably high compared to Blanks 3-13 which 

contained an average of 58 OTUs and 3,354 total reads. The process to sterilize mortars and 

pestles was adjusted after Blanks 1 and 2 revealed contamination. Blanks 3-13 indicate that 

contamination was reduced as the total number of OTUs and total read abundance per blank 

decreased dramatically. Potentially contaminating bacterial OTUs and their respective 

abundances were used to filter contaminants from the batches of samples. Bacterial OTU reads 

recorded in each blank were subtracted from their respective batches; OTU abundances from 

Blank 1 were subtracted from Batch 1, OTU abundances from Blank 2 were subtracted from 

Batch 2, and so forth. Negative values, where more reads were detected from any particular OTU 

were discovered in a blank than in a plant sample, were set to zero. OTUs which were not 

present in a blank were unaffected, and OTUs were only subtracted using their respective blanks. 

Because of the high prevalence of contamination in Blanks 1 and 2, all samples that were 
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processed in batches 1 and 2 were excluded from all future analysis. No further transformations 

of the data were performed (Legendre and Gallagher 2001). 

 Several distance measures have been suggested for use on metagenomic data. The Bray-

Curtis distance measure is commonly used with species composition data, however there are 

some noteworthy flaws in its application to microbiome data (Calle 2019). Microbiome 

abundance data is not strictly reflective of true species abundance, thus other distance measures 

such as the Aitchison distance measure and UniFrac distance measures are commonly 

recommended in scientific literature over the Bray-Curtis distance measure (Gloor et al. 2017). 

UniFrac measures have been used prolifically throughout the literature to calculate beta 

diversity. There are certain disadvantages to using UniFrac distance measures, however. Calle 

2019 argues that Unifrac is inappropriate for microbiome data as these measures are not sub-

compositionally dominant. Instead, Calle 2019 recommends the use of the Aitchison distance to 

analyze beta diversity. Given the advantages and disadvantages of these distance measures, the 

Bray-Curtis distance measure remains a robust statistical measure that continues to be applied in 

similar research endeavors and was thus chosen for use in this study (Maziarz et al. 2018).  

 Data characteristics were explored in R Studio using R base code. In some cases, 

supplementary tables were exported from R and organized in Excel for the production of visuals. 

Differences in bacterial OTU composition between plant species was tested using 

PERMANOVA. PERMANOVA can be implemented with multivariate data and in cases where 

normality cannot be assumed, which is appropriate for use on these microbiome abundance data. 

PERMANOVA was performed using the adonis() function in the vegan package (Oksanen et al. 

2017). Negative controls (Blanks) were removed from the dataset prior to performing 

PERMANOVA. Number of permutations was set to 999, and the distance measure used to 
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implement PERMANOVA was the Bray-Curtis distance measure. Alpha was set to a = 0.05. 

After PERMANOVA, if a significant result was achieved, a pairwise test was performed to 

determine which plant species differ from other plant species in the composition of their bacterial 

OTUs. The pairwise test was performed using a modified function pairwise.adonis. The code for 

this function is included in the R script in Appendix 3.  

Differences in bacterial OTU composition between plant species were then visualized 

using several Non-Metric Multidimensional Scaling (NMDS) ordinations. NMDS plots are 

recommended over PCoA plots by several review papers describing statistical methods for 

research on metagenomic data (Calle 2019; Gloor et al. 2017; Ramette 2007). NMDS plots are 

recommended as the analysis of PCoA plots can be driven by the presence or absence of taxa and 

by sparsity, which can be problematic when working with metagenomic data (Gloor et al. 2017). 

NMDS ordinations avoid these problems. Ordinations were created using the ggplot() function 

within the ggplot2 package (Wickham 2016). The settings for the Species NMDS were set to 

three dimensions (k) = 3, as the stress for two dimensions was too low and thus would not 

accurately reflect the data. For the Sites NMDS, CEAR Initial Disturbance NMDS and CEAR 

Disturbance Regime NMDS, stress was low enough at two dimensions to allow for an accurate 

reflection of the data, as well as allow for easier interpretation of the ordination. The other 

settings to generate the NMDS across all ordinations were set to the same parameters: maxit = 

300, try = 40, trymax = 100. Ordinations were created using the metaMDS() function in the 

vegan package and visualized using the ggplot() function in the ggplot2 package (Oksanen et al. 

2017; Wickham 2016).  

Four potential sources of variation in the dataset are tested in the following analyses. 

First, differences in bacterial OTU composition between samples derived from different plant 
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species is investigated with a PERMANOVA test performed on the samples in Table 1.3. The 

following subset of samples were used to test hypothesis 1, where I expected to find differences 

in the bacterial OTU composition of samples taken from different plant species. For this analysis, 

samples derived from Glacial Heritage Preserve and Smith Prairie were both included. After 

PERMANOVA, pairwise tests were used to determine which species retained significant 

differences in their bacterial OTU composition. A 3-dimensional NMDS plot was generated to 

visualize the dataset.  

Table 1.3: Total number of samples processed from each species after removal of potentially contaminated 

samples and outliers. The code translation for each species, as well as species taxonomic information, can be found 

in Appendix 1.C.  

Species Total 

ACMI 27 

AQFO 11 

ASCU 11 

BADE 14 

CALE 43 

CAQU 14 

CEAR 26 

DEME 13 

ERLA 33 

ERSP 7 

FERO 19 

LOTR 11 

LOUT 21 



41 

 

 

LULE 15 

POGR 14 

SYAL 12 

TOTAL 292 

 

Second, differences in bacterial OTU composition within 4 species (Achillea millefolium, 

Castilleja levisecta, Eriophyllum lanatum and Festuca roemeri) taken from Glacial Heritage 

Preserve and Smith Prairie were compared with two PERMANOVA tests to determine if 

bacterial OTU composition differed between sites. The following subset of samples were used to 

test hypothesis 2a, where I expected to find differences in the bacterial OTU composition of 

samples taken from different sampling locations. The order of terms affects how variation is 

partitioned – the first term accounts for as much variation as possible and the second as much of 

the remaining variation as possible – so I conducted tests with terms in both orders. Testing site 

first and species second is less conservative, whereas testing species first and site second is more 

conservative. Only A. millefolium, C. levisecta, E. lanatum and F. roemeri were taken from 

Smith Prairie, thus only these four species were used in analysis. A summary of the samples used 

in this test is available in Table 1.4. A 2-dimensional NMDS plot was created to visualize this 

dataset.  

Table 1.4: Number of samples processed from each species that were taken from either Glacial Heritage 

Preserve or Smith Prairie. Includes both the absolute number of plants taken from either Glacial Heritage Preserve 

or Smith Prairie as well as the percentage of the total number of plants that represents each site. The code translation 

for each species, as well as species taxonomic information, can be found in 1.C.  

Species GHP SM Total 

ACMI 
17  

(63%) 

10  

(37%) 
27 

CALE 32  12  44 
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(73%) (27%) 

ERLA 
25  

(74%) 

9  

(26%) 
34 

FERO 
8  

(42%) 

11  

(58%) 
19 

TOTAL 
82 

(66%) 

42 

(34%) 
124 

 

Third, differences in bacterial OTU composition within species taken from plots with 

different initial disturbance treatments were compared with a series of PERMANOVA tests. The 

following subset of samples were used to test hypothesis 2b, where I expected to find differences 

in the bacterial OTU composition of samples taken from plots that had received different initial 

disturbance treatments. Only species taken from Glacial Heritage Preserve were used for these 

tests. Not all species were collected from all initial disturbance treatments; examine Table 1.5 

below for a summary of the initial disturbance treatments associated with each species. Only 

Aster curtisii, Castilleja levisecta, Cerastium arvense, Eriophyllum lanatum, Erigeron speciosus, 

Festuca roemeri and Lomatium triternatum had enough representative samples from all three 

treatments to be suitable for use in these tests. Only samples taken from sites within GHP 2009, 

GHP 2010, and GHP 2011 were used for initial disturbance treatment tests; samples taken from 

scaled up plots and the mounded prairie were excluded from analysis. 

Table 1.5: Number of samples derived from each species that was taken from plots that received one of 

three initial disturbance treatments. Includes both the absolute number of plants taken from plots with their 

respective disturbance treatments as well as the percentage of the total number of plants that represents each initial 

disturbance treatment. Only those species and samples in bold were used for this analysis. The code translation for 

each species, as well as species taxonomic information, can be found in Appendix 1.C.  

Species Solarize Burn Two Year Total 

ACMI 
3 

(75%) 

0 

(0%) 

1 

(25%) 
4 

AQFO 
2 

(67%) 

0 

(0%) 

1 

(33%) 
3 

ASCU 6 3 1 10 
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(60%) (30%) (10%) 

BADE 
3 

(75%) 

1 

(1%) 

0 

(0%) 
4 

CALE 
5 

(28%) 

10 

(56%) 

3 

(16%) 
18 

CAQU 
4 

(57%) 

3 

(43%) 

0 

(0%) 
7 

CEAR 
7 

(41%) 

8 

(47%) 

2 

(12%) 
17 

DEME 
1 

(33%) 

2 

(67%) 
0 3 

ERLA 
5 

(62%) 

2 

(25%) 

1 

(13%) 
8 

ERSP 
3 

(43%) 

3 

(43%) 

1 

(14%) 
7 

FERO 
3 

(37%) 

3 

(37%) 

2 

(26%) 
8 

LOTR 
3 

(50%) 

2 

(33%) 

1 

(17%) 
6 

LOUT 
5 

(45%) 

6 

(55%) 

0 

(0%) 
11 

LULE 
0 

(0%) 

4 

(80%) 

1 

(20%) 
5 

POGR 
3 

(50%) 

3 

(50%) 

0 

(0%) 
6 

SYAL 
1 

(50%) 

1 

(50%) 

0 

(0%) 
2 

TOTAL 
54 

(45%) 

51 

(43%) 

14 

(12%) 

119 

 

 

Finally, differences in bacterial OTU composition within species taken from plots with 

different disturbance regime treatments were compared with a series of PERMANOVA tests. 

The following subset of samples were used to test hypothesis 2c, where I expected to find 

differences in the bacterial OTU composition of samples taken from plots that had received 

different disturbance regime treatments. Only species taken from Glacial Heritage Preserve were 

used for these tests. Not all species were collected from all disturbance regime treatments; 

examine Table 1.6 below for a summary of the initial disturbance treatments associated with 
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each species. Only Castilleja levisecta, Cerastium arvense, Eriophyllum lanatum, Festuca 

roemeri and Lomatium utriculatum had enough representative samples from all 5 treatments to 

be suitable for use in these tests. Only samples taken from sites within GHP 2009, GHP 2010, 

and GHP 2011 were used for disturbance regime treatment tests; samples taken from scaled up 

plots and the mounded prairie were excluded from analysis.  

Table 1.6: Number of samples derived from each species that was taken from plots that received one of five 

disturbance regime treatments. Includes both the absolute number of plants taken from plots with their respective 

disturbance treatments as well as the percentage of the total number of plants that represents each disturbance 

regime treatment. Only those species and samples in bold were used for this analysis. The code translation for each 

species, as well as species taxonomic information, can be found in Appendix 1.C.  

Species 
Annual 

Early Burn 

Annual 

Late Burn 

Triannual 

Early Burn 

Triannual 

Late Burn 

Annual 

Mow 
Total 

ACMI 
2 

(50%) 

0 

(0%) 

2 

(50%) 

0 

(0%) 

0 

(0%) 
4 

AQFO 
0 

(0%) 

1 

(33%) 

1 

(33%) 

0 

(0%) 

1 

(33%) 
3 

ASCU 
0 

(0%) 

3 

(30%) 

3 

(30%) 

0 

(0%) 

4 

(40%) 
10 

BADE 
0 

(0%) 

1 

(25%) 

3 

(75%) 

0 

(0%) 

0 

(0%) 
4 

CALE 
4 

(22%) 

4 

(22%) 

4 

(22%) 

4 

(22%) 

2 

(12%) 
18 

CAQU 
3 

(44%) 

2 

(28%) 

2 

(28%) 

0 

(0%) 

0 

(0%) 
7 

CEAR 
2 

(12%) 

2 

(12%) 

6 

(35%) 

5 

(29%) 

2 

(12%) 
17 

DEME 
0 

(0%) 

0 

(0%) 

1 

(33%) 

2 

(67%) 

0 

(0%) 
3 

ERLA 
2 

(25%) 

1 

(13%) 

1 

(13%) 

3 

(36%) 

1 

(13%) 
8 

ERSP 
3 

(44%) 

0 

(0%) 

3 

(44%) 

1 

(22%) 

0 

(0%) 
7 

FERO 
2 

(25%) 

1 

(13%) 

1 

(13%) 

3 

(36%) 

1 

(13%) 
8 

LOTR 
0 

(0%) 

2 

(33%) 

3 

(50%) 

1 

(17%) 

0 

(0%) 
6 

LOUT 
1 

(9%) 

2 

(18%) 

4 

(37%) 

2 

(18%) 

2 

(18%) 
11 

LULE 
1 

(20%) 

0 

(0%) 

0 

(0%) 

1 

(20%) 

3 

(60%) 
5 

POGR 0 3 0 1 2 6 
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(0%) (50%) (0%) (17%) (33%) 

SYAL 
0 

(0%) 

2 

(100%) 

0 

(0%) 

0 

(0%) 

0 

(0%) 
2 

TOTAL 

 

20 

(17%) 

24 

(20%) 

34 

(29%) 

23 

(19%) 

18 

(15%) 
119 
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Figure 1.4: Box and whisker plot of the number of bacterial OTUs derived from each species, after removal of 

potentially contaminating bacterial OTUs. The median is marked by the vertical line inside the box, the upper and 

lower quartiles are the ends of the box, and the whiskers represent the range of non-outliers. Data points that lie 

above the whiskers are outliers.  
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 Using the SILVA database, known bacterial OTUs can often be identified to the genus, 

and sometimes to the species taxonomic level (Balvočiūtė and Huson 2017). Bacterial OTUs 

that are classified as de-novo cannot be identified to any taxonomic level, as these OTUs cannot 

be identified to known bacterial 16s rRNA genes in the SILVA database. The OTUs in this 

dataset represented 26 phyla, 51 classes, 120 orders, 297 families, 694 genera, and 472 species. 

A count of the number of phyla, classes, orders, families, genera, and species represented by the 

OTUs is available in Appendix 1.E. The total abundance of bacterial OTUs were averaged across 

samples within species groups and compiled in a histogram to illustrate the average abundance of 

bacterial phylum present within each species (Figure 1.5). Actinobacteria, Cyanobacteria, and 

Proteobacteria contribute largely to the abundance of bacterial OTU reads within nearly all 

species. Firmicutes and Bacteroidetes occasionally also contribute largely to the abundance of 

bacterial OTU reads within select species. 
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Figure 1.5: Average abundance of bacterial OTU reads representing each bacterial phyla within a plant species. Five 

bacterial Phyla appear to dominate the bacterial OTU abundance within these 16 plant species: Actinobacteria, 

Bacteroidetes, Cyanobacteria, Firmicutes and Proteobacteria. 

 

Differences between Plant Species 

The results of this test address Chapter 1 hypothesis 1, where it is expected that bacterial 

OTU composition will differ between Puget prairie plant species. Based on the results of the 

PERMANOVA test that examined the difference in OTU composition between different plant 

species, there are significant differences in bacterial OTU composition between different plant 

species, which supports my hypothesis. The p value of the PERMANOVA test was smaller than 

alpha (p = 0.001), indicating strong statistical significance. The pairwise test reveals that, while 
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the bacterial OTU composition of certain species does not differ significantly from the bacterial 

OTU composition of other species, some species have quite a divergent bacterial OTU 

composition from all other species. 78% of the variation in the dataset can be explained by 

differences in OTU composition between plant species. A summary of the PERMANOVA test is 

illustrated in Table 1.7. 

Table 1.7: PERMANOVA- Difference in OTU Composition between Plant Species. Differences in bacterial OTU 

composition were tested on the basis of plant species groups. The total degrees of freedom in this PERMANOVA 

test were large, allowing for a small p value to be achieved. The p value was less than alpha (p<0.05), indicating that 

there were statistically significant differences in bacterial OTU composition between some plant species. 

 DF Sum of Squares R2 F PR (>F) 

Species 15 90.145 

 

0.78433 

 

66.917 

 

0.001 

Residual 276 

 

24.787 

 

0.21567 

 

  

Total 291 

 

114.932 

 

1.00000   

 

Pairwise tests determined that OTU composition differed between almost all plant 

species: of the 121 plant species pairs examined, 115 differed in bacterial OTU composition.  

The six pairs that did not differ in composition included species that belong to the same plant 

family. Aquilegia formosa and Delphinium menziesii did not differ in their bacterial OTU 

composition, and belong to Ranunculaceae. Lomatium triternatum and Lomatium utriculatum did 

not differ in their bacterial OTU composition, and belong to Apiaceae. The other set of species 

that did not differ were in the Asteraceae. Balsamorhiza deltoidea did not differ from any other 

Asteraceae, and Achillea millefolium, Aster curtisii, Erigeron speciosus, and Eriophyllum 

lanatum did not often differ from other Asteraceae. However, Achillea millefolium and Aster 

curtisii differed from one another, as well as Erigeron speciosus and Eriophyllum lanatum, 
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despite these species belonging to Asteraceae. A summary of the pairwise test is illustrated in 

Appendix 1.G, Table 22. 

A three-dimensional NMDS ordination was chosen for visualization of the data, where 

plant species was overlayed onto one plot as different colors, and plant family was overlayed 

onto the second plot as different colors (stress = 0.16). The differences in bacterial OTU 

composition as calculated in PERMANOVA are apparent in the ordination; samples derived 

from the same plant species appear to cluster into individual groups. Lomatium triternatum and 

Lomatium utriculatum do not form distinct groups, as indicated in PERMANOVA that the 

composition of their bacterial OTUs are not distinct (Figure 1.6). Achillea millefolium, Aster 

curtisii, Balsamorhiza deltoidea, Erigeron speciosus and Eriophyllum lanatum also do not form 

a distinct groups, as indicated in PERMANOVA that the composition of the bacterial OTUs 

between most members of the Asteraceae were not significantly different from one another 

(Figure 1.6). Lomatium triternatum and Lomatium utriculatum belong to the plant family 

Apiaceae, and Achillea millefolium, Aster curtisii, Basamorhiza deltoidea, Erigeron speciosus 

and Eriophyllum lanatum belong to the plant family Asteraceae, which likely explains the lack of 

significant differences in their bacterial OTU compositions (Figure 1.6). Delphinium meziezii 

and Aquilegia formosa both belong to the Ranunculaceae family; while they were found in the 

pairwise test to have significantly different bacterial OTU compositions, their sample groups are 

close in ordination space, indicating that while their bacterial OTU compositions are different 

enough to be distinct, they are not very different. 

Several patterns observed in the NMDS indicate opportunities for further exploration. 

While both Lomatium utriculatum and Lomatium triternatum were found to have distinct 

bacterial OTU compositions from Lupinus lepidus, L. lepidus is observed in close proximity to 
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these two plant species. These plants have distant taxonomic relations, and it is unclear why 

these three plant species appear to share similar space in the following ordination. Two data 

points diverge from the cluster that typically defines the ordination space occupied by their 

species; a Symphoricarpos albus sample (0216) can be found occupying space similar to 

Camassia quamash, and an Aster curtisii (0280) is a fair distance from the group defined by the 

other A. curtisii samples. Interestingly, while the two monocots observed in this study -C. 

quamash and Festuca roemeri- maintain distinct clusters, they are close to one another in 

ordination space. Castilleja levisecta and C. arvense have significantly different bacterial OTU 

compositions, but the clusters for these species overlap in ordination space. 
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Figure 1.6: Three-dimensional NMDS ordination of bacterial OTU abundance with plant species overlay (stress = 

0.16). Only two axis are displayed; MDS1 is the axis that explains the most variation across the dataset, and MDS2 

is the axis that explains the second most variation across the dataset. Colors represent the plant species from which 

the sample was derived.  
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Figure 1.7: Three-dimensional NMDS ordination of bacterial OTU abundance with plant family overlay (stress = 

0.16). Only two axis are displayed; MDS1 is the axis that explains the most variation across the dataset, and MDS2 

is the axis that explains the second most variation across the dataset. Colors represent the plant family from which 

the sample was derived. Much of the overlap in the plant species ordination is explained by plant family, where in 

this ordination, fewer overlaps between groups occur. There appears to be a strong pattern of plant taxonomy, where 

samples belonging to the same species and plant family can be found occupying similar ordination space.  
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Effect of Site Location: Glacial Heritage Preserve and Smith Prairie 

 The results of this test address Chapter 1 hypothesis 2a, where it is expected that bacterial 

OTU composition will differ between Puget prairie plants taken from GHP and SM. Only four 

plant species were taken from both Glacial Heritage Preserve and Smith Prairie: Achillea 

millefolium, Castilleja levisecta, Eriophyllum lanatum, and Festuca roemeri. The conservative 

test for site location is summarized in Table 1.8, and the conservative test for species is 

summarized in Table 1.9. 

Table 1.8: PERMANOVA- Difference in OTU Composition of Achillea millefolium, Castilleja levisecta, 

Eriophyllum lanatum, and Festuca roemeri based on Species and Site Location as crossed terms. With Species as 

the first term in analysis and GHP.SM as the second term, this is the more conservative test for site location. Site 

location accounted for less than 1% of variation in the dataset, while differences in species accounted for 72% of the 

variation in the dataset. The p values for species and site location (p = 0.001 and p = 0.013, respectively) were 

smaller than alpha for both, thus there are significant differences in bacterial OTU composition between samples 

derived from Glacial Heritage Preserve and Smith Prairie and from different species. Interaction between GHP.SM 

and Species generated a p value of 0.118 which is larger than alpha, thus there is no interaction effect between 

GHP.SM and Species; species did not differ in the effect of site location. 

 DF Sum of Squares R2 F PR (>F) 

Species 3 27.548 0.72160 105.6168 0.001 

GHP.SM 1 0.303 0.00794 3.4883 0.013 

GHP.SM:Species 3 0.413 0.0108 1.5847 0.118 

Residual 114 9.912 0.25963   

Total 121 38.177 1   

 

Table 1.9: PERMANOVA- Difference in OTU Composition of Achillea millefolium, Castilleja levisecta, 

Eriophyllum lanatum, and Festuca roemeri based on Species and Site Location as crossed terms. With GHP.SM as 

the first term in analysis and Species as the second term, this is the less conservative test for site location. Site 

location accounted for 2% of variation in the dataset, while differences in species accounted for 71% of the variation 

in the dataset. The p values for site location and species (p = 0.001) were smaller than alpha, thus there are 

significant differences in bacterial OTU composition between samples derived from Glacial Heritage Preserve and 

Smith Prairie and from different species. Interaction between GHP.SM and Species generated a p value of 0.125, 

larger than alpha, thus there is no interaction effect between GHP.SM and Species; species did not differ in the 

effect of site location. 

 DF Sum of Squares R2 F PR (>F) 

GHP.SM 1 0.847 0.0222 9.7467 0.001 
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Species 3 27.004 0.70735 103.5306 0.001 

GHP.SM:Species 3 0.413 0.0108 1.5847 0.125 

Residual 114 9.912 0.25963   

Total 121 38.177 1   

 

 Both tests indicated that bacterial OTU composition varies among sites. The p value for 

the conservative site location test is larger than for the non-conservative test (p = 0.013 and 

0.001, respectively), and allows site location to account for a smaller amount of variation in the 

dataset (p = 0.8% and 2%, respectively). Even while allowing site location to account for as 

much variation as possible, site location still only accounts for a minimal amount of variation 

compared to species (2% compared to 71%, respectively). Although there are differences in 

bacterial OTU composition between samples taken from GHP and SM, these differences are 

largely eclipsed by the differences in species (Figure 1.8). The site x species interaction was not 

significant, indicating that compositional differences among sites were similar across all species. 
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Figure 1.8: Two-dimensional NMDS ordination of bacterial OTU abundance of Achillea millefolium, Castilleja 

levisecta, Eriophyllum lanatum, and Festuca Roemeri samples with site location overlay (stress = 0.07). MDS1 is 

the axis that explains the most variation across the dataset, and MDS2 is the axis that explains the second most 

variation across the dataset. Colors represent the sample location from which the sample was derived, shapes 

represent the species from which the sample was derived. Samples appear to group strongly by species and weakly 

by site location, which supports the findings of the PERMANOVA test. A. millefolium and E. lanatum sample 

clusters overlap, likely due to these species belonging to the sample plant family, Asteraceae.  

 

 

 

 



58 

 

 

Initial Restoration Treatments 

The results of this test address Chapter 1 hypothesis 2b, where it is expected that bacterial 

OTU composition will differ between Puget prairie plant species taken from plots that had 

received different initial disturbance treatments. The following PERMANOVA and pairwise 

tests were performed on samples taken from arrays within GHP. SM did not receive a 

disturbance regime fire/mow treatment, and thus was excluded from initial disturbance treatment 

analysis and disturbance regime analysis. Because statistically significant differences in bacterial 

OTU composition was found to be determined in large part based on plant species, further 

analysis was conducted on an individual plant species basis. Separate PERMANOVA tests were 

calculated for each plant species to examine the effect of initial disturbance treatment on 

bacterial OTU composition. Only 5 species, Aster curtisii, Castilleja levisecta, Cerastium 

arvense, Eriophyllum lanatum, and Festuca roemeri contained enough samples representative of 

each initial disturbance treatment type to perform the PERMANOVA tests; a summary of the 

samples used in these tests is available in the Methods section in Table 1.5 above. Summaries of 

the PERMANOVA tests are illustrated in the following tables (Tables 1.10-1.14). 

Table 1.10: PERMANOVA- Difference in OTU Composition of Aster curtisii based on initial disturbance treatment. 

Differences in bacterial OTU composition of Aster curtisii samples were tested on the basis of initial disturbance 

treatment groups. Initial disturbance treatment accounted for 14.0% of variation in the dataset. The p value ( p = 

0.44) was larger than alpha, thus there is not a significant difference in bacterial OTU composition between samples 

derived from plots with different initial disturbance treatments. 

 DF Sum of Squares R2 F PR (>F) 

Initial 

Treatment 

2 0.13431 

 

0.14025 

 

0.571 

 

0.44 

 

Residual 7 0.82334 

 

0.85975   

Total 9 0.95765 

 

1.00000   
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Table 1.11: PERMANOVA- Difference in OTU Composition of Castilleja levisecta based on initial disturbance 

treatment. Differences in bacterial OTU composition of C. levisecta samples were tested on the basis of initial 

disturbance treatment groups. Initial disturbance treatment accounted for 13.0% of variation in the dataset. The p 

value ( p = 0.296) was larger than alpha, thus there is not a significant difference in bacterial OTU composition 

between samples derived from plots with different initial disturbance treatments. 

 DF Sum of Squares R2 F PR (>F) 

Initial 

Treatment 

2 0.20172 

 

0.12978 

 

1.1185 

 

0.296 

 

Residual 15 1.35262 

 

0.87022 

 

  

Total 17 1.55435 

 

1.00000   

 

Table 1.12: PERMANOVA- Difference in OTU Composition of Cerastium arvense based on initial disturbance 

treatment. Differences in bacterial OTU composition of C. arvense samples were tested on the basis of initial 

disturbance treatment groups. Initial disturbance treatment accounted for 21.3% of variation in the dataset. The p 

value ( p = 0.025) was smaller than alpha, thus there is a significant difference in bacterial OTU composition 

between samples derived from plots with different initial disturbance treatments. 

 DF Sum of Squares R2 F PR (>F) 

Initial 

Treatment 

2 0.34435 

 

0.21331 

 

1.8981 

 

0.025 

 

Residual 14 1.26996 

 

0.78669 

 

  

Total 16 1.61431 

 

1.00000   

 

Table 1.13: PERMANOVA- Difference in OTU Composition of Eriophyllum lanatum based on initial disturbance 

treatment. Differences in bacterial OTU composition of E. lanatum samples were tested on the basis of initial 

disturbance treatment groups. Initial disturbance treatment accounted for 39.9% of variation in the dataset. The p 

value ( p = 0.128) was larger than alpha, thus there is not a significant difference in bacterial OTU composition 

between samples derived from plots with different initial disturbance treatments. 

 DF Sum of Squares R2 F PR (>F) 

Initial 

Treatment 

2 0.20732 

 

0.39945 

 

1.6628 

 

0.128 

 

Residual 5 0.31169 

 

0.60055 

 

  

Total 7 0.51901 

 

1.00000   
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Table 1.14: PERMANOVA- Difference in OTU Composition of Festuca roemeri based on initial disturbance 

treatment. Differences in bacterial OTU composition of F. roemeri were tested on the basis of initial disturbance 

treatment groups. Initial disturbance treatment accounted for 41.1% of variation in the dataset. The p value ( p = 

0.194) was larger than alpha, thus there is not a significant difference in bacterial OTU composition between 

samples derived from plots with different initial disturbance treatments. 

 DF Sum of Squares R2 F PR (>F) 

Initial 

Treatment 

2 0.20915 

 

0.41058 

 

1.7415 

 

0.194 

 

Residual 5 0.30025 

 

0.58942 

 

  

Total 7 0.50940 

 

1.00000   

 

Of these 5 tests, Cerastium arvense was the only species that indicated that there is a 

statistically significant difference in bacterial OTU composition based on initial disturbance 

treatment. A pairwise test was performed on the C. arvense dataset, where it was determined that 

there is a statistically significant difference in bacterial OTU composition between sites that 

received burn treatments versus solarize treatments, but no differences were detected between 

sites that received two year herbicide and burn treatments or differences between sites that 

received two year herbicide and solarization treatments. A two-dimensional NMDS plot was 

generated with just C. arvense bacterial OTU data, with an initial disturbance treatment and year 

of inception overlays (Figure 1.9). Summaries of the pairwise tests are illustrated in Table 1.22, 

Appendix 1.I. The differences between the burn treatments and solarize treatments are apparent. 

As the two-year herbicide treatment only had two representative samples, differences between 

two-year and the other treatments are not apparent in the NMDS nor statistically significant in 

the PERMANOVA and pairwise tests.  
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Figure 1.9: Two-dimensional NMDS ordination of bacterial OTU abundance of Cerastium arvense samples with 

initial disturbance treatment and Year of Inception overlays. MDS1 is the axis that explains the most variation 

across the dataset, and MDS2 is the axis that explains the second most variation across the dataset (stress = 0.125). 

Colors represent the initial disturbance treatment the plot that the C. arvense was taken from had received at the 

onset of the experiment. Shapes represent the year the intial disturbance treatment was applied to the plot. There is a 

statistically significant difference between the burn and solarize initial disturbance treatments, as illustrated in the 

pairwise test (p = 0.006). However, there is no statistically significant difference between two-year herbicide and 

burn treatments (p = 0.45), nor between two-year herbicide and solarize treatments (p = 0.61). 
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Disturbance Regime 

 The results of this test address Chapter 1 hypothesis 2c, where it is expected that 

bacterial OTU composition will differ between Puget prairie plant species taken from plots that 

had received different disturbance regime treatments. Because plant species accounts for 

considerable variation in bacterial OTU composition, this analysis was conducted separately for 

each of the three species present in all five disturbance regime treatments (Tables 15-17). Of the 

three species tested (Castilleja levisecta, Cerastium arvense, and Lomatium utriculatum), only C. 

arvense had a statistically significant difference in bacterial OTU composition based on 

disturbance regime (Table 16). A pairwise test identified differences in bacterial OTU 

composition between plots that were mowed annually and plots burned every three years in early 

summer. Additionally, statistical significance was determined between sites that were burned 

once every three years and later in the summer and sites that were burned every three years and 

early in the summer. No differences were detected between sites that received other disturbance 

regime treatments.  

A follow-up PERMANOVA test was performed on Cerastium arvense to determine if 

bacterial OTU composition relates to time since last treatment. All site treatments were included 

in this analysis. The results of this test were also significant; plots treated in 2017 differed from 

plots treated in 2018 (p = 0.044) and from plots treated in 2014 (p = 0.042). A summary of the 

pairwise test is illustrated in Appendix 1.I, Table 23. A two-dimensional NMDS plot was 

generated with just Cerastium arvense bacterial OTU data, with disturbance regime and date of 

last Treatment overlays (Figure 1.10). 
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Table 1.15: PERMANOVA- Difference in OTU Composition of Castilleja levisecta based on disturbance regime. 

Differences in bacterial OTU composition of C. levisecta samples were tested on the basis of initial disturbance 

treatment groups. Initial disturbance treatment accounted for 26.1% of variation in the dataset. The p value (p = 0.3) 

was larger than alpha, thus there not a significant difference in bacterial OTU composition between samples derived 

from plots with different initial disturbance treatments. 

 DF Sum of Squares R2 F PR (>F) 

Disturbance 

Regime 

4 0.40543 

 0.26084 1.1469 0.3 

Residual 13 1.14892 

 0.73916 
  

Total 17 1.55435 

 

1.000000   

 

Table 1.16: PERMANOVA- Difference in OTU Composition of Cerastium arvense based on disturbance regime. 

Differences in bacterial OTU composition of C. arvense samples were tested on the basis of initial disturbance 

treatment groups. Initial disturbance treatment accounted for 36.5% of variation in the dataset. The p value (p = 

0.014) was smaller than alpha, thus there is a significant difference in bacterial OTU composition between samples 

derived from plots with different initial disturbance treatments. 

 DF Sum of Squares R2 F PR (>F) 

Disturbance 

Regime 
4 0.58947 0.36515 1.7255 0.014 

Residual 12 1.02484 0.63485     

Total 16 1.61431 1     

 

Table 1.17: PERMANOVA- Difference in OTU Composition of Lomatium utriculatum based on disturbance 

regime. Differences in bacterial OTU composition of L. utriculatum samples were tested on the basis of initial 

disturbance treatment groups. Initial disturbance treatment accounted for 19.4% of variation in the dataset. The p 

value (p = 0.959) was larger than alpha, thus there not a significant difference in bacterial OTU composition 

between samples derived from plots with different initial disturbance treatments. 

 DF Sum of Squares R2 F PR (>F) 

Disturbance 

Regime 
4 0.039915 0.19363 0.3602 0.959 

Residual 6 0.166223 0.80637     

Total 10 0.206138 1     

 

Of these three tests, Cerastium arvense was the only that produced a statistically 

significant difference in bacterial OTU composition based on disturbance regime. A pairwise test 
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was performed on the C. arvense dataset, where it was determined that there is a statistically 

significant difference in bacterial OTU composition between sites that were mowed annually and 

sites that were burned every three years and in early summer. Additionally, statistical 

significance was determined between sites that were burned once every three years and later in 

the summer and sites that were burned every three years and early in the summer. No differences 

were detected between sites that received other disturbance regime treatments. A following 

PERMANOVA test was performed on C. arvense to test if differences in bacterial OTU 

composition are present between C. arvense plants taken from sites that last treated at different 

dates. The results of this test were also significant, where plots treated in 2017 differed from 

plots treated in 2018 (p = 0.044) and from plots treated in 2014 (p = 0.042). Summaries of the 

pairwise tests are illustrated in Table 1.23, Appendix 1.I. A two-dimensional NMDS plot was 

generated with just C. arvense bacterial OTU data, with disturbance regime and date of last 

treatment overlays (Figure 1.10). 
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CEAR NMDS with Disturbance Regime and Date of Last Treatment Overlays 

 

Figure 1.10: Two-dimensional NMDS ordination of bacterial OTU abundance of Cerastium arvense samples with 

disturbance regime and date of last treatment overlays. MDS1 is the axis that explains the most variation across the 

dataset, and MDS2 is the axis that explains the second most variation across the dataset (stress = 0.125). Colors 

represent the disturbance regime treatment the plot that the C. arvense sample was taken from had received 

throughout the experiment. Shapes represent the last year the disturbance regime treatment was applied to the plot. 

There is a statistically significant difference between the triannual early burn and the triannual late burn treatments, 

as illustrated in the pairwise test (p = 0.007). The date of last treatment differed for the triannual early burn and 

triannual late burn treatments, as these plots were located in different arrays (triannual late burn samples taken from 

plots treated exclusively in 2014, while triannual early burn plots were mostly treated in 2017 with one sample from 

a plot treated in 2018). There is marginal statistical significance between annual late burn and annual early burn (p= 

0.067), between triannual early burn and the annual mow treatments (p = 0.080), and between annual late burn and 

triannual early burn (0.067). However, there are no statistically significant differences between other treatments. 

This indicates a weak trend that the type of treatment (burning vs. mowing) and timing of the treatment (early vs. 

late) may have an affect on the bacterial OTU composition of C. arvense samples.  
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Discussion 

Previous studies have determined that plant species identity plays a major role in 

determining a plant’s internal bacterial community (Ding and Melcher 2016; Ding et al. 2013; 

Graner et al. 2003). There is considerable evidence to suggest that plants and bacteria -both 

beneficial and pathogenic bacteria - coevolved as a result of bacterial and plant cohabitation 

(Levy et al. 2017; Hassani et al. 2018), and while some bacteria have a narrow host range, others 

have a more broad host range and are able to colonize and influence growth in many plant 

species (Afzal et al. 2019). Thus far, only a small fraction of the bacterial communities 

comprising the microbiome of the total diversity of plant taxa in the world have been studied. 

This paper contributes to the knowledge of the bacterial communities of 16 additional plant 

species: Achillea millefolium, Aquilegia formosa, Aster curtisii, Balsamorhiza deltoidea, 

Castilleja levisecta, Camassia quamash, Cerastium arvense, Delphinium menziesii, Eriophyllum 

lanatum, Erigeron speciosus, Festuca roemeri, Lomatium utriculatum, Lomatium triternatum, 

Lupinus lepidus, Potentilla gracilis, and Symphoricarpos albus.  

The results of this study support previous research findings and my own hypothesis; most 

of the 16 Puget prairie species examined in this study retained distinct bacterial OTU 

communities, based on results of PERMANOVA and pairwise tests. Visualizations of the dataset 

with plant species and plant family overlay supports the results of the PERMANOVA and 

pairwise tests, where samples derived from the same species organized into semi-distinct groups. 

The plant species that did not retain distinct bacterial OTU communities were species that 

belonged to the same plant family, and thus share similar physiological and life history traits. It 

is possible that these shared traits between members of the same plant family create an interior 

environment of a plant that is suitable for not only bacteria able to colonize a wide diversity of 
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host plants, but also suitable for bacteria that coexist within a smaller range of host plants. Thus, 

plants belonging to the same plant family might be more capable of hosting similar bacteria than 

plants belonging to different families. With a larger sample size and fewer confounding variables 

(such as initial disturbance treatments and continuous disturbance regime treatments), it may be 

possible to further distinguish unique bacterial communities between species that belong to the 

same family. 

While it is evident that the bacterial OTU composition derived from a sample is largely 

determined by plant species, it is not yet evident which bacterial OTUs may be driving 

differences between these Puget prairie plant species. Further investigation of these data could 

include Indicator Species Analysis, which would identify any bacterial OTUs responsible for 

driving disproportionate differences in the bacterial OTU composition between species or family 

groups. Indicator Species Analysis has been used to examine the composition of microbiomes in 

previous studies and could be applied to this dataset (Cariveau et al. 2014). Information on 

indicator bacterial OTUs could be used to examine the coevolutionary history of a particular 

bacterial endophyte and a host plant species, as well as other significant physiological 

interactions between indicator bacterial endophytes and their host species, such as nutrient 

exchange, hormone production, and pathogen resistance (Dufrene and Legendre 1997; Zilber-

Rosenberg and Rosenberg 2008; Baltrus 2017). 

I theorized that there may be differences in the bacterial microbiome of Achillea 

millefolium, Castilleja levisecta, Festuca roemeri and Eriophyllum lanatum collected at GHP 

and SM, and found that there were statistically significant differences in the bacterial OTU 

composition of samples taken from GHP and SM. Observing NMDS ordinations of these four 

species, samples are clustered much more strongly by species than by site location (Figure 1.8). 
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Disregarding grouping based on species, it appears that the SM samples cluster closer together 

than GHP samples and are nested within the GHP samples. Many more samples were collected 

from GHP than from SM for all species except F. roemeri; it is likely that a more balanced 

sampling approach, with more samples collected from SM, could reveal stronger differences in 

the bacterial OTU composition of plant samples taken from GHP and SM. Given the statistical 

significance of my PERMANOVA test and observations drawn from the NMDS ordination, I 

conclude that there is an effect of sampling location on bacterial OTU composition within 

species. 

Many environmental factors play a role in determining the bacterial community 

composition within a plant. Soil chemistry is known to affect the soil microbial community, 

where pH favors certain bacterial species over others (Burns et al. 2015). As fire regimes alter 

soil chemistry, and many bacterial endophytes are derived from the soil, it follows that fire 

disturbance treatments applied to the sites may affect the composition of the bacterial endophyte 

community within plants. In a study of foliar endophytes residing in trees, wildfires were found 

to change the diversity, community structure and taxonomic composition of the bacterial 

endophyte community (Huang et al. 2016). This study only examined trees that were not killed 

after fire; their sampling pool included only trees that had survived surface defoliation and 

resprouted post-fire. Despite the differences in prairie and forested systems, it may be 

appropriate to compare these systems as prairie plant individuals often survive burns in a similar 

way, by relying on underground root systems to resprout after fire. 

Non-fire disturbances may also have the ability to affect bacterial endophyte composition 

as well. Herbicides eliminate target plants without removing biomass from the surface, and 

leaves behind residual chemicals in the soil that can persist long after the initial treatment of the 
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herbicide. Herbicides have been known to decrease the diversity, richness, and evenness of 

fungal leaf endophytes within soy plants and may be true for bacterial endophytes as well (Stuart 

et al. 2018). Solarization eliminates all plants under a surface, typically made of plastic, that uses 

heat and soil humidity to disrupt biological processes (Elmore et al. 1997). Soil moisture and 

temperature have been known for decades to determine the survival of soil microorganisms 

(Dunn et al. 1985). Mowing removes surface material typically above 1 inch from the surface of 

the soil, leaving soil properties relatively unchanged. Mowing has been shown to have mixed 

impacts on bacterial endophyte communities; in a study of grassland management techniques, 

bacterial endophyte communities within grasses were sometimes found to be affected by mowing 

and fertilizer treatments, but other grass species were resistant to changes due to mowing and 

fertilizer treatments (Wemheuer et al. 2017). Fire treatments, herbicide treatments, solarize 

treatments and mow treatments differ in their impact on living plant matter and soil properties, 

and in their immediate and long-term impacts on the plot they are applied to (Dickenson 2019; 

Bahm et al. 2011; Elmore et al. 1997). As bacterial endophytes largely depend on living plants 

and particular soil properties, it follows that changes in living plant matter and soil properties 

induced by disturbance treatments could affect bacterial endophyte communities that colonize 

the plants that regenerate after disturbance. 

As rhizosphere inhabiting bacteria are sensitive to soil and climate conditions presented 

by their immediate environment, it is of interest to observe if slight differences in the conditions 

of similar environments produce different soil bacteria communities. Glacial Heritage Preserve 

and Smith Prairie are approximately 95 miles apart, and the Puget Sound isolates Whidbey island 

from mainland Washington. While both Glacial Heritage Preserve and Smith Prairie host Puget 

prairie ecosystems, it is possible that their unique geographical locations and subsequent 
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differences in their soil, climate, and bacterial dispersal history could drive present day 

differences in the soil bacterial communities and thus differences in the bacterial communities 

comprising the interior microbiome of Puget prairie plant species.  

One key variable used in the study of disturbance treatments on the Puget prairie research 

plots is initial disturbance treatment. Solarization, two-year herbicide, and broadcast burning 

were applied to plots at the Glacial Heritage Preserve in 2009, 2010, and 2011. Results from 

PERMANOVA and pairwise testing indicates that, for Aster curtisii, Castilleja levisecta, 

Cerastium arvense, Eriophyllum lanatum, and Festuca roemeri samples collected from these 

plots, there were no differences in the bacterial OTU composition of samples taken from plots 

treated with two year herbicide and burning, nor differences in bacterial OTU composition from 

samples taken from plots treated with two year herbicide and solarization. For C. arvense alone, 

there was a significant difference between samples taken from plots treated with solarization and 

burning. These results indicate that there is a very weak effect, if any effect, of initial disturbance 

treatment on bacterial community composition. 

While the microenvironmental conditions within each plot were theorized to differ 

between plots due to initial treatment type, even when controlling for plant species, there was 

only one instance where initial disturbance treatment resulted in significantly different bacterial 

OTU composition for plants collected from different initial disturbance treatment plots. It is 

possible that initial disturbance treatment may only have a weak effect on bacterial community 

composition because of the large amount of time that has passed since the initial treatments were 

applied to the sites. Samples from these five species were collected in 2018, nearly a decade after 

some of the plots had been treated. It is likely that even long-lasting effects of these initial 

disturbance treatments, such as the impact of chemical herbicide and the alterations in soil 
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chemistry caused by broadcast burning, would have weakened with time. Given 7, 8 and 9 years 

for plants and bacteria to recover from the initial disturbance treatments, it is likely that initial 

differences in the bacterial communities between treatment plots have disappeared. Additionally, 

these treatments were only applied to each treatment site once throughout the course of the 

experiment, and while long term applications of herbicide treatments have been shown to impact 

the bacterial soil community, short term applications are likely to have a weaker effect (Seghers 

et al. 2003). Despite the significant differences in bacterial OTU composition observed between 

Cerastium arvense plants sampled from plots exposed to different initial disturbance treatments, 

I cannot conclude that there is either a consistent or strong effect of initial disturbance treatment 

on bacterial OTU composition several years after treatment application. 

Other key variables that were used in the study of disturbance on Puget prairie research 

plots were the frequency and seasonality of disturbance regime applied continuously to the plots 

after initial disturbance treatments. Burning and mowing disturbance regimes were applied to 

experimental plots on different set schedules, where plots were either burned annually, burned 

triannually, or mowed annually. Additionally, plots that were burned annually or triannually 

were also either burned early in the fire season or late in the fire season. Results from 

PERMANOVA and pairwise testing reveal that for Castilleja levisecta, Cerastium arvense, 

Eriophyllum lanatum, Festuca roemeri, and Lomatium utriculatum, there were no differences in 

bacterial OTU composition between plots that were either burned annually or burned triannually. 

Neither were there differences in plots that were either burned annually or mowed annually. 

However, for C. arvense alone, there were differences in bacterial OTU composition between 

plants collected from plots that were burned triannually at different times in the season (late vs. 

early) and differences in bacterial OTU composition from plants collected in  plots that were 
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burned triannually in early season and mowed annually. Within C. arvense plants collected at 

Glacial Heritage Preserve, plants in plots that received triannual early burn treatments and 

triannual late burn treatments retain statistically significant differences in bacterial OTU 

composition, and plants in plots that received triannual early burn treatments and annual mow 

treatments retain statistically significant differences in bacterial OTU composition. 

Bacterial communities are known to have different compositions based on the season in 

which the community is sampled. Application of disturbance treatments during different seasons, 

therefor, could alter bacterial communities in varying degrees. Plots that are burned in early 

season, for example, could disproportionately impact bacterial organisms that depend on early 

season conditions to complete their life cycles as compared to bacteria that rely more on later 

season conditions for their biological processes. Thus, differences in the bacterial OTU 

composition of Cerastium arvense samples collected from plots treated with either triannual 

early burn or triannual late burn could be due to the interference of important bacterial biological 

processes that occur during different seasons. However, it is unclear why there were only 

differences observed in triannual burns and not also in annual burns which were also burned on 

different seasonal schedule. Marginal significance was achieved between annual burn sites 

treated in early season and late season, indicating that a greater sample size could generate a 

stronger effect of seasonal burning on the bacterial OTU composition of C. arvense. Despite the 

significant differences in bacterial OTU composition observed between C. arvense plants 

sampled from plots exposed to seasonal burning disturbance treatments, I cannot conclude that 

there is either a consistent or strong effect of seasonal burning treatment on bacterial OTU 

composition. 
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Fire treatment frequency was also predicted to affect bacterial communities of Puget 

prairie plants. A previous study on soil bacteria and fire regime revealed that long-term, repeated 

fire disturbance (applied once every two years, once every four years, or not at all) had an effect 

on bacterial community structure driven by soil pH and C:N ratio factors; however, the 

abundance of bacteria in this study were not changed due to fire regime (Shen et al. 2016). The 

results of my study indicate that none of the five Puget prairie species tested revealed a 

statistically significant difference in bacterial OTU composition from samples derived from plots 

treated annually and triannually. Puget prairie ecosystems have encountered fire as a part of their 

disturbance regime for thousands of years as a practice implemented and maintained by 

indigenous peoples, and these prairie communities are resilient to frequent fires (Boyd 1999). It 

is likely that, as the organisms that occupy this landscape are adapted to a frequent fire regime, 

both the plant and their associated bacterial communities are able to quickly recover from fire 

disturbances. I conclude that there is no effect of fire frequency on bacterial OTU composition in 

these five prairie plants. 

Finally, it is unclear why only Cerastium arvense achieved statistically significant 

differences in bacterial community composition between any of the five treatments, while the 

other four plants did not. It is possible that the differences in bacterial OTU composition 

discovered within C. arvense samples taken from plots treated with different disturbance regimes 

are indicative of a larger trend, that disturbance regime, as a combination of the effects of 

seasonality, frequency of treatment, and fire vs. mow treatments, has an effect on bacterial 

community composition within plants. Although the sample sizes used in these tests were low 

(ranging from 7 to 17 degrees of freedom), the percentage of variation that the disturbance 

regime treatment accounted for in the data was notably high (ranging between 19% to 75% of the 
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variation). No other plants used in the study of disturbance treatments, besides C. arvense, were 

found to have significant differences in bacterial OTU composition of samples taken from plots 

that received different disturbance regime treatments. With a larger sample size, the effect of 

frequency of treatment (annual fire versus triannual fire), season of treatment (early burn versus 

late burn), and type of treatment (fire versus mow) would increase in accuracy and potentially 

illuminate statistically significant results in the bacterial composition of plants taken from plots 

receiving different treatments that were only previously observed in C. arvense. However, given 

the lack of consistent statistically significant differences in bacterial OTU composition on the 

basis of initial disturbance treatment and disturbance regime, I cannot conclude that there is an 

overall pattern of disturbance treatment driving bacterial OTU composition within plant species. 

Current research suggests that species of plants have co-evolved alongside their root 

nodule or other tissue-inhabiting bacterial endophytes, and have thus developed complex 

host/symbiont relationships which benefit both the host plant and the endophytic bacteria (Clay 

and Schardl 2002; Brooks et al. 2016; Levy et al. 2018). However, it is of particular research 

interest to examine if bacterial endophytes are able to be isolated from their original host plants 

and applied to target plant species which were not originally recognized as natural host plants. 

Bacterial endophytes that are able to be taken from their original host plants and transferred to 

non-host plants continue to provide plant growth promoting substances in some cases (Afzal et 

al. 2019). Further analysis of this dataset could lead to the discovery of bacterial endophytes 

existing in native prairie plant species which could be used in other systems to promote plant 

growth. Substantial and consistent increases in plant growth would help determine if inoculating 

plants with plant growth promoting endophytes could act as a potential means to reduce disease, 

increase nutrient uptake, and generally enhance the growth of target plants (Doty 2017).  
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Endophytic bacteria acting as biological control agents have been investigated for 

industrial application in agriculture, agroforestry, and plant nurseries (Rabiey 2019). Using 

endophytic bacteria to control pests such as nematodes, insects, pathogenic bacteria, and 

pathogenic fungi makes it possible to control pest populations while reducing or eliminating the 

need for artificial pesticides (Alström and Van Vuurde 2001). Large scale use of artificial 

pesticides has been found to be problematic in many instances, causing extensive ecological 

damage across many systems (Edwards 1993). Alternative modes of controlling plant pest 

populations have the potential to mitigate damage from pests without the negative impacts of 

artificial pesticides. The application of endophytic bacteria to target plants has been proposed as 

a potential alternative to chemical pesticides and studies have investigated the application of 

bacterial endophytes as biological controls in experimental investigations (Melnick et al. 2005; 

Mmbaga et al. 2018; Etesami et al. 2019). Initial research studies are encouraging; the 

application of endophytes in many studies and in many species of plants have demonstrated 

positive results. 

The data that has been collected to complete this thesis provides many more opportunities 

for investigation. Thus far, I have only examined large picture patterns in bacterial OTU 

composition that are present in these samples; moving forward, I could narrow my investigation 

to focus on individual bacterial OTUs using Indicator Species Analysis. In a brief exploration of 

the data, I found that several OTUs serve as “perfect indicators” for plant species, where an 

individual bacterial  OTU would be found in every sample derived from a single plant species 

and not found once in any other sample. Further applications of Indicator Species Analysis on 

this dataset could be used highlight what bacterial OTUs are likely to drive differences in 

bacterial OTU composition, and conversely, which bacterial OTUs are likely to be found 
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homogeneously across samples. Other analysis and further research questions inspired by this 

research include but are not limited to: investigating if reads or OTU count correlate with plant 

sample biomass; exploring if bacterial OTU composition differs within these species taken from 

different ecosystems; examining for differences in bacterial OTU composition across these 

species using a plant tissue other than stem (leaf, root).  

Our knowledge of native plant microbiomes may not only allow us to apply bacterial 

endophytes in more effective ways, but also to discover aspects of the earth’s ecosystems that 

remain unknown. The Earth Microbiome Project, an organization that collects and analyzes 

microbial diversity across the globe, is one such organization that is leading the study of the 

earth’s various microbiomes (Gilbert et al. 2014). The Earth Microbiome Project has led to the 

publication of at least 60 scientific papers across a various collection of fields, and is hailed as a 

source of data “predicated on the value of voyages of discovery” (Gilbert et al. 2011). Microbial 

data from an incredibly diverse set of systems, including the digestive system of carnivorous 

pitcher plants, ice-covered Antarctic lakes, the human gut microbiome, Komodo Dragon skin, 

and others provide only a small fraction of the data derived from the Earth Microbiome Project 

alone. With immense amounts of microbiome data available to scientists -now including my data 

on the microbiomes of 16 Puget prairie plant species- the possibilities for new research pursuits 

are expansive.  
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Appendix 1.D: 

UMGC Illumina Sequencing Protocol 

Three cycles of PCR are performed on the samples: qPCR, PCR1, and PCR2. qPCR was 

performed using the following cycling conditions: 

95ᵒC for 5 minutes 

35 cycles: 

 98ᵒC for 20 seconds 

 55ᵒC for 15 seconds 

 72ᵒC for 1 minute 

72ᵒC for 5 minutes 

Hold at 4ᵒC 

After qPCR, samples are normalized to 167,000 molecules/ul. 3 ul is used during PCR1. The 

Meta_V4_515F/Meta_V4_806R primer pairs are incorporated into the samples during PCR1. 

PCR1 was performed using the following cycling conditions: 

95ᵒC for 5 minutes 

25 cycles: 

 98ᵒC for 20 seconds 

 55ᵒC for 15 seconds 

 72ᵒC for 1 minute 

72ᵒC for 5 minutes 

Hold at 4ᵒC  

After PCR1, products are diluted 1:100 and 5 ul of this diluted product is used in PCR2. 

“Different combinations of forward and reverse indexing primers” is incorporated into the 

samples during PCR2. PCR2 was performed using the following cycling conditions: 

95ᵒC for 5 minutes 

10 cycles: 

 98ᵒC for 20 seconds 

 55ᵒC for 15 seconds 

 72ᵒC for 1 minute 

72ᵒC for 5 minutes 

The UMGC Sequencing protocol is as follows: 

“Pooled sample was denatured with NaOH, diluted to 8 pM in Illumina’s HT1 buffer, spiked 

with 15% PhiX, and heat denatured at 96C for 2 minutes immediately prior to loading. A MiSeq 

600 cycle v3 kit was used to sequence the sample.”  

Two fastq files were generated per sample, a pair of forward sequence and reverse sequence for 

each sample. Compressed fastq files (.gz) were made available for download from the UMGC. 

 

 



89 

 

 

Appendix 1.E: 

 

 

Phyla Number of OTU's

NA 3390

Firmicutes 1231

Proteobacteria 1166

Bacteroidetes 593

Actinobacteria 484

Cyanobacteria 161

Patescibacteria 74

Verrucomicrobia 68

Acidobacteria 42

Planctomycetes 42

Chloroflexi 23

Armatimonadetes 18

Tenericutes 15

FBP 12

Epsilonbacteraeota 9

WPS-2 6

Spirochaetes 5

Chlamydiae 4

Gemmatimonadetes 4

Thaumarchaeota 4

Deinococcus-Thermus 3

Euryarchaeota 3

Fusobacteria 3

Deferribacteres 2

Fibrobacteres 2

Lentisphaerae 1

Table 1.19: Total number of OTUs derived from all samples after 

removal of potentially contaminating OTUs. OTUs were commonly 

identified to the phyla, class, and order the OTU was assigned to. NA 

values indicate bacterial OTUs that could not be identified.  
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Class Number of OTU's

NA 3398

Clostridia 928

Alphaproteobacteria 627

Bacteroidia 593

Gammaproteobacteria 449

Actinobacteria 379

Bacilli 240

Oxyphotobacteria 154

Deltaproteobacteria 90

Saccharimonadia 74

Verrucomicrobiae 68

Erysipelotrichia 56

Thermoleophilia 49

Planctomycetacia 36

Acidimicrobiia 33

Acidobacteriia 28

Coriobacteriia 23

Mollicutes 15

Armatimonadia 11

Blastocatellia (Subgroup 4) 10

Class Number of OTU's

Campylobacteria 9

Chloroflexia 9

uncultured bacterium 9

Melainabacteria 6

Phycisphaerae 6

Fimbriimonadia 5

Negativicutes 5

Chlamydiae 4

KD4-96 4

Ktedonobacteria 4

Nitrososphaeria 4

Brachyspirae 3

Deinococci 3

Fusobacteriia 3

Methanobacteria 3

Subgroup 6 3

TK10 3

Anaerolineae 2

Deferribacteres 2

Fibrobacteria 2

Class Number of OTU's

Gemmatimonadetes 2

Limnochordia 2

Longimicrobia 2

Spirochaetia 2

Chthonomonadetes 1

Dehalococcoidia 1

Lentisphaeria 1

metagenome 1

Sericytochromatia 1

Thermoanaerobaculia 1

uncultured 1
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Order Number of OTU's

NA 3403

Clostridiales 928

Bacteroidales 263

Rhizobiales 229

Betaproteobacteriales 172

Sphingomonadales 164

Chloroplast 148

Enterobacteriales 129

Micrococcales 126

Lactobacillales 121

Bacillales 118

Cytophagales 111

Rickettsiales 95

Sphingobacteriales 91

Propionibacteriales 74

Pseudomonadales 74

Saccharimonadales 74

Chitinophagales 68

Flavobacteriales 60

Erysipelotrichales 56

Order Number of OTU's

Corynebacteriales 49

Acetobacterales 45

Frankiales 45

Verrucomicrobiales 39

Caulobacterales 36

Myxococcales 36

Solirubrobacterales 36

Microtrichales 30

Bdellovibrionales 28

Xanthomonadales 28

Chthoniobacterales 25

Isosphaerales 24

Coriobacteriales 23

Acidobacteriales 22

Micromonosporales 20

Rhodobacterales 20

Kineosporiales 17

Pseudonocardiales 17

Desulfovibrionales 14

Streptomycetales 14

Order Number of OTU's

Gaiellales 13

Legionellales 13

uncultured bacterium 13

Oligoflexales 12

Armatimonadales 11

Micavibrionales 11

Mollicutes RF39 10

Campylobacterales 9

Rhodospirillales 9

Bifidobacteriales 8

Blastocatellales 8

Pasteurellales 7

Thermomicrobiales 7

Gemmatales 6

Nostocales 6

Paracaedibacterales 6

Solibacterales 6

Tepidisphaerales 6

Fimbriimonadales 5

Gammaproteobacteria Incertae Sedis 5

Order Number of OTU's

Gastranaerophilales 5

Pirellulales 5

Selenomonadales 5

Streptosporangiales 5

Actinomycetales 4

Chlamydiales 4

Diplorickettsiales 4

Mycoplasmatales 4

Nitrososphaerales 4

Aeromonadales 3

Brachyspirales 3

Fusobacteriales 3

IMCC26256 3

Methanobacteriales 3

R7C24 3

Tistrellales 3

Alteromonadales 2

C0119 2

Caedibacterales 2

Cellvibrionales 2
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Order Number of OTU's

Deferribacterales 2

Deinococcales 2

Elsterales 2

Fibrobacterales 2

Gemmatimonadales 2

Kallotenuales 2

Ktedonobacterales 2

Limnochordales 2

Longimicrobiales 2

Methylacidiphilales 2

Oceanospirillales 2

Spirochaetales 2

uncultured 2

Alphaproteobacteria Incertae Sedis 1

Anaeroplasmatales 1

Ardenticatenales 1

Azospirillales 1

Cardiobacteriales 1

Chthonomonadales 1

DS-100 1

Order Number of OTU's

KF-JG30-C25 1

metagenome 1

Micropepsales 1

Opitutales 1

Piscirickettsiales 1

Planctomycetales 1

Pyrinomonadales 1

Reyranellales 1

S085 1

Salinisphaerales 1

SAR11 clade 1

SBR1031 1

Thermales 1

Thermoanaerobaculales 1

uncultured Acidobacteria bacterium 1

uncultured beta proteobacterium 1

Unknown Order 1

Vampirovibrionales 1

Vibrionales 1

Victivallales 1



93 

 

 

Appendix 1.F: 

Figure 1.11 Three-dimensional Stress Plot for Species and Family Ordinations 
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Appendix 1.G: 
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Appendix 1.H: 

 

Figure 1.12: Two-dimensional NMDS ordination of bacterial OTU abundance of Eriophyllum 

lanatum samples with site location overlay prior to the removal of sample 0439 (stress = 

8.520031e-05). MDS1 is the axis that explains the most variation across the dataset, and MDS2 

is the axis that explains the second most variation across the dataset. Colors represent the sample 

location from which the sample was derived. Stress for Eriophyllum lanatum was concerningly 

low, and thus the NMDS graph was unable to capture the spread of the datapoints. This plot 

exists to demonstrate how sample 0439 was identified as an outlier and removed from analysis.  

 

 



96 

 

 

 

Appendix 1.I: 

Table 1.21: Legend for Pairwise Tests 

 

 

 

Table 1.22: Initial Disturbance Regime Pairwise Test 

 

 

 

Table 1.23: Disturbance Regime Pairwise Test 

 

Table 1.24: Date of Last Treatment Pairwise Test 

 

 

 

 

  

PAIRWISE 2014 Treatment 2017 Treatment

2017 Treatment 0.046

2018 Treatment 0.319 0.009

Green

Red

Legend

Significant Result

Non-significant Result

PAIRWISE Burn Solarize

Solarize 0.006 N/A

Two Year 0.45 0.61

PAIRWISE Annual Early Burn Annual Late Burn Triannual Early Burn Mowed Annually

Annual Late Burn 0.0667

Triannual Early Burn 0.061 0.067

Mowed Annually 1 0.667 0.03

Triannual Late Burn 0.258 0.692 0.007 0.274
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Chapter 2:  Transfer of Bacteria between Castilleja Levisecta and Host Plants 

Abstract 

The Puget prairie ecosystem is a charismatic and ecologically important feature of North 

America’s Pacific Northwest ecosystems, but faces mounting threats from land use change, 

invasion of non-native plant species, and climate change. Solutions to these threats require 

enhanced knowledge of these systems, and novel approaches to the particular challenges that 

impede the recovery of prairie ecosystems. The interactions between plants and microbes are 

increasingly appreciated, as recent discoveries have placed a spotlight on the ways in which the 

bacterial microbiome influences plant growth. However, the bacteria community of many plant 

systems remains unexplored, as well as the ways in which bacteria may be traveling within these 

systems.  

I performed an observational field study to determine if bacteria are able to travel 

between hemiparasitic plants and their host plants using haustorial root connections. I used 

Illumina sequencing, CLC Workbench, and R technologies to investigate similarities between 

the bacterial community profiles of hemiparasitic plants and their hosts. I compared differences 

in bacterial Operational Taxonomic Unit (OTU) composition between parasitic plants and their 

(assumed) hosts, and parasitic plants and non-hosts, to examine if the microbial community 

could be influenced by Castilleja levisecta parasitism. For all trios capable of testing, regardless 

of species sample size, there was a significant effect of parasitism on bacterial OTU composition. 

I then tested individual plant species with large sample sizes; for Lomatium utriculatum and 

Eriophyllum lanatum, Host.Parasite Bray-Curtis distances are significantly smaller than 

NonHost.Parasite Bray-Curtis distances, indicating that the bacterial OTU composition of 

Castilleja levisecta and the host samples that were parasitized by a C. levisecta plant were more 
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similar to each other than C. levisecta and non-host samples. Although Balsamorhiza deltoidea 

and Festuca roemeri had non-significant differences between the Host.Parasite Bray-Curtis 

distances and NonHost.Parasite Bray-Curtis distances, their p values were small, suggesting that 

parasitism may have an effect on OTU composition; larger sample sizes are needed to strengthen 

this test. Finally, for Camassia quamash, the differences between the Host.Parasite Bray-Curtis 

distances and NonHost.Parasite Bray-Curtis distances were not significant by a large margin. 

The effect of parasitism appears to depend on a species by species basis, likely due to the 

efficacy of C. levisecta to parasitize certain species. The knowledge gained through this research 

will directly benefit land managers assisting the recovery of ecosystems containing parasitic 

plants, as well enhance our understanding of the ways in which bacteria use their associations 

with plants to colonize new environments. 
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Introduction 

Ecosystems that have been threatened and endangered by environmental degradation are 

of particular focus for ecological restoration. One such threatened system is the Puget prairie 

ecosystem, which exist in the Pacific Northwest region of the United States. These landscapes 

occur in Mediterranean climate systems, which experience hot, dry summers and mild, warm 

winters (Klausmeyer and Shaw 2009). Mediterranean prairies in the Pacific Northwest are rich in 

biodiversity, but have declined to less than 10% of their historical range (UFWS 2010). Altered 

fire regimes, land use change, climate change, invasions of non-native species, and habitat 

fragmentation, amongst other threats, imperil the survival of Puget prairie ecosystems. Without 

changes in management, it is likely that Puget prairie ecosystems will continue to decline and 

these systems may fail to persist into the future (Dunwiddie and Bakker 2011). As a result, 

natural resource management organizations across the Pacific Northwest have considered prairie 

ecosystems to be high priority areas for ecological restoration (UFWS 2010).  

Ecologists and land managers aiming to restore Puget prairie ecosystems have conducted 

research and experiments on Puget prairies for decades, accruing a wealth of information on 

subjects such as floral and faunal species composition, applications of land management 

techniques, interspecific interactions, the effects of land use change, and future projections for 

Puget prairie ecosystems, among other studies (Bachelet et al 2001; Stanley et al. 2011; Delvin 

2013; Klausmeyer & Shaw 2009; Dunwiddie and Bakker 2011). However, there remains a lack 

of knowledge of community interactions on smaller scales; the microbial ecology of Puget 

prairie ecosystems remains an understudied aspect of these systems. Bacterial endophytes and 

pathogens have been detected in the plant tissues of every plant ever surveyed for the presence of 

bacterial. These bacteria are known to interact with their hosts, and can have profound effects on 
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the health of individual plants. Thus, it is of critical importance to understand the microbial 

community of Puget prairie plants. 

Bacterial endophytes are known to occur in an extensive number of plant species, and 

have been recorded living in the space between cells within plant stem, leaf, and root tissues. 

Many of these stem and leaf inhabiting bacterial endophyte species have been determined to 

have nutrient provisioning plant growth promoting traits (Hardoim et al. 2008). The microbiome 

that can be found within the stem and leaf tissue is typically less diverse than that of root tissue, 

and generally hosts a smaller abundance of bacteria than root tissue (Zhang et al. 2019; Liu et al. 

2017). The majority of bacterial endophytes discovered within the plant tissue are derived from 

the surrounding environment, since vertical transmission (transmission of bacteria from parent 

plant to seed) is selective in the species of bacteria that colonize the seed (Walitang et al. 2018). 

The rhizosphere acts as a main contact zone for root inhabiting endophytes (Yan et al. 2016). 

Exposed entrances to inner plant tissues, such as stomata or wounds, allow both pathogenic and 

endophytic bacteria to colonize the intercellular space (Frank et al. 2017).  

Current research suggests that species of plants have co-evolved alongside their root 

nodule or plant tissue inhabiting bacterial endophytes, and have thus developed complex 

host/symbiont relationships which benefit both the host plant and the endophytic bacteria (Clay 

and Schardl 2002). However, it is of particular research interest to examine if bacterial 

endophytes are able to be isolated from their original host plants and applied to target plant 

species which were not originally recognized as natural host plants. Bacterial endophytes that are 

able to be taken from their original host plants and transferred to plants used in restoration efforts 

may continue to provide plant growth promoting substances. Substantial and consistent increases 

in plant growth due to inoculation with bacterial endophytes will help determine if inoculating 
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plants with plant growth promoting endophytes could act as a potential means to reduce disease, 

increase nutrient uptake, and generally enhance the growth of target plants.  

Bacterial endophytes use various methods to colonize host plants. Vertical transmission, 

where seeds, rhizomatous sprouts, and other forms of plant progeny are inoculated with a small 

number of endophytic species inherited by their parent plant, act as a plants first encounter with 

endophytic bacteria. While these first bacterial endophyte colonizers are able to assist plant 

growth to a certain degree, not many bacteria are transferred through vertical transmission 

compared to the number of bacterial endophytes acquired through entry points in the tissue that 

the plant develops later in life (Parke 1991). Horizontal transmission is the transfer of bacterial 

endophytes from the surrounding environment into plant tissues. Subsequent host plant 

inoculation of bacterial endophytes after first colonization (vertical transmission) typically 

occurs via recruitment of bacteria through entry points in the root, shoot and leaf as horizontal 

transmission (Bulgarelli 2013). Bacteria in the soil, and particularily those bacteria associated 

with the rhizosphere, are often the most common candidates for root colonization, as rhizosphere 

bacteria maintain positive symbiotic relationships with plants and occupy spaces closest to 

potential infection points in the root. As root hairs exit the epidermis of the main root, the hairs 

form gaps between the cell walls which allow opportunities for bacteria to enter the root tissue. 

From the root, bacteria can make their way into phloem or xylem and disperse further throughout 

the plant, making their way into stem and leaf tissues (Liu et al. 2017).  

Another horizontal transfer mechanism that bacterial endophytes use to colonize plant 

tissues is via the phyllosphere. Above ground plant tissues, including leaves, stems, flowers, and 

trunks, among other tissue types, comprise the phyllosphere. Entrances from the phyllosphere 

into the intercellular space within the plant are exploited by endophytic bacteria and pathogens 
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alike to colonize plants from the exterior environment. Common entrances that facilitate 

bacterial colonization include the stomatal organs in the leaf and open wounds caused by 

herbivores (Santoyo 2016). There is considerable evidence to suggest that plants are able to 

identify bacterial species, and intentionally exclude some bacteria from passage through the 

stomata (Frank et al. 2017). However, passage of bacteria through wounds are less controlled 

and thus more vulnerable to bacteria the plant would otherwise exclude from its intercellular 

space. The function of leaf tissue is naturally different from root or stem tissues, and plant leaves 

thus generally host a different microbiome than can be found throughout the same plants’ roots 

or stem tissues. 

A mechanism that has recently become a research focus is the transfer of endophytes 

directly from plant tissue to plant tissue. Parasitic plants form physical connections to their host 

plants, absorbing nutrients, growth hormones, defense hormones, and other crucial compounds 

from their host plants. These connections are typically formed by the parasite as it penetrates the 

host plant’s conductive system and absorbs compounds from the host plant phloem or xylem. 

Recent studies have discovered that bacterial endophytes may be among the compounds that a 

parasitic plant absorbs from its host plant, as endophytes have been discovered inhabiting plant 

phloem and xylem streams. In a recent study, Orobanche hederae, a holoparasite of Hedera 

species, was found to have a microbiome that was “derived but distinct” from the microbiome of 

its host plant, indicating that bacterial transfer between the plants had occurred during parasitism 

(Fitzpatrick and Schneider 2019). Additionally, in a study of holoparasitic Phelipanche 

aegyptiaca plants and its host Solanum lycopersicum, while the endophyte community of P. 

aegyptiaca was distinct from its host pre-parasitism, the P. aegyptiaca microbiome became 

indistinguishable from its host after parasitism, indicating that transfer of bacterial endophytes 
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was highly likely (Kruh et al. 2017). The pre-parasitism community of endophytes of P. 

aegyptiaca plants was determined by examining pre-haustorium stage seedlings. 

Castilleja levisecta is a threatened hemiparasitic plant species that inhabits native Puget 

prairie ecosystems (Schmidt 2016). C. levisecta parasitizes a wide range of host plants, forming 

root connections to host plants tethered by haustoria (Schmidt 2016). Essential nutrients, plant 

defense compounds, and other beneficial supplements are drawn from the host plant into the 

parasitizing C. levisecta in a similar way to other parasitic plant species. As bacterial transfer as 

been found to occur between other parasitic plants and their host plants, I hypothesized that 

bacteria may also transfer between C. levisecta and its host plants in the field. To test this 

hypothesis, I collected 387 samples from Puget prairie plants and examined the bacterial OTU 

composition of 5 potential host plant species. I collected samples from C. levisecta parasitizing 

host plants, the parasitized host plants, and non- parasitized plants belonging to the same species 

as the host plant in close proximity to C. levisecta and host pairs. After reviewing the scientific 

literature, I hypothesized that the bacterial OTU composition of C. levisecta parasites would be 

more similar to the bacterial OTU composition of their host plants than to non-hosts of the same 

species collected from the same local area.  
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Methods 

Study Area 

I studied two locations in western Washington State. The primary study site, from which 

the majority of the samples were collected, are research plots that had already been established in 

the Glacial Heritage Preserve (Figure 1.1). GHP is owned by Thurston County and the 

Washington Department of Fish and Wildlife, and managed by the Center for Natural Lands 

Management. The second study site is at Smith Prairie (SM), on Whidbey Island in Island 

County. SM is owned and managed by the Pacific Rim Institute for Environmental Stewardship. 

Experimental restoration plots were established at both sites about a decade ago (Figures 1.2, 

1.3).  Research plots were established for use as restoration experiments in July 2008 and are a 

part of an ongoing study of Puget prairie restoration. Site preparation and seeding mix differ 

between plots within the prairie; data on the plot that each plant sample was collected was 

recorded in the metadata. Plants removed from these plots would not have a detrimental impact 

on one of the few remaining natural Puget prairies existing in Washington State.  

Sample Collection and Selection 

In May and June 2019, 328 prairie plant stem samples were collected from GHP and 59 

samples were collected from SM. Each sample was either a leaf or a stem of a plant, but only 

stems were used in the set of samples submitted for sequencing. I recorded data on the date the 

sample was collected, its collection location (site, array, and plot number), and the taxonomic 

identity of the plant. Plant samples were taken from 16 different prairie plant species (Appendix 

1.C). However, only 5 species were examined from this dataset. 

The sampling process was as follows. Eight trips to the Glacial Heritage Preserve were 

made throughout the months of May and June. A healthy plant was identified and selected for 



105 

 

 

use in the field (plants with unknown identity were collected and preserved for later 

identification upon return to Seattle). Each sample was collected by taking a stem cutting of the 

plant with sterilized scissors, close to where the stem reaches the roots. As much stem material as 

could fit in one Eppendorf tube was collected. Samples were surface sterilized in the field to 

remove external bacteria that are present on the surface of the plant. Surface sterilization was 

performed by soaking the stem in 70% ethanol for 10 minutes then rinsing the plant in sterile 

water before placing the stem immediately in a sterile Eppendorf tube. Samples were temporarily 

preserved for transport in a cooler, and held for long term storage in -20ᵒC in an industrial freezer 

until they were processed. I attempted to collect at least 25 of samples from each plant species. 

However, due to the nature of the Puget prairie system, not all plant species occurred in the 

research plots in equal numbers. Erigeron speciosus and Symphoricarpos albus were among the 

species that were the most difficult to find, and thus I was unable to collect many samples from 

these species.  

Each sample was either denoted as a parasite (Castilleja levisecta plant samples), a host 

plant (a plant sample taken from within a 4-inch radius of a parasite that was collected), or non-

host plant (a plant sample taken further than 2 feet from any C. levisecta plant). Non-hosts were 

then assigned as “neighbors” to nearby host/parasite duo’s belonging to the same species as the 

host if the non-host and host/parasite were collected in the same plot or in a plot immediately 

adjacent to one another. Due to the nature of the Puget prairie system, not all plant species 

occurred in the research plots in equal numbers. 

Samples were screened for quality of preservation and relevance for the questions asked. 

Because there was a budgetary limit to the number of samples that I could sequence, I choose 

only to sequence samples that were well preserved in sterile conditions and that allowed me to 
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investigate my hypothesis. Plant samples that were stored in cracked Eppendorf tubes, samples 

that thawed before processing, and samples that were processed under questionably sterile 

conditions were not selected for sequencing by the UMGC. Additionally, samples from plants 

that had an abundance of replicates and samples from plant species that did not have enough 

replicates were not selected for processing or sequencing. The samples that were not selected for 

processing or sequencing, but that were still preserved in sterile conditions, were prepared for 

long term storage at -80ᵒC for potential use in future studies. Of the 328 samples that were 

collected from the Glacial Heritage Preserve, 293 were selected for processing and analysis. Of 

the 59 samples that were collected from the Smith Prairie, 42 were selected for processing and 

analysis. 13 negative controls (“Blanks”) were also submitted for sequencing to check for 

sterility during processing and sequencing of the plant samples. 

Sample Processing 

Samples were processed between September and December 2019. Plant samples were 

ground into powder by immersing the stems in liquid nitrogen and crushed using sterilized 

mortars and pestles. Mortars and pestles were only on one sample per batch, and were washed in 

hot water and wiped with paper towels soaked in 70% ethanol before being placed in 

autoclavable plastic bags and sterilized via autoclave after each use. In batches 1 and 2 (removed 

from analysis due to contamination), mortars and pestles were not autoclaved in plastic bags, and 

were instead autoclaved with tin foil sealing the top of the mortars and pestles wrapped in tin 

foil. Mortars and pestles were autoclaved in plastic bags after batches 1 and 2 were found to be 

contaminated, as it was thought that permeations in the tin foil could have allowed bacteria to 

contaminate samples from the lab environment. Samples were processed using the Qiagen 

DNeasy PowerSoil Pro Kit. After all samples were processed, the DNA extracts were thawed 
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and DNA concentration was calculated using a NanoDrop Spectrophotometer (ND1000). The 

NanoDrop Spectrophotometer readouts provide data on the quantity and purity of the nucleic 

acids present in each sample. A concentration of 1-100 ng/ul was required for sequencing; all 

samples were quantified, and no samples with lower than 1 ng/ul were present.  

 30 ul of each extract was loaded into 5 96-well plates. Samples were submitted to the 

University of Minnesota Genomics Center for sequencing. Based on established protocols 

developed by the Earth Microbiome Project, the sample extractions were sequenced using 

primers 515F/806R, targeting the hypervariable V4 region of the conserved 16s bacterial 

ribosomal RNA. The University of Minnesota Genomics Center completed indexing, library 

preparation and Illumina protocols for sequencing. The Miseq v3 Chemistry 2x300 sequencing 

platform was used to sequence pooled DNA. mPNA and pPNA blockers were used during 

sequencing to prevent mitochondria and chloroplast from interfering with sequencing. The 

UMGC workflow for sample processing is available in Appendix 1.D. 

Data Processing 

 The raw sequence reads were processed using a genomic pipeline generated in CLC 

Genomics Workbench 12.0.3, a data analysis package created by Qiagen. The Microbial 

Genomics Module for CLC Genomics Workbench software is designed to process and analyze 

“16s rRNA and other commonly used metagenome derived amplicon data.” (CLC Microbial 

Genomics Module User Manual). The Microbial Genomics Module was used to trim, filter, and 

cluster reads into OTUs. The process for read editing is described below. 

 First, I uploaded the forward and reverse paired-end Illumina files to Workbench. In the 

Import wizard, the import type was set to Paired Reads, the minimum distance was set to 200, 
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the maximum distance was set to 550, and quality scores associated with the reads were imported 

as well. Then, reads with quality scores less than 0.05 were trimmed. The Trim Reads tool was 

also used to trim ambiguous nucleotides with a maximum number of ambiguities set to 2. Reads 

shorter than 5 nucleotides in length were discarded.  

 The processed reads then were clustered into OTUs. Using the OTU Clustering tool, I 

chose to use the SILVA 16S v132 97% reference database, with the similarity percent specified 

by the OTU database option selected (Balvočiūtė and Huson 2017). 97% similarity is a standard 

value for microbial 16s analysis, although it should be noted that recent research has questioned 

the validity of this value (Stackebrandt and Ebers 2006). The creation of novel OTUs was 

enabled. An abundance table displaying the number of reads from each OTU discovered in each 

sample was generated by CLC Workbench and exported as a .csv file to R Studio for further 

examination. The R script for the following analysis can be found in Appendix 3.  

Statistical Analysis 

After processing the raw reads through the CLC Workbench genomic pipeline, I 

performed statistical analysis on my data. R Studio was used to perform the subsequent 

calculations, data transformations and statistical analysis. A file containing abundance data for 

each OTU present in each sample was exported to R Studio. This file was examined by multiple 

parties for errors and was cleaned prior to analysis. While rarefaction has been used in previous 

microbiome studies to normalize abundance data, this technique is no longer recommended for 

use as the reads, and the valuable information they contain, are lost in the process (McMurdie 

and Holmes 2014). Calle 2019 recommends analyzing microbiome abundance data alongside 

presence/absence of microbial OTUs within the same dataset, so the OTU abundance table 

generated in CLC Workbench was used to create a presence/absence table (Calle 2019). 
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 Each batch of samples (samples that were extracted using the same Qiagen kit on the 

same day) is associated with a negative control (a “Blank”) that acts as a way to detect 

potentially contaminating bacterial DNA. Bacterial DNA can contaminate samples by drifting 

from surfaces and into samples before or during processing. These blanks are processed 

alongside each batch in an attempt to capture OTUs that did not originate from a plant sample. 

Blanks 1 and 2 captured a large amount of contamination, likely due to improper sterilization 

techniques used on mortars and pestles. The process to sterilize mortars and pestles was adjusted 

after Blanks 1 and 2 revealed contamination; instead of autoclaving mortars and pestles in tin 

foil, they were instead autoclaved in autoclavable plastic bags that were sealed. Blank 1 

contained 723 OTUs and 31,007 total reads, while Blank 2 contained 702 OTUs and 27,264 total 

reads. These values are remarkably high compared to Blanks 3-13 which contained an average of 

58 OTUs and 3,354 total reads. The process to sterilize mortars and pestles was adjusted after 

Blanks 1 and 2 revealed contamination. Blanks 3-13 indicate that contamination was reduced as 

the total number of OTUs and total read abundance per blank decreased dramatically. Potentially 

contaminating bacterial OTUs and their respective abundances were used to filter contaminants 

from the batches of samples. Bacterial OTU reads recorded in each blank were subtracted from 

their respective batches; OTU abundances from Blank 1 were subtracted from Batch 1, OTU 

abundances from Blank 2 were subtracted from Batch 2, and so forth.  Negative values, where 

more reads were detected from any particular OTU were discovered in a blank than in a plant 

sample, were set to zero. OTUs which were not present in a blank were unaffected, and OTUs 

were only subtracted using their respective blanks. Because of the high prevalence of 

contamination in Blanks 1 and 2, all samples that were processed in batches 1 and 2 were 

excluded from all future analysis. 
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 Several distance measures have been suggested for use on metagenomic data. The Bray-

Curtis distance measure is commonly used with species composition data, however there are 

some noteworthy flaws in its application to microbiome data (Calle 2019). Microbiome 

abundance data is not strictly reflective of true species abundance, thus other distance measures 

such as the Aitchison distance measure and UniFrac distance measures are commonly 

recommended in scientific literature over the Bray-Curtis distance measure (Gloor et al. 2017). 

UniFrac measures have been used prolifically throughout the literature to calculate beta 

diversity. There are certain disadvantages to using UniFrac distance measures, however. Calle 

2019 argues that Unifrac is inappropriate for microbiome data as these measures are not sub-

compositionally dominant. Instead, Calle 2019 recommends the use of the Aitchison distance to 

analyze beta diversity. Given the advantages and disadvantages of these distance measures, the 

Bray-Curtis distance measure remains a robust statistical measure that continues to be applied in 

similar research endeavors and was thus chosen for use in this study (Maziarz et al. 2018).  

Data characteristics were explored in R Studio using R base code. Raw read data and data 

after removal of potentially contaminating bacterial OTUs were examined for potential outliers 

and problems. Because of the high prevalence of contamination in Blanks 1 and 2, all samples 

that were processed in batches 1 and 2 were excluded from all future analysis. Additionally, 

sample 0258 contained extraordinarily low OTU abundance and was thus excluded from all 

future analysis. Sites GHP- Mounded, GHP- Mounded 2, and GHP- Array were excluded from 

analysis because their locations within Glacial Heritage Preserve were not precise, and potential 

effects from spatial autocorrelation could not be controlled.  

To examine the similarity in bacterial OTU composition between a host plant and its 

respective Castilleja levisecta parasite, samples were grouped into trio’s: a host plant, it’s 
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parasite, and a non-host plant collected from within the plot same plot as the host/parasite pair or 

a neighboring plot. This analysis differs from tests used to examine the bacterial OTU 

composition on a species basis or site treatment basis; I am not testing to see if bacterial OTU 

composition between the host plant, non-host plant and parasite are significantly different or not. 

Instead, I am testing to see if the Bray-Curtis distance calculated between a host plant and it’s 

parasite are larger or smaller than the Bray-Curtis distance calculated between a non-host plant 

and it’s parasite. If these Bray-Curtis distances between host plants and their respective parasites 

are smaller than the distances between non-host plants and the same parasite, this would indicate 

that the bacterial OTU composition of the host plants are more similar to the parasite bacterial 

OTU composition that it would be otherwise. This would provide evidence that the parasite 

status of the sample could affect bacterial OTU composition, suggesting that bacterial transfer 

may occur between parasitic C. levisecta plants and their hosts. 

In tests performed in Chapter 1, it was determined that bacterial OTU composition within 

samples is largely shaped by the plant species the sample was derived from. Thus, further testing 

should incorporate methods to eliminate the effect the plant species has on bacterial OTU 

composition. To remove the element of plant species from the analysis of bacterial OTU 

composition between host plants, non-host plants, and parasitic plants, analyses were performed 

within species groups, with a Paired Sample T Test performed on all samples and separate Paired 

Sample T Tests performed on each species. Additionally, to eliminate the potential interference 

of spatial autocorrelation, each Host.Parasite pair was assigned a Non-host plant belonging to the 

same species as the host and either within the same plot or in a neighboring plot. Host.Parasite 

pairs that did not have a Non-host plant nearby (within the same plot or in a neighboring plot) 

were excluded from analysis.  
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In cases where multiple Non-host plants were classified as a neighbor of a Host.Parasite 

duo, the Host.Parasite pair was duplicated and paired with each Non-host plant. Bray-Curtis 

distances based on differences in bacterial OTU composition were calculated between hosts and 

their respective parasites (Host.Parasite) and between non-hosts and the parasite belonging to 

their respective trio (NonHost.Parasite). The Bray-Curtis distance measure was calculated using 

the vegdist() function in the vegan package (Oksanen et al. 2017). For host/parasite duo’s that 

were matched with several non-hosts, the Bray-Curtis distances for NonHost.Parasite were 

averaged; as the distance between the host and parasite would remain the same between these 

trio’s, the Host.Parasite value remained unchanged. Of the total 335 samples processed, 129 

were selected for use as trio’s. A summary of the Host.Parasite duo’s and the average distance of 

their trio groupings is available in Table 2.1. An extended summary of the samples and their full 

trio groupings is available in Appendix 2.A, Table 2.3. 

Table 2.1: Summary of Host.Parasite Duo’s, Sample ID’s, and Bray-Curtis Distances. 

Host/Parasite 

Sample Duo ID 

NonHost 

 Sample ID(s) 
Species 

Host.Parasite 

Bray-Curtis Distance 

NonHost.Parasite 

Bray-Curtis Distance 

0057_0056 0059 ACMI 0.946 0.933 

0124_0121 0167 ACMI 0.959 0.967 

0417_0416 0429, 0453 ACMI 0.982 0.956 

0092_0086 0102 AQFO 0.986 0.997 

0327_0326 0102 AQFO 0.894 0.998 

0139_0136 0130, 0140 ASCU 0.991 0.990 

0269_0265 0281, 0282, 0283  ASCU 0.926 0.942 

0094_0093 0101, 0244 BADE 0.952 0.978 

0236_0235 0101, 0244 BADE 0.947 0.967 

0243_0242 0101, 0244 BADE 0.880 0.961 

0334_0332 0182 BADE 0.938 0.972 

0077_0076 0080,  CAQU 0.996 0.995 

0088_0086 0103, 0104 CAQU 0.982 0.968 

0108_0105 0103, 0104 CAQU 0.982 0.971 

0227_0225 0234 CAQU 0.968 0.988 
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0266_0265 0274 CEAR 0.501 0.524 

0293_0290 0285 CEAR 0.469 0.478 

0312_0309 0285 CEAR 0.584 0.502 

0207_0201 0232 DEME 0.930 0.937 

0222_0220 0232 DEME 0.960 0.973 

0106_0076 0099 ERLA 0.873 0.956 

0123_0121 
0162, 0163, 0164, 

0165, 0166 
ERLA 0.954 0.957 

0194_0191 
0162, 0163, 0164, 

0165, 0166 
ERLA 0.810 0.811 

0238_0235 0099 ERLA 0.844 0.964 

0311_0309 0493 ERLA 0.799 0.849 

0331_0326 0099 ERLA 0.874 0.967 

0405_0403 0408 FERO 0.991 0.993 

0421_0420 
0424, 0430, 0431, 

0432, 0454 
FERO 0.994 0.995 

0423_0422 
0424, 0430, 0431, 

0432, 0454 
FERO 0.991 0.996 

0426_0425 
0424, 0430, 0431, 

0432, 0454 
FERO 0.995 0.995 

0489_0488 0490 FERO 0.989 0.995 

0091_0086 0100 LOUT 0.969 0.987 

0097_0093 0100 LOUT 0.952 0.986 

0109_0105 0100 LOUT 0.941 0.984 

0137_0136 0160, 0161 LOUT 0.951 0.981 

0089_0086 0135, 0302, 0303 LULE 0.984 0.898 

0096_0093 0135, 0302, 0303 LULE 0.968 0.985 

0125_0121 0120 POGR 0.944 0.988 

0213_0210 0233 POGR 0.888 0.871 

0202_0201 
0215, 0216, 0217, 

0218, 0219 
SYAL 0.703 0.933 

0212_0210 
0215, 0216, 0217, 

0218, 0219 
SYAL 0.794 0.967 

 

Data characteristics were explored in R Studio using R version 3.6.2 (R Core Team 

2019). Differences in the Bray-Curtis distance between Host.Parasite and NonHost.Parasite trio’s 

were tested using Paired Sample T Tests. Paired Sample T Tests were performed using the 
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t.test() function, which returns the T test statistic, degrees of freedom, p value, 95% confidence 

interval, and the mean of the differences. Alpha was set to a = 0.05. After the initial Paired 

Sample T Test performed on all Host.Parasite and NonHost.Parasite Bray-Curtis distances 

(including all species) was found to be significant, Paired Sample T Tests were performed on 

individual species groups. Species specific tests were only performed on plant species that had 

more than three trio’s (DF > 2); only Balsamorhiza deltoidea, Camassia quamash, Eriophyllum 

lanatum, Festuca roemeri and Lomatium utriculatum met this constraint. Achillea millefolium, 

Aster curtisii, Balsamorhiza deltoidea, Cerastium arvense, Erigeron speciosus, Eriophyllum 

lanatum, Festuca roemeri, Lomatium utriculatum, Lupinus lepidus, Potentilla gracilius and 

Symphoricarpos albus were excluded from analysis too few trio’s could be assembled. All 5 

species that passed the DF minimum test were combined in an additional test. Potentially 

contaminating bacterial OTUs were removed from the abundance dataset. Alpha was set to a = 

0.05. Differences in bacterial OTU composition between samples were then visualized using 

several variations of scatterplots. 
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Results 

The overall test, 5 Combo test, and individual Eriophyllum lanatum and Lomatium 

utriculatum tests support my hypothesis that the difference in bacterial community composition 

will be larger between Castilleja levisecta and a nearby non-host than between C. levisecta and 

its respective host plant. A summary table of the Paired Sample T Test results is illustrated in 

Table 2.2. 

Table 2.2: Paired Sample T Test- Difference in Bray-Curtis distance based on bacterial OTU composition between 

Host.Parasite and NonHost.Parasite groups. 

Species DF Mean of the Differences T Test Statistic PR (>T) 

All 42 -0.0232 -2.57 0.014 

5 Combo 22 -0.0279 -3.75 0.001 

BADE 3 -0.0404 -2.93 0.061 

CAQU 3 0.0016 0.21 0.849 

ERLA 5 -0.0581 -2.90 0.033 

FERO 4 -0.0027 -2.28 0.085 

LOUT 3 -0.0315 -6.12 0.009 

 

Difference in the Bray-Curtis distances between Host.Parasite and NonHost.Parasite 

groups is the difference of interest, as this comparison could indicate that the composition of 

bacterial OTUs within a species is, in part, shaped by the connection or lack of connection to a 

parasite. Based on the results of the Paired Sample T Tests, there are significant differences in 

the Bray-Curtis distances between Host.Parasite and NonHost.Parasite groups when testing 
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differences within all species (Figure 2.3). Additionally, there are significant differences in the 

Bray-Curtis distances between Host.Parasite and NonHost.Parasite groups with Lomatium 

utriculatum as a host plant (Figure 2.2). For Lomatium utriculatum, Host.Parasite Bray-Curtis 

distances are significantly smaller than NonHost.Parasite Bray-Curtis distances. This suggests 

that, for L. utriculatum, the bacterial OTU composition of Castilleja levisecta and L. utriculatum 

samples that were parasitized by a C. levisecta plant were more similar to each other than C. 

levisecta and L. utriculatum samples that were not parasitized by a C. levisecta plant. The result 

is similar for Eriophyllum lanatum; the bacterial OTU composition of C. levisecta and E. 

lanatum samples that were parasitized by C. levisecta were more similar to each other than C. 

levisecta and E. lanatum samples that were not parasitized. Although Balsamorhiza deltoidea 

and Festuca roemeri did not have significant differences between the Host.Parasite Bray-Curtis 

distances and NonHost.Parasite Bray-Curtis distances, their p values were still quite small (p = 

0.061 and p = 0.085, respectively). Finally, Camassia quamash had a large P value, indicating 

that the differences between the Host.Parasite Bray-Curtis distances and NonHost.Parasite Bray-

Curtis distances were not significant by a large margin. With all five of these species trios 

combined in the 5 Combo test, I found a significant effect of parasitism (Figure 2.1). 
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Figure 2.1: Scatterplot of Bray-Curtis distances. X axis: Bray-Curtis distances calculated between host plants and 

their respective parasites. Y axis: Bray-Curtis distances calculated between non-host plants and the parasite from 

their respective host/parasite duo. Data points are color coded by species. A 1x1 line was imposed onto the plot to 

assist with visualization of differences between Bray-Curtis distances; points that fall below the line are sample trios 

that have a larger difference in bacterial OTU composition between host plants and their respective parasites than 

between non-host plants and their respective parasites. Points that fall above the line are sample trios that have a 

larger difference in bacterial OTU composition between non-host plants and their respective parasites than host 

plants and their respective parasites. Figure illustrates data points used in the 5 Combo test (Table 2.2). 
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Figure 2.2: Faceted Scatterplot of Bray-Curtis distances. Plots were faceted for ease of visualization and 

interpretation. X axis: Bray-Curtis distances calculated between host plants and their respective parasites. Y axis: 

Bray-Curtis distances calculated between non-host plants and the parasite from their respective host/parasite duo. 

Data are faceted and color coded by species. A 1x1 line was imposed onto the plot to assist with visualization of 

differences between Bray-Curtis distances; points that fall below the line are sample trios that have a larger 

difference in bacterial OTU composition between host plants and their respective parasites than between non-host 

plants and their respective parasites. Points that fall above the line are sample trios that have a larger difference in 

bacterial OTU composition between non-host plants and their respective parasites than host plants and their 

respective parasites. All Eriophyllum lanatum samples fell close to or above the line, the differences in the bacterial 

OTU composition between host plants and their respective parasites are significantly smaller than the differences 

between non-host plants that their respective parasites. The Eriophyllum lanatum samples are not tightly clustered 

together, indicating that there is a small amount of variance in the difference in Bray-Curtis distances. All Lomatium 

utriculatum samples fell above the line; the differences in the bacterial OTU composition between host plants and 

their respective parasites are significantly smaller than the differences between non-host plants that their respective 

parasites. The Lomatium utriculatum samples cluster closely together, indicating that there is not much variance in 

the difference in Bray-Curtis distances. Figure illustrates data points used in the individual species tests (Table 2.2). 
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 Visualization of the scatterplots reveal that for most of the sample trio’s, the differences 

between the Bray-Curtis distances are small (clustered around the 1x1 line) and the Bray-Curtis 

distances themselves are relatively large (close to 1) (Figure 2.1). There are a few notable 

exceptions, however. Lomatium utriculatum trio data points, which has significantly smaller 

Host.Parasite Bray-Curtis values than NonHost.Parasite Bray-Curtis values, do not fall along the 

1x1 line and instead all fall above the line. Lomatium utriculatum sample data points also have 

significantly smaller Host.Parasite Bray-Curtis values than NonHost.Parasite Bray-Curtis values 

and fall on or above the 1x1 line. Although Balsamorhiza deltoidea was not found to have a 

statistically significant difference in Host.Parasite Bray-Curtis and NonHost.Parasite Bray Curtis 

distances, this difference is marginally significant, all data points lie above the 1x1 line, and may 

indicate that a larger sample size could lead to significantly different values.  

While Cerastium arvense did not have enough samples to investigate for an effect of 

parasitism (DF < 3), I discovered that C. arvense samples display an unusual pattern of 

Host.Parasite and NonHost.Parasite Bray-Curtis distances (Figure 2.3). In Chapter 1, it was 

determined that C. arvense and Castilleja levisecta have significantly different bacterial OTU 

compositions. In an NMDS analysis of the data, however, C. levisecta and C. arvense were 

observed to occupy a similar space in a three-dimensional ordination. Additional evidence that 

C. arvense and C. levisecta samples are similar was indicated in Chapter 2; a scatterplot of Bray-

Curtis distances of all samples, regardless of the sample size for each species, revealed that C. 

arvense stands out from the other samples (Figure 2.3). The Bray-Curtis distances for both the 

Host.Parasite and NonHost.Parasite were both much smaller than Bray-Curtis distances for C. 

arvense trio’s any other species trio’s. Although C. levisecta and C. arvense have significantly 

distinct bacterial OTU compositions, the small Bray-Curtis distances calculated between both 
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Host.Parasite and NonHost.Parasite groups indicates that the bacterial OTU composition of C. 

arvense is especially similar to C. levisecta.  

 

Figure 2.3: Scatterplot of Bray-Curtis distances, including untested trio data points from 13 species. X axis: Bray-

Curtis distances calculated between host plants and their respective parasites. Y axis: Bray-Curtis distances 

calculated between non-host plants and the parasite from their respective host/parasite duo. Data points are color 

coded by species. Points that are closer to zero have both hosts and non-hosts with a similar bacterial OTU 

composition to their respective Castilleja levisecta parasite. Note that C. arvense data points fall much closer to zero 

than any other data point. Figure illustrates data points used in the All species trios test (Table 2.2). 
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Discussion 

 The study of the plant microbiome in relation to plant parasitism is a new and quickly 

developing field, and this study is perhaps the first to investigate the influence of a hemiparasitic 

plant on the plant microbiome. This work contributes to our understanding of the interactions 

between plants and the bacteria that reside within them. Vertical transmission -the transfer of 

bacteria from the surrounding environment to the plant interior- is theorized to occur between a 

plant parasite and a plant host as a result of parasitism. This theory was tested for the first time 

between hemiparasitic plant Castilleja levisecta and five of its potential host plants: 

Balsamorhiza deltoidea, Camassia quamash, Eriophyllum lanatum, Festuca roemeri, and 

Lomatium triternatum.  

 As the root connections between Castilleja levisecta and its host plants could provide a 

pathway for bacterial transfer, I theorized that the microbiomes of C. levisecta and plants that it 

had parasitized would be more similar than the microbiomes of C. levisecta and a nearby, non-

parasitized plant of the same species. To test for similarity and dissimilarity, Bray-Curtis 

distance measures were used to calculate the differences in bacterial microbiome composition 

between host plants and parasites, and between non-host plants and parasites. As bacterial 

transfer was expected between host plants and plant parasites and not between plant parasites and 

non-host plants, the Bray-Curtis distance between host plants and parasitic plants were expected 

to be smaller than the Bray-Curtis distance between parasitic plants and non-host plants. 

However, after conducting Paired Sample T tests for each species, only Lomatium utriculatum 

and Eriophyllum lanatum were found to have statistically significant differences in the Bray-

Curtis distances of host plants and parasitic plants and Bray-Curtis distances of non-host plants 

and parasitic plants.  



122 

 

 

 Interestingly, Cerastium arvense samples have remarkably low Bray-Curtis distances for 

both host/parasite and non-host/parasite pairs. While all other species have Bray-Curtis distance 

values larger than 0.8, the C. arvense Bray-Curtis values are all smaller than 0.6. This indicates 

that the bacterial OTU composition of C. arvense samples are more similar to the Castilleja 

levisecta microbiome than the other species. In Chapter 1, it was determined that C. arvense and 

C. levisecta have significantly different microbiomes (Table 1.22). However, in an NMDS 

ordination of the data with species overlay, C. arvense and C. levisecta samples are clustered 

closely together (Figure 1.6). Both C. levisecta and C. arvense have a larger portion of their 

microbiome comprised by Proteobacteria, relative to bacteria of other phyla that comprise the 

microbiome of the other plant species. In previous analysis, it was determined that there are often 

similarities in the bacterial OTU composition between plants of different species that belonging 

to the same plant family; despite this observation, C. arvense belongs to the Caryophyllaceae 

family, and C. levisecta belongs to the Orobanchaceae family. The closes taxonomic 

classification that C. levisecta and C. arvense share is class, where both belong to 

Magnoliophyta. However, most other prairie species tested in this study (with exception to 

Camassia quamash and Festuca roemeri) belong to Magnoliophyta yet retain significant 

differences in their bacterial community composition; it is unlikely that traits shared across 

Magnoliophyta alone led to the similarities between C. levisecta and C. arvense. 

 Because many samples could not be used in analysis due to the contamination of batches 

1 and 2, and because the scaled-up plots were excluded from analysis as the distance between 

parasite/host duo’s and non-hosts were large, the sample size used in this analysis was small. 

Each Castilleja levisecta plant sampled had to have parasitized at least one plant, and only plants 

that were closer than 4 inches were considered to be host plants. Additionally, a non-host plant of 
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the same species had to be sampled from a nearby plot, but further than 2 feet from the C. 

levisecta and its host plant. These conditions are quite stringent, and could not be found naturally 

occurring in the study area with great frequency. The significant result of Lomatium utriculatum 

and Eriophyllum lanatum indicate that there may be an influence of parasitism on the bacterial 

microbiome of host plants, the parasite, or both. Balsamorhiza deltoidea and Festuca roemeri 

were marginally significant, with P values that fell just short of 0.05 (0.061 and 0.085, 

respectively); a larger sample size could strengthen this test and determine if there is an effect of 

parasitism for these species. In contrast, Camassia quamash had a high P value (0.89), indicating 

that there was not an effect of parasitism for this species. 

 Eriophyllum lanatum and Festuca roemeri are well established in the scientific literature 

as host plants for Castilleja levisecta (Schmidt 2016). However, Balsamorhiza deltoidea, 

Camassia quamash, and Lomatium utriculatum have not been examined for their compatibility 

to serve as host plants for C. levisecta. The ability for these plants to serve as host plants for C. 

levisecta is likely, in part, due to the morphology of their root systems (Demey et al. 2014). E. 

lanatum and F. roemeri have thin roots that spread widely close to the surface of the soil. In 

contrast, B. deltoidea has thick tap roots that deeply penetrate the soil. Lomatium utriculatum 

roots are somewhat thick and carrot like. C. quamash is a bulb-forming plant, with blubs forming 

several inches deep (typically 4-6 inches) in the soil and has thin, short roots that extend from the 

base of the root (Stevens et al. 2000). It is possible that C. quamash did not indicate an effect of 

parasitism in the Pairwise test because the C. quamash plants chosen as “host plants” weren’t 

actually parasitized; the root system of C. quamash is small and lies beneath the bulb, possibly 

impeding C. levisecta haustoria formation. C. quamash plants even within 4 inches of C. 

levisecta may not have been parasitized. Achillea millefolium performed well as a host plant in a 
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study of C. levisecta host plant interactions (Schmidt 2016); future studies on bacterial transfer 

between C. levisecta and host plants would be advised to use A. millefolium as a model host 

plant. Additionally, future studies in this system could expand on our understanding of which 

plants frequently act as host plants for C. levisecta and which do not, how root structures play a 

role in the ability of C. levisecta to form haustorial root connections, and subsequently which 

plants may be facilitating the transfer of bacteria between C. levisecta and host plants. 

Although the study of the plant microbiome in relation to plant parasitism is a new and 

developing field, this study is not the first to investigate the influence of plant parasitism on host 

and parasite microbiomes. In a study of holoparasitic Orobanche hederae and its host species, 

Hedera spp., Fitzpatrick and Schneider 2019 discovered that although O. hederae parasites retain 

a distinct microbiome from their host plants, host plants and parasites shared many bacterial 

species (Fitzpatrick and Schneider 2019). Fitzpatrick and Schneider 2019 argue that only 

microbiome of the parasitic plant is significantly influenced by parasitism as opposed to a more 

equal sharing of bacteria between host and parasite, as haustoria facilitate unidirectional flow of 

phloem and thus a unidirectional flow of bacteria from host plant to parasitic plant.  

 While the obligate parasite in Fitzpatrick and Schneider’s study was found to have a 

distinct microbiome from its host plant, this is not always the case. In a study of holoparasitic 

Phelipanche aegyptiaca and its host plant Solanum lycopersicum, the microbiomes of P. 

aegyptiaca and S. lycopersicum were found to be indistinguishable after parasitism (Kruh et al. 

2017). The bacterial microbiome of the seed and prehaustorium stage of the parasite were 

distinct from the host plant, indicating that the microbiomes of the parasite and host plant shifted 

after parasitism, indicating that bacterial transfer is likely the cause of microbiome similarity and 

not due to natural similarity in microbiomes between P. aegyptiaca and S. lycopersicum. 
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Additionally, the community composition of both the host plant and parasite shifted after 

parasitism, indicating that bacterial exchange occurred between both the parasite and the host 

plant as a bidirectional exchange of bacteria. 

 A crucial aspect that makes this study difficult to compare with the findings of previous 

parasitic plant microbiome studies is that Castilleja levisecta is a hemiparasite: a parasitic plant 

that only derives part of its essential compounds from a host plant, but that retains its own root 

system and photosynthetic capabilities. Fitzpatrick and Schneider 2019 and Kruh et al. 2017 

performed their studies on the transfer of bacteria between holoparasites and their hosts. These 

obligate parasitic plants are entirely dependent on their host plants for essential compounds and 

do not maintain their own root systems (Těšitel 2016). As C. levisecta maintains a root system 

that contacts the soil, it is likely that more of the microbiome of this hemiparasite is derived from 

the surrounding environment than the microbiome of a holoparasite, as the root/soil interface is a 

critical source of bacterial endophytes for plants with root systems.  

 There are elements of the study design and the biology of the plants investigated that 

make bacterial transfer between plants difficult to observe. First, it is difficult and impractical to 

confirm parasitism between Castilleja levisecta and its host plants in the field. Confirming 

parasitism would require digging up the C. levisecta and the host plant and observing the roots 

for haustorial connections, which are small and delicate. This process would damage the C. 

levisecta plant, which should be avoided unless absolutely necessary to protect this threatened 

species. C. levisecta roots are typically only a few inches in length, thus plants that are assumed 

to be hosts were collected from at most 4 inches from a C. levisecta plant, ideally much closer in 

all circumstances and especially closer for C. levisecta plants of smaller size. Additionally, plants 

labeled as hosts were done so based on the proximity of above ground vegetation, but below 
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ground root structures may be smaller or pointed in a different direction. While the collection 

method attempted to reduce the potential that plants near the C. levisecta were not parasitized, 

without directly confirming parasitism, it is still possible that samples identified as host plants 

were not actually parasitized. Mistaking nearby plants as parasitized hosts would confound the 

results of the Paired Sample T Tests and lead to incorrect conclusions about the transfer of 

bacteria between C. levisecta parasites and their host plants. A follow up laboratory test, with C. 

levisecta plants and its hosts in pots that could be directly observed for parasitism, would 

improve the accuracy of the findings.  

 As it is still possible that differences in soil condition and subsequent regional differences 

in soil bacteria communities could influence the microbiome of plants throughout the prairie 

study site, a laboratory experiment with controlled soil conditions would also control for 

differences in bacterial OTU composition based on microclimate (Martiny 2006). Arranging a 

laboratory experiment to examine bacterial exchange would eliminate the need to determine 

trio’s based on their collection site, as they were in the field. A laboratory experiment to directly 

observe the transfer of bacteria from host plant to plant parasite was originally designed as a part 

of this thesis. A bacterial endophyte was derived from Achillea millefolium and electroporated 

with a gene to generate glowing compounds. Sterile Castilleja levisecta and A. millefolium were 

to be grown in magenta boxes in agar, and A. millefolium was to be inoculated with the 

fluorescent endophyte. After a span of a few weeks, the C. levisecta and A. millefolium were to 

be harvested and investigated for the presence of the bacterial endophyte using both genetic 

sequencing and observation of the fluorescent compounds within the bacteria. Complications and 

delays due to equipment malfunctions and coronavirus safety precautions prevented me from 

completing this experiment. 
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 Although observing the similarities in bacterial OTU composition between hosts and 

parasites provides evidence to suggest that parasitism affects the microbiome of hosts or 

parasites, it does little to illuminate the processes that drive these shifts in the microbiome. It is 

possible that parasitism only has an effect on the microbiome of the parasite, as bacteria travel 

through the phloem and initiates a unidirectional transfer of bacteria. However, it is possible that 

parasitism affects both the host plant and the parasitic plant, with a bidirectional transfer of 

bacteria through the haustorial root organs that connect the plants. The laboratory experiment, 

where parasitism can be directly observed, can also be used to observe the direction of microbe 

transfer. Castilleja levisecta and host samples can be collected before and after parasitism, and 

shifts in the bacterial community composition of C. levisecta, host, neither or both microbiomes 

will indicate if bacterial transfer occurs and if this transfer is unidirectional or bidirectional.  

 An abundance of research opportunities relevant to this endeavor are worth further 

exploration. A follow up study examining these 16 plant species in a laboratory study where 

parasitism could be directly observed would also strengthen these research findings. Alternative 

Castilleja levisecta hosts may be worth investigation for the transfer of bacteria; Danthonia 

californica and Deschampsia caespitosa were found to act as excellent hosts for C. levisecta 

(Schmidt 2016), though they were not studied as a part of my thesis. It will be of great 

importance to establish the direction of bacterial transfer between host plants and parasites, as 

recent research findings contradict the theory that the unidirectional transfer of phloem from the 

host plant to the plant parasite also lends to a unidirectional transfer of bacteria in the same 

direction (Fitzpatrick and Schneider 2019; Kruh 2017). Laboratory studies may be able to not 

only determine the direction of bacterial transfer, but also determine the rate of bacterial transfer 

between C. levisecta and its host plants. Finally, it may be of interest to examine if certain 
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bacterial taxa are more prone to transfer and colonization in new plant hosts than other bacterial 

taxa; bacterial taxa with broader host plant ranges may successfully establish more often in 

plants connected via parasitism than bacterial taxa with smaller host plant ranges. 
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Appendix 2 

Table 2.3: Trio groups with their respective sample numbers derived from a host plant, non-host 

plant, and parasitic plant. Trio’s were organized by host plants sampled within four inches of a 

parasitic Castilleja levisecta plant which was also sampled, and associated with a nearby host 

plant of the same species that was sampled no closer than 2 feet to the parasite and host plant and 

sampled either within the same plot as the parasite and host or from a neighboring plot.  

Trio ID Host Non-host Parasite 

ACMI1 0124 0167 0121 

ACMI2 0057 0059 0056 

ACMI3 0417 0429 0416 

ACMI4 0417 0453 0416 

AQFO1 0092 0102 0086 

AQFO2 0327 0102 0326 

ASCU1 0139 0140 0136 

ASCU3 0269 0282 0265 

ASCU4 0269 0283 0265 

ASCU5 0269 0281 0265 

ASCU6 0139 0130 0136 

BADE1 0094 0244 0093 

BADE2 0094 0101 0093 

BADE3 0236 0101 0235 

BADE4 0236 0244 0235 

BADE5 0243 0101 0242 

BADE6 0243 0244 0242 

BADE7 0334 0182 0332 

CAQU4 0077 0080 0076 

CAQU5 0088 0103 0086 

CAQU6 0088 0104 0086 

CAQU7 0108 0103 0105 

CAQU8 0108 0104 0105 

CAQU9 0227 0234 0225 

CEAR3 0266 0274 0265 

CEAR4 0266 0285 0265 

CEAR5 0266 0285 0265 

CEAR6 0312 0307 0309 

CEAR7 0293 0285 0290 

CEAR8 0293 0286 0290 

DEME1 0207 0232 0201 

DEME2 0222 0232 0220 

ERLA4 0106 0099 0076 

ERLA5 0123 0162 0086 

ERLA6 0123 0163 0086 
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ERLA7 0123 0164 0105 

ERLA8 0123 0165 0105 

ERLA9 0123 0166 0225 

ERLA10 0194 0162 0191 

ERLA11 0194 0163 0191 

ERLA12 0194 0164 0191 

ERLA13 0194 0165 0191 

ERLA14 0194 0166 0191 

ERLA15 0238 0099 0235 

ERLA16 0311 0493 0309 

ERLA17 0311 0099 0326 

FERO1 0421 0424 0420 

FERO2 0421 0430 0420 

FERO3 0421 0431 0420 

FERO4 0421 0432 0420 

FERO5 0421 0454 0420 

FERO6 0423 0424 0422 

FERO7 0423 0430 0422 

FERO8 0423 0431 0422 

FERO9 0423 0432 0422 

FERO10 0423 0454 0422 

FERO11 0426 0424 0425 

FERO12 0426 0430 0425 

FERO13 0426 0431 0425 

FERO14 0426 0432 0425 

FERO15 0426 0454 0425 

FERO16 0489 0490 0488 

FERO17 0405 0408 0403 

LOUT1 0091 0100 0086 

LOUT2 0097 0100 0093 

LOUT3 0109 0100 0105 

LOUT4 0137 0161 0136 

LOUT5 0137 0160 0136 

LULE1 0089 0135 0086 

LULE2 0089 0302 0086 

LULE3 0089 0303 0086 

LULE4 0096 0135 0093 

LULE5 0096 0305 0093 

LULE6 0096 0135 0093 

POGR1 0125 0120 0121 

POGR2 0213 0233 0210 

SYAL1 0202 0215 0201 

SYAL2 0202 0216 0201 

SYAL3 0202 0217 0201 
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SYAL4 0202 0218 0201 

SYAL5 0202 0219 0201 

SYAL6 0212 0215 0210 

SYAL7 0212 0216 0210 

SYAL8 0212 0217 0210 

SYAL9 0212 0218 0210 

SYAL10 0212 0219 0210 
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Conclusion 

 The study of the plant microbiome offers many fascinating research opportunities and 

pathways of exploration. My research has led me to explore the microbiome of 16 Puget plant 

species that had yet to be surveyed for their bacterial microbiome compositions, and to 

investigate the ways in which bacteria may be using a Puget prairie hemiparasitic plant as a “root 

connection highway” to travel across the prairie landscape. In Chapter 1, I discovered that plant 

species generally host different bacterial OTU compositions, which are distinct from the OTU 

compositions of many other species. However, I also discovered that plant species which did not 

have different bacterial OTU compositions belonged to the same plant family, indicating that 

similarities in traits shared within plant families could lead plants to host similar bacterial 

communities. Also in Chapter 1, I investigated the differences in bacterial OTU composition 

within plant species derived from two different study sites. I hypothesized that the bacterial OTU 

composition of plants derived from Glacial Heritage Preserve would differ from the bacterial 

OTU composition of plants derived from Smith Prairie, and found that there were statistically 

significant differences between the two study sites. While it was theorized that disturbance 

regimes would alter the soil conditions of research plots and consequently impact the soil 

microbiome, leading plants taken from different treatment plots to retain different bacterial OTU 

compositions, I found that neither initial disturbance treatments (applied in 2009, 2010, or 2011) 

nor disturbance regime treatments (applied on different, continuous schedules throughout the 

decade) had an effect on the bacterial OTU composition of plant species except for Cerastium 

arvense. For Cerastium arvense alone, there were differences in bacterial OTU composition 

between plants collected from burn and solarize initial disturbance treatments, and differences in 

bacterial OTU composition between plants collected from triannual early burn and triannual late 

burn disturbance regime treatments.  
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 I further explored the interconnections of the plant microbiome by investigating the 

relationship between plant parasitism and bacterial OTU composition between host plants, 

parasitic plants, and non-host plants. I found that, for two of the five species tested, the 

differences in bacterial OTU composition between host plants and their respective parasites were 

smaller than the differences in bacterial OTU composition between non-host plants and their 

respective parasites. This provides some evidence to suggest that transfer of bacteria between 

parasitic plants and host plants via haustorial root connections may occur in the field. However, 

these results must be taken with a grain of salt as parasitism could not be confirmed in the field, 

and I was unable to directly observe the transfer of bacteria in a laboratory experiment I had 

planned to execute as a part of this thesis.  

A research of this undertaking is not without its own unique suite of challenges. Students 

planning on pursuing similar studies may benefit from several key lessons I have learned 

throughout the process of my research. First, maintaining sterility at each step in the sample 

collection and DNA extraction process is crucial; sterility of sample collection equipment, lab 

surfaces, sample processing equipment, and of personal protective equipment require different 

methods of sterilization. Sterilization of mortars and pestles were a particular issue in this study, 

where autoclaving the equipment in autoclave safe bags proved more effective than sterilizing 

them in aluminum foil. As much effort as is poured into maintaining a sterile environment, it is 

almost inevitable that contamination will render some samples unusable; it is thus wise to gather 

and process a surplus of samples to avoid issues of sample size during analysis. Contamination 

will also affect samples that had remained largely sterile and thus usable, so it is also necessary 

to process negative controls alongside each batch of samples. Additionally, it is important to 

budget an appropriate amount of time for processing and sequencing. On average, I processed 
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approximately 50 samples using the Qiagen PowerSoil Pro kit in an 8-hour period, with a day 

between sampling batches to wash and sterilize mortars and pestles. Two months passed between 

sample submission and raw read retrieval to sequence 376 samples via the UMGC. 

 As metagenomic studies become cheaper to perform and sequencing technology more 

accessible to researchers, studies such as this are likely to be implemented on other target plants 

and throughout other ecosystem types. This data sheds light on how variable in planta bacterial 

communities are between plants belonging to the same ecosystem, and how the taxonomic 

relationships of plants generates similarities and differences in these bacterial communities. 

Additionally, this study contributes to the growing body of knowledge established by previous 

parasitic plant research to reveal the how the intricacies of hemiparasitic plant relationships may 

influence the plant microbiome. With this data on the microbiomes of 16 Puget prairie plants as a 

launching point, scientists can continue to pursue important research endeavors to enhance our 

understanding of plant and bacterial ecology. 
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Appendix 3  

#Victoria Fox 
#Prairie Microbiome Data 
 
setwd("~/School/Thesis Work/Data and Data Analysis/R Thesis/") 
 
library("vegan") 
library("plyr") 
library("tidyverse") 
library("fossil") 
library("phyloseq") 
library("ggplot2") 
library("ggordiplots") 
library("ggrepel") 
 
###DATA IMPORT 
 
#WOB: Blanks are excluded 
#WOR: Replicates are excluded 
#WOBR: Blanks and replicates are excluded 
#MB: OTU's found in blanks are subtracted from their corresponding samples 
 
#Decided to remove CAHI and CALExCAHI from dataset 
#Also decided to remove non-parasitizing CALE from dataset 
 
#Metadata import 
MetadataOriginal <- read.csv("Tables/Final Data Sheet.csv") 
MetadataOriginal <- (MetadataOriginal[order(MetadataOriginal$Sample),]) 
Metadata <- MetadataOriginal[c(-grep("CAHI", MetadataOriginal$Plant.ID), -grep("Non-Parasite", 
MetadataOriginal$ParasiteStatus), -grep("0055", MetadataOriginal$Sample), -grep("0258", 
MetadataOriginal$Sample), -grep("0438", MetadataOriginal$Sample), -grep("0439", MetadataOriginal$Sample)), ] 
 
#Creating dataframes 
rownames(Metadata) <- c(1:412) 
MetadataB <- Metadata[grep("Blank", Metadata$Plant.ID), ] 
MetadataR <- Metadata[grep("Replicate", Metadata$Original.Replicate), ] 
MetadataWOBR <- Metadata[c(-grep("Blank", Metadata$Plant.ID), -grep("Replicate", 
Metadata$Original.Replicate), -grep("0055", Metadata$Sample), -grep("0258", Metadata$Sample), -grep("0438", 
Metadata$Sample), -grep("0439", Metadata$Sample)), ] 
MetadataWOB <- rbind(MetadataWOBR, MetadataR) 
MetadataWOR <- rbind(MetadataWOBR, MetadataB) 
 
### Greengenes data import 
GenomicsData <- read.csv("Tables/SILVA 97% PERMANOVA (Edited).csv") 
 
##Plant Taxonomy Import 
PlantTaxonomy <- read.csv("Tables/Plant Taxonomy.csv") 
 
###CREATING ABUNDANCE TABLE 
## Separating the taxonomy column (which lists kingdom, plylum, class etc. in one column) into a column for each. 
Taxa <- GenomicsData %>% 
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  select(OTUNumber, Taxonomy, Combined.Abundance, Min, Max, Mean, Median, Std, Sequence) %>% 
  separate(Taxonomy, into = c("Kingdom", "Phylum", "Class", "Order", "Family", "Genus", "Species"), sep = ", ") 
 
Taxa <- Taxa %>% 
  mutate(Taxa$Kingdom, Kingdom=sapply(strsplit(Taxa$Kingdom, split="__", fixed = TRUE), function(x) (x[2]))) %>% 
  mutate(Taxa$Phylum, Phylum=sapply(strsplit(Taxa$Phylum, split="__", fixed = TRUE), function(x) (x[2]))) %>% 
  mutate(Taxa$Class, Class=sapply(strsplit(Taxa$Class, split="__", fixed = TRUE), function(x) (x[2]))) %>% 
  mutate(Taxa$Order, Order=sapply(strsplit(Taxa$Order, split="__", fixed = TRUE), function(x) (x[2]))) %>% 
  mutate(Taxa$Family, Family=sapply(strsplit(Taxa$Family, split="__", fixed = TRUE), function(x) (x[2]))) %>% 
  mutate(Taxa$Genus, Genus=sapply(strsplit(Taxa$Genus, split="__", fixed = TRUE), function(x) (x[2]))) %>% 
  mutate(Taxa$Species, Species=sapply(strsplit(Taxa$Species, split="__", fixed = TRUE), function(x) (x[2]))) 
   
## Removing non-relevant columns to create just an abundance table. 
Abundance <- read.csv("Tables/SILVA 97% PERMANOVA (Simplified).csv") 
OTUNumbers <- GenomicsData$OTUNumber 
rownames(Abundance) <- Abundance$SampleNumber 
Abundance <- Abundance[c(-grep("0027", Abundance$SampleNumber), -grep("0323", 
Abundance$SampleNumber), -grep("1027", Abundance$SampleNumber), -grep("1323", 
Abundance$SampleNumber), -grep("0250", Abundance$SampleNumber), -grep("1250", 
Abundance$SampleNumber), -grep("0055", Abundance$SampleNumber), -grep("0258", 
Abundance$SampleNumber), -grep("0438", Abundance$SampleNumber), -grep("0439", 
Abundance$SampleNumber)), ] 
Abundance <- Abundance %>% 
  select(-SampleNumber) 
 
### EDITING ABUNDANCE AND METADATA 
 
#Removing sample numbers from Abundance 
#Temporarily merge Metadata and Abundance 
 
AbundanceMetadata <- cbind(Metadata, Abundance) 
AbundanceMetadata <- AbundanceMetadata[-c(grep("Blank 01", AbundanceMetadata$Blank.Number), 
grep("Blank 02", AbundanceMetadata$Blank.Number)) , ] 
rownames(AbundanceMetadata) <- AbundanceMetadata$Sample 
AbundanceMetadataWOBR <- AbundanceMetadata[c(-grep("Blank", AbundanceMetadata$Species), -
grep("Replicate", AbundanceMetadata$Original.Replicate)) , ] 
AbundanceMetadataWOB <- AbundanceMetadata[c(-grep("Blank", AbundanceMetadata$Species)) , ] 
 
SampleNumberWOBR <- AbundanceMetadataWOBR$Sample 
 
#Removing Blanks and Replicates from Abundance 
AbundanceWOBR <- AbundanceMetadataWOBR[ , colnames(AbundanceMetadataWOBR) %in% OTUNumbers] 
 
#Removing Batch 1 and Batch 2 from Metadata 
Metadata <- Metadata[-c(grep("Blank 01", Metadata$Blank.Number), grep("Blank 02", Metadata$Blank.Number)), 
] 
MetadataB <- MetadataB[-c(grep("Blank 01", MetadataB$Blank.Number), grep("Blank 02", 
MetadataB$Blank.Number)), ] 
MetadataR <- MetadataR[-c(grep("Blank 01", MetadataR$Blank.Number), grep("Blank 02", 
MetadataR$Blank.Number)), ] 
MetadataWOBR <- MetadataWOBR[-c(grep("Blank 01", MetadataWOBR$Blank.Number), grep("Blank 02", 
MetadataWOBR$Blank.Number)), ] 
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MetadataWOB <- MetadataWOB[-c(grep("Blank 01", MetadataWOB$Blank.Number), grep("Blank 02", 
MetadataWOB$Blank.Number)), ] 
MetadataWOR <- MetadataWOR[-c(grep("Blank 01", MetadataWOR$Blank.Number), grep("Blank 02", 
MetadataWOR$Blank.Number)), ] 
 
### REMOVING POTENTIALLY CONTAMINATING BACTERIAL OTU's 
Blank03 <- AbundanceMetadata[AbundanceMetadata$Sample == "B03",] 
Blank04 <- AbundanceMetadata[AbundanceMetadata$Sample == "B04",] 
Blank05 <- AbundanceMetadata[AbundanceMetadata$Sample == "B05",] 
Blank06 <- AbundanceMetadata[AbundanceMetadata$Sample == "B06",] 
Blank07 <- AbundanceMetadata[AbundanceMetadata$Sample == "B07",] 
Blank08 <- AbundanceMetadata[AbundanceMetadata$Sample == "B08",] 
Blank09 <- AbundanceMetadata[AbundanceMetadata$Sample == "B09",] 
Blank10 <- AbundanceMetadata[AbundanceMetadata$Sample == "B10",] 
Blank11 <- AbundanceMetadata[AbundanceMetadata$Sample == "B11",] 
Blank12 <- AbundanceMetadata[AbundanceMetadata$Sample == "B12",] 
Blank13 <- AbundanceMetadata[AbundanceMetadata$Sample == "B13",] 
 
FirstOTU <- which(colnames(Blank03) == "OTU0001") 
LastOTU <- which(colnames(Blank03) == "OTU7365") 
 
Blank03 <- Blank03[,FirstOTU:LastOTU] 
Blank04 <- Blank04[,FirstOTU:LastOTU] 
Blank05 <- Blank05[,FirstOTU:LastOTU] 
Blank06 <- Blank06[,FirstOTU:LastOTU] 
Blank07 <- Blank07[,FirstOTU:LastOTU] 
Blank08 <- Blank08[,FirstOTU:LastOTU] 
Blank09 <- Blank09[,FirstOTU:LastOTU] 
Blank10 <- Blank10[,FirstOTU:LastOTU] 
Blank11 <- Blank11[,FirstOTU:LastOTU] 
Blank12 <- Blank12[,FirstOTU:LastOTU] 
Blank13 <- Blank13[,FirstOTU:LastOTU] 
 
AbundanceBlank03 <- as.data.frame(AbundanceMetadataWOB[AbundanceMetadataWOB$Blank.Number == 
"Blank 03",]) 
AbundanceBlank04 <- as.data.frame(AbundanceMetadataWOB[AbundanceMetadataWOB$Blank.Number == 
"Blank 04",]) 
AbundanceBlank05 <- as.data.frame(AbundanceMetadataWOB[AbundanceMetadataWOB$Blank.Number == 
"Blank 05",]) 
AbundanceBlank06 <- as.data.frame(AbundanceMetadataWOB[AbundanceMetadataWOB$Blank.Number == 
"Blank 06",]) 
AbundanceBlank07 <- as.data.frame(AbundanceMetadataWOB[AbundanceMetadataWOB$Blank.Number == 
"Blank 07",]) 
AbundanceBlank08 <- as.data.frame(AbundanceMetadataWOB[AbundanceMetadataWOB$Blank.Number == 
"Blank 08",]) 
AbundanceBlank09 <- as.data.frame(AbundanceMetadataWOB[AbundanceMetadataWOB$Blank.Number == 
"Blank 09",]) 
AbundanceBlank10 <- as.data.frame(AbundanceMetadataWOB[AbundanceMetadataWOB$Blank.Number == 
"Blank 10",]) 
AbundanceBlank11 <- as.data.frame(AbundanceMetadataWOB[AbundanceMetadataWOB$Blank.Number == 
"Blank 11",]) 
AbundanceBlank12 <- as.data.frame(AbundanceMetadataWOB[AbundanceMetadataWOB$Blank.Number == 
"Blank 12",]) 
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AbundanceBlank13 <- as.data.frame(AbundanceMetadataWOB[AbundanceMetadataWOB$Blank.Number == 
"Blank 13",]) 
 
FirstOTU <- which(colnames(AbundanceBlank03) == "OTU0001") 
LastOTU <- which(colnames(AbundanceBlank03) == "OTU7365") 
 
AbundanceBlank03 <- AbundanceBlank03[,FirstOTU:LastOTU] 
AbundanceBlank04 <- AbundanceBlank04[,FirstOTU:LastOTU] 
AbundanceBlank05 <- AbundanceBlank05[,FirstOTU:LastOTU] 
AbundanceBlank06 <- AbundanceBlank06[,FirstOTU:LastOTU] 
AbundanceBlank07 <- AbundanceBlank07[,FirstOTU:LastOTU] 
AbundanceBlank08 <- AbundanceBlank08[,FirstOTU:LastOTU] 
AbundanceBlank09 <- AbundanceBlank09[,FirstOTU:LastOTU] 
AbundanceBlank10 <- AbundanceBlank10[,FirstOTU:LastOTU] 
AbundanceBlank11 <- AbundanceBlank11[,FirstOTU:LastOTU] 
AbundanceBlank12 <- AbundanceBlank12[,FirstOTU:LastOTU] 
AbundanceBlank13 <- AbundanceBlank13[,FirstOTU:LastOTU] 
 
AbundanceBlank03MB <- as.data.frame(sweep(as.matrix(AbundanceBlank03), 2, c(as.matrix(Blank03)), "-")) 
AbundanceBlank04MB <- as.data.frame(sweep(as.matrix(AbundanceBlank04), 2, c(as.matrix(Blank04)), "-")) 
AbundanceBlank05MB <- as.data.frame(sweep(as.matrix(AbundanceBlank05), 2, c(as.matrix(Blank05)), "-")) 
AbundanceBlank06MB <- as.data.frame(sweep(as.matrix(AbundanceBlank06), 2, c(as.matrix(Blank06)), "-")) 
AbundanceBlank07MB <- as.data.frame(sweep(as.matrix(AbundanceBlank07), 2, c(as.matrix(Blank07)), "-")) 
AbundanceBlank08MB <- as.data.frame(sweep(as.matrix(AbundanceBlank08), 2, c(as.matrix(Blank08)), "-")) 
AbundanceBlank09MB <- as.data.frame(sweep(as.matrix(AbundanceBlank09), 2, c(as.matrix(Blank09)), "-")) 
AbundanceBlank10MB <- as.data.frame(sweep(as.matrix(AbundanceBlank10), 2, c(as.matrix(Blank10)), "-")) 
AbundanceBlank11MB <- as.data.frame(sweep(as.matrix(AbundanceBlank11), 2, c(as.matrix(Blank11)), "-")) 
AbundanceBlank12MB <- as.data.frame(sweep(as.matrix(AbundanceBlank12), 2, c(as.matrix(Blank12)), "-")) 
AbundanceBlank13MB <- as.data.frame(sweep(as.matrix(AbundanceBlank13), 2, c(as.matrix(Blank13)), "-")) 
 
OTUNumbersWOBR <- colnames(MetadataWOBR) 
 
AbundanceMBWOB <- rbind(AbundanceBlank03MB, AbundanceBlank04MB, AbundanceBlank05MB, 
AbundanceBlank06MB, AbundanceBlank07MB, AbundanceBlank08MB, AbundanceBlank09MB, 
AbundanceBlank10MB, AbundanceBlank11MB, AbundanceBlank12MB, AbundanceBlank13MB) 
AbundanceMBWOB <- AbundanceMBWOB[order(rownames(AbundanceMBWOB)),] 
AbundanceMBWOB[AbundanceMBWOB < 0] <- 0 
AbundanceMBWOB <- as.data.frame(AbundanceMBWOB) 
AbundanceMetadataMBWOB <- cbind(MetadataWOB, AbundanceMBWOB) 
 
AbundanceB <- rbind(Blank03, Blank04, Blank05, Blank06, Blank07, Blank08, Blank09, Blank10, Blank11, Blank12, 
Blank13) 
 
AbundanceMetadataMBR <- AbundanceMetadataMBWOB[grep("Replicate", 
AbundanceMetadataMBWOB$Original.Replicate), ] 
AbundanceMBR <- AbundanceMetadataMBR[ , colnames(AbundanceMetadataMBR) %in% OTUNumbers] 
 
AbundanceMetadataMBWOBR <- AbundanceMetadataMBWOB[-c(grep("Replicate", 
AbundanceMetadataMBWOB$Original.Replicate), grep("0055", AbundanceMetadataMBWOB$Sample), 
grep("0258", AbundanceMetadataMBWOB$Sample), grep("0438", AbundanceMetadataMBWOB$Sample), 
grep("0439", AbundanceMetadataMBWOB$Sample)),] 
AbundanceMBWOBR <- AbundanceMetadataMBWOBR[ , colnames(AbundanceMetadataMBWOBR) %in% 
OTUNumbers] 
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AbundanceMBWOR <- rbind(AbundanceMBWOBR, Blank03, Blank04, Blank05, Blank06, Blank07, Blank08, Blank09, 
Blank10, Blank11, Blank12, Blank13) 
AbundanceMetadataMBWOR <- cbind(MetadataWOR, AbundanceMBWOR) 
 
AbundanceMB <- rbind(AbundanceMBWOBR, AbundanceMBR, AbundanceB) 
AbundanceMetadataMB <- cbind(Metadata, AbundanceMB) 
 
# Creating Presence/Absence Matrix 
PAMatrix <- as.data.frame(ifelse(Abundance[,] > 0, 1, 0)) 
PAMatrixWOBR <- as.data.frame(ifelse(AbundanceWOBR[,] >0, 1, 0)) 
PAMatrixB <- as.data.frame(ifelse(AbundanceB[,] > 0, 1, 0)) 
PAMatrixMBR <- as.data.frame(ifelse(AbundanceMBR[,] > 0, 1, 0)) 
PAMatrixMBWOBR <- as.data.frame(ifelse(AbundanceMBWOBR[,] > 0, 1, 0)) 
PAMatrixMBWOB <- rbind(PAMatrixMBWOBR, PAMatrixMBR) 
PAMatrixMBWOR <- rbind(PAMatrixMBWOBR, PAMatrixB) 
 
PAMatrixMB <- as.data.frame(ifelse(AbundanceMB[,] > 0, 1, 0)) 
 
# Merging Data 
AllDataPAMB <- cbind(Metadata, PAMatrixMB) 
AllDataPAMBWOBR <- cbind(MetadataWOBR, PAMatrixMBWOBR) 
 
AllDataABMB <- cbind(Metadata, AbundanceMB) 
AllDataABMBWOR <- cbind(MetadataWOR, AbundanceMBWOR) 
AllDataABMBWOBR <- cbind(MetadataWOBR, AbundanceMBWOBR) 
 
#Count taxa levels 
PhylumTable <- count(Taxa, vars=Taxa$Phylum) 
colnames(PhylumTable) <- c("Phylum", "Count") 
PhylumTable <- as.data.frame(PhylumTable) 
write.csv(PhylumTable, "Tables/PhylumTableMB WOB1B2.csv") 
 
###SIMPLE CALCULATIONS 
 
#How many OTU's per Sample 
OTUSample <- as.matrix(rowSums(PAMatrix[,])) 
OTUSampleWOBR <- as.matrix(rowSums(PAMatrixWOBR[,])) 
 
#How many OTU's per Sample MB 
OTUSampleMB <- rowSums(PAMatrixMB[,]) 
OTUSampleMBWOBR <- rowSums(PAMatrixMBWOBR[,]) 
 
#Abundance per Sample 
TotalReadAbundance <- as.matrix(rowSums(Abundance)) 
TotalReadAbundanceAbundanceWOBR <- as.matrix(rowSums(AbundanceWOBR)) 
 
#Abundance per Sample MB 
TotalReadAbundanceMB <- rowSums(AbundanceMB) 
TotalReadAbundanceMBWOBR <- rowSums(AbundanceMBWOBR) 
 
#OTU ABUNDANCE AND OTU NUMBER MB 
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OTUAbundanceMBTable <- data.frame(Metadata$Sample, Metadata$Species, OTUSampleMB, 
TotalReadAbundanceMB, Metadata$Original.Replicate, Metadata$SampleID, Metadata$Replicate.Pairs) 
colnames(OTUAbundanceMBTable) <- c("SampleNumber", "Species", "NumOTU", "NumReads", 
"Original.Replicate", "SampleID", "Replicate Pairs") 
rownames(OTUAbundanceMBTable) <- c(1:359) 
OTUAbundanceMBTable <- transform(OTUAbundanceMBTable, SpeciesCode = Species) 
OTUAbundanceMBTable$SpeciesCode <- ifelse(OTUAbundanceMBTable$SpeciesCode == "Achillea millefolium", 
"ACMI",  
  ifelse(OTUAbundanceMBTable$SpeciesCode == "Aquilegia formosa", "AQFO", 
  ifelse(OTUAbundanceMBTable$SpeciesCode == "Aster curtisii", "ASCU", 
  ifelse(OTUAbundanceMBTable$SpeciesCode == "Balsamorhiza deltoidea", "BADE", 
  ifelse(OTUAbundanceMBTable$SpeciesCode == "Blank", "Blank", 
  ifelse(OTUAbundanceMBTable$SpeciesCode == "Blank 1", "B01", 
  ifelse(OTUAbundanceMBTable$SpeciesCode == "Blank 2", "B02", 
  ifelse(OTUAbundanceMBTable$SpeciesCode == "Blank 3", "B03", 
  ifelse(OTUAbundanceMBTable$SpeciesCode == "Blank 4", "B04", 
  ifelse(OTUAbundanceMBTable$SpeciesCode == "Blank 5", "B05", 
  ifelse(OTUAbundanceMBTable$SpeciesCode == "Blank 6", "B06", 
  ifelse(OTUAbundanceMBTable$SpeciesCode == "Blank 7", "B07", 
  ifelse(OTUAbundanceMBTable$SpeciesCode == "Blank 8", "B08", 
  ifelse(OTUAbundanceMBTable$SpeciesCode == "Blank 9", "B09", 
  ifelse(OTUAbundanceMBTable$SpeciesCode == "Blank 10", "B10", 
  ifelse(OTUAbundanceMBTable$SpeciesCode == "Blank 11", "B11", 
  ifelse(OTUAbundanceMBTable$SpeciesCode == "Blank 12", "B12", 
  ifelse(OTUAbundanceMBTable$SpeciesCode == "Blank 13", "B13", 
  ifelse(OTUAbundanceMBTable$SpeciesCode == "Camassia quamash", "CAQU", 
  ifelse(OTUAbundanceMBTable$SpeciesCode == "Castilleja levisecta", "CALE", 
  ifelse(OTUAbundanceMBTable$SpeciesCode == "Cerastium arvense", "CEAR", 
  ifelse(OTUAbundanceMBTable$SpeciesCode == "Delphinium menziesii", "DEME", 
  ifelse(OTUAbundanceMBTable$SpeciesCode == "Eriophyllum lanatum", "ERLA", 
  ifelse(OTUAbundanceMBTable$SpeciesCode == "Erigeron speciosis", "ERSP", 
  ifelse(OTUAbundanceMBTable$SpeciesCode == "Festuca roemeri", "FERO", 
  ifelse(OTUAbundanceMBTable$SpeciesCode == "Lomatium utriculatum", "LOUT", 
  ifelse(OTUAbundanceMBTable$SpeciesCode == "Lomatium triternatum", "LOTR", 
  ifelse(OTUAbundanceMBTable$SpeciesCode == "Symphoricarpos albus", "SYAL", 
  ifelse(OTUAbundanceMBTable$SpeciesCode == "Lupinus lepidus", "LULE", 
  ifelse(OTUAbundanceMBTable$SpeciesCode == "Potentilla gracilius", "POGR",  
  "NA")))))))))))))))))))))))))))))) 
SpeciesCode <- OTUAbundanceMBTable$SpeciesCode 
OTUAbundanceMBTable$SpeciesCode <- as.factor(OTUAbundanceMBTable$SpeciesCode) 
OTUAbundanceMBTable <- as.data.frame(OTUAbundanceMBTable) 
 
OTUAbundanceMBTableWOBR <- OTUAbundanceMBTable[c(-grep("Blank", OTUAbundanceMBTable$Species), -
grep("Replicate", OTUAbundanceMBTable$Original.Replicate)), ] 
OTUAbundanceMBTableWOBR <- select(OTUAbundanceMBTableWOBR, -Original.Replicate) 
OTUAbundanceMBTableWOR <- OTUAbundanceMBTable[c(-grep("Replicate", 
OTUAbundanceMBTable$Original.Replicate)),] 
 
OTUAbundanceMBTableR <- OTUAbundanceMBTable[grep("Replicate", 
OTUAbundanceMBTable$Original.Replicate), ] 
OTUAbundanceMBTableB <- OTUAbundanceMBTable[grep("Blank", OTUAbundanceMBTable$Species), ] 
OTUAbundanceMBTableO <- OTUAbundanceMBTable[grep("Original", 
OTUAbundanceMBTable$Original.Replicate),] 
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OTUAbundanceMBTableOandR <- rbind(OTUAbundanceMBTableO, OTUAbundanceMBTableR) 
write.csv(OTUAbundanceMBTable, "Tables/OTUAbundanceMBTableWOB1B2.csv") 
write.csv(OTUAbundanceMBTableWOBR, "Tables/OTUAbundanceMBTableWOBRWOB1B2.csv") 
 
###AbundanceMB TABLES#### 
#Removing blanks. Have to use "factor" function to get rid of the blanks levels. 
OTUAbundanceMBTableWOBR$Species <- factor(OTUAbundanceMBTableWOBR$Species) 
OTUAbundanceMBTableWOBR$SpeciesCode <- factor(OTUAbundanceMBTableWOBR$SpeciesCode) 
 
OTUAbundanceMBTableOandR$Species <- factor(OTUAbundanceMBTableOandR$Species) 
OTUAbundanceMBTableOandR$SpeciesCode <- factor(OTUAbundanceMBTableOandR$SpeciesCode) 
 
 
OTUperSpeciesTable <- OTUAbundanceMBTableWOBR %>%  
  group_by(Species) %>%  
  summarise(AverageNumOTU = round(mean(NumOTU),1)) %>% 
  mutate(SpeciesCode = c("ACMI", "AQFO", "ASCU", "BADE", "CAQU", "CALE", "CEAR", "DEME", "ERSP", "ERLA", 
"FERO", "LOTR", "LOUT", "LULE", "POGR", "SYAL")) 
 
unique(OTUAbundanceMBTableWOBR$Species) 
 
#Average AbundanceMB per Species 
AveOTUAbundanceMBperSpeciesTable <- OTUAbundanceMBTableWOBR %>%  
  group_by(Species) %>%  
  summarise(Average = round(mean(TotalReadAbundanceMB),1)) %>% 
  mutate(SpeciesCode = c("ACMI", "AQFO", "ASCU", "BADE", "CAQU", "CALE", "CEAR", "DEME", "ERSP", "ERLA", 
"FERO", "LOTR", "LOUT", "LULE", "POGR", "SYAL")) 
 
min(OTUAbundanceMBTableWOBR$NumOTU) 
 
#Plotting the Average Number of OTU's by Species 
#No Blanks or Replicates 
OTUAbundanceMBPlotWOBR<- plot(x=OTUAbundanceMBTableWOBR$SpeciesCode,  
     y=OTUAbundanceMBTableWOBR$NumOTU, 
     xlab="Species", 
     ylab="Number of OTU's", 
     main = "Number of OTU's by Species") 
 
#Scatter Plot 
ggplot(OTUAbundanceMBTable, aes(x=SpeciesCode, y=NumOTU))+ 
  geom_point()+ 
  theme_bw()+ 
  labs(title = "Scatterplot", 
       subtitle = "Number of OTU's by Species", 
       y = "Number of OTU's", 
       x = "Species Code", 
       xlab("SpeciesCode"))+ 
  ggsave("Graphics/Number of OTU's by Species MB.jpg", 
         width = 12, height = 10, units = "in", dpi = 1200) 
   
#No Blanks or Replicates 
ggplot(OTUAbundanceMBTableWOBR, aes(x=SpeciesCode, y=NumOTU))+ 
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  geom_point()+ 
  theme_bw()+ 
  labs(title = "Scatterplot", 
       subtitle = "Number of OTU's by Species MB WOBR", 
       y = "Number of OTU's", 
       x = "Species Code", 
       xlab("SpeciesCode"))+ 
  ggsave("Graphics/Number of OTU's by Species MB WOBR WOB1B2.jpg", 
         width = 10, height = 10, units = "in", dpi = 1200) 
 
DeNovoOTU <- GenomicsData[GenomicsData$ID == "De-Novo OTU", "ID"] 
length(DeNovoOTU) 
 
 
###SPECIES PERMANOVA and PAIRWISE 
#Bray-Curtis 
SpeciesPERMANOVAMBWOBR <- adonis2(AbundanceMBWOBR ~ Species, data = AllDataABMBWOBR, method = 
"bray") 
SpeciesPERMANOVAMBWOBR 
#Statistically significant result! p < 0.001. 
#Percentage of the variation in the data is due to this factor : 78% 
 
source("Scripts/pairwise.adonis.R") 
SpeciesPairwiseMBWOBR <- pairwise.adonis(resp = vegdist(AbundanceMBWOBR), fact = 
AllDataABMBWOBR$Species) 
SpeciesPairwiseMBWOBR <- do.call(rbind.data.frame, SpeciesPairwiseMBWOBR) 
SpeciesPairwiseMBWOBR <- SpeciesPairwiseMBWOBR[2:16,] 
rownames(SpeciesPairwiseMBWOBR) <- c("AQFO", "ASCU", "BADE", "CAQU", "CALE", "CEAR", "DEME", "ERSP", 
"ERLA", "FERO", "LOTR", "LOUT", "LULE", "POGR", "SYAL") 
colnames(SpeciesPairwiseMBWOBR) <- c("ACMI", "AQFO", "ASCU", "BADE", "CAQU", "CALE", "CEAR", "DEME", 
"ERSP", "ERLA", "FERO", "LOTR", "LOUT", "LULE", "POGR") 
write.csv(SpeciesPairwiseMBWOBR, "Tables/SpeciesPairwiseWOBRWOB1B2.csv") 
 
#Difference in OTU composition between GHP and SM (SITE LOCATION) 
 
ACMI <- AllDataABMBWOBR[AllDataABMBWOBR$Species == "Achillea millefolium", ] 
ACMIAbundance <- ACMI[ , colnames(ACMI) %in% OTUNumbers] 
 
ACMI.GHP.SM.PERMANOVA <- adonis2(ACMIAbundance ~GHP.SM, data = ACMI, method = "bray") 
ACMI.GHP.SM.PERMANOVA 
CALE <- AllDataABMBWOBR[AllDataABMBWOBR$Species == "Castilleja levisecta", ] 
CALEAbundance <- CALE[ , colnames(CALE) %in% OTUNumbers] 
CALE.GHP.SM.PERMANOVA <- adonis2(CALEAbundance ~GHP.SM, data = CALE, method = "bray") 
CALE.GHP.SM.PERMANOVA 
ERLA <- AllDataABMBWOBR[AllDataABMBWOBR$Species == "Eriophyllum lanatum", ] 
ERLAAbundance <- ERLA[ , colnames(ERLA) %in% OTUNumbers] 
 
ERLA.GHP.SM.PERMANOVA <- adonis2(ERLAAbundance ~GHP.SM, data = ERLA, method = "bray") 
ERLA.GHP.SM.PERMANOVA 
FERO <- AllDataABMBWOBR[AllDataABMBWOBR$Species == "Festuca roemeri", ] 
FEROAbundance <- FERO[ , colnames(FERO) %in% OTUNumbers] 
FERO.GHP.SM.PERMANOVA <- adonis2(FEROAbundance ~GHP.SM, data = FERO, method = "bray") 
FERO.GHP.SM.PERMANOVA 
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ALLSP <- rbind(ACMI, CALE, ERLA, FERO) 
ALLSPAbundance <- rbind(ACMIAbundance, CALEAbundance, ERLAAbundance, FEROAbundance) 
ALLSP.GHP.SM.PERMANOVA <- adonis2(ALLSPAbundance ~GHP.SM, data = ALLSP, method = "bray") 
ALLSP.GHP.SM.PERMANOVA 
ALLSP.GHP.SM.PERMANOVA2 <- adonis2(ALLSPAbundance ~GHP.SM+Species, data = ALLSP, method = "bray") 
ALLSP.GHP.SM.PERMANOVA2 
ALLSP.GHP.SM.PERMANOVA3 <- adonis2(ALLSPAbundance ~GHP.SM*Species, data = ALLSP, method = "bray") 
ALLSP.GHP.SM.PERMANOVA3 
 
#Site Treatment Tests 
#For this set of tests, I only want to work with the data belonging to the arrays that are broken down into 35 sites.  
 
SiteTreatmentMetadata <- read.csv("Tables/Site Treatment Metadata.csv") 
 
AllDataABMBWOBR.TreatmentT <- merge(x = AllDataABMBWOBR, y = SiteTreatmentMetadata[ , c("Plot.Name", 
"Disturbance.Treatment", "Disturbance.Regime", "Burn.Mow", "Date.Last.Treatment")], 
                         by.x = "Collection.Site", by.y = "Plot.Name", all.x = TRUE) 
AllDataABMBWOBR.TreatmentT <- AllDataABMBWOBR.TreatmentT %>% 
  select("Disturbance.Treatment", "Disturbance.Regime", "Burn.Mow", "Date.Last.Treatment", everything()) 
 
#Excluding certain plots from analysis 
AllSitesData.TreatmentT <- AllDataABMBWOBR.TreatmentT[c(-grep("GHP-  2009 Array", 
AllDataABMBWOBR.TreatmentT$Collection.Site), -grep("GHP- Mounded", 
AllDataABMBWOBR.TreatmentT$Collection.Site), -grep("GHP- Mounded #2", 
AllDataABMBWOBR.TreatmentT$Collection.Site), -grep("SM Fenced: East", 
AllDataABMBWOBR.TreatmentT$Collection.Site), 
                                -grep("GHP- 100X2 2011", AllDataABMBWOBR.TreatmentT$Collection.Site), -grep("GHP- 100X3 
2012", AllDataABMBWOBR.TreatmentT$Collection.Site), -grep("GHP- 10X1 SF", 
AllDataABMBWOBR.TreatmentT$Collection.Site), -grep("GHP- 10X2 BF", 
AllDataABMBWOBR.TreatmentT$Collection.Site),    
                                -grep("GHP- 10X5 HF", AllDataABMBWOBR.TreatmentT$Collection.Site), -grep("GHP- 10X6 HF", 
AllDataABMBWOBR.TreatmentT$Collection.Site), -grep("SM 10X1 HM", 
AllDataABMBWOBR.TreatmentT$Collection.Site)), ] 
 
JustGHP.TreatmentT <- AllSitesData.TreatmentT[c((-grep("SM 10X1 HM",  
AllSitesData.TreatmentT$Collection.Site)), (-grep("SM 2010 06", AllSitesData.TreatmentT$Collection.Site)), (-
grep("SM 2010 11",  AllSitesData.TreatmentT$Collection.Site)), (-grep("SM 2010 13", 
AllSitesData.TreatmentT$Collection.Site)), 
                          (-grep("SM 2010 16",  AllSitesData.TreatmentT$Collection.Site)), (-grep("SM 2010 18", 
AllSitesData.TreatmentT$Collection.Site)), (-grep("SM 2010 22",  AllSitesData.TreatmentT$Collection.Site)), (-
grep("SM 2010 28", AllSitesData.TreatmentT$Collection.Site)), 
                          (-grep("SM 2010 29",  AllSitesData.TreatmentT$Collection.Site)), (-grep("SM 2011 16", 
AllSitesData.TreatmentT$Collection.Site)), (-grep("SM 2011 26",  AllSitesData.TreatmentT$Collection.Site)), (-
grep("SM 2011 28", AllSitesData.TreatmentT$Collection.Site))),] 
 
JustSM.TreatmentT <-  AllSitesData.TreatmentT[c(grep("SM 2010 06", AllSitesData.TreatmentT$Collection.Site),  
grep("SM 2010 11",  AllSitesData.TreatmentT$Collection.Site),  grep("SM 2010 13", 
AllSitesData.TreatmentT$Collection.Site), 
                          grep("SM 2010 16",  AllSitesData.TreatmentT$Collection.Site),  grep("SM 2010 18", 
AllSitesData.TreatmentT$Collection.Site),  grep("SM 2010 22",  AllSitesData.TreatmentT$Collection.Site),  
grep("SM 2010 28", AllSitesData.TreatmentT$Collection.Site), 
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                          grep("SM 2010 29",  AllSitesData.TreatmentT$Collection.Site),  grep("SM 2011 16", 
AllSitesData.TreatmentT$Collection.Site),  grep("SM 2011 26",  AllSitesData.TreatmentT$Collection.Site),  
grep("SM 2011 28", AllSitesData.TreatmentT$Collection.Site)),] 
 
#BREAK IT DOWN TO A SPECIES BY SPECIES MATRIX 
JustGHP.ACMI.TreatmentT <- JustGHP.TreatmentT[JustGHP.TreatmentT$Species == "Achillea millefolium", ] 
JustGHP.AQFO.TreatmentT <- JustGHP.TreatmentT[JustGHP.TreatmentT$Species == "Aquilegia formosa", ] 
JustGHP.ASCU.TreatmentT <- JustGHP.TreatmentT[JustGHP.TreatmentT$Species == "Aster curtisii", ] 
JustGHP.BADE.TreatmentT <- JustGHP.TreatmentT[JustGHP.TreatmentT$Species == "Balsamorhiza deltoidea", ] 
JustGHP.CAQU.TreatmentT <- JustGHP.TreatmentT[JustGHP.TreatmentT$Species == "Camassia quamash", ] 
JustGHP.CALE.TreatmentT <- JustGHP.TreatmentT[JustGHP.TreatmentT$Species == "Castilleja levisecta", ] 
JustGHP.CEAR.TreatmentT <- JustGHP.TreatmentT[JustGHP.TreatmentT$Species == "Cerastium arvense", ] 
JustGHP.DEME.TreatmentT <- JustGHP.TreatmentT[JustGHP.TreatmentT$Species == "Delphinium menziesii", ] 
JustGHP.ERSP.TreatmentT <- JustGHP.TreatmentT[JustGHP.TreatmentT$Species == "Erigeron speciosis", ] 
JustGHP.ERLA.TreatmentT <- JustGHP.TreatmentT[JustGHP.TreatmentT$Species == "Eriophyllum lanatum", ] 
JustGHP.FERO.TreatmentT <- JustGHP.TreatmentT[JustGHP.TreatmentT$Species == "Festuca roemeri", ] 
JustGHP.LOTR.TreatmentT <- JustGHP.TreatmentT[JustGHP.TreatmentT$Species == "Lomatium triternatum", ] 
JustGHP.LOUT.TreatmentT <- JustGHP.TreatmentT[JustGHP.TreatmentT$Species == "Lomatium utriculatum", ] 
JustGHP.LULE.TreatmentT <- JustGHP.TreatmentT[JustGHP.TreatmentT$Species == "Lupinus lepidus", ] 
JustGHP.POGR.TreatmentT <- JustGHP.TreatmentT[JustGHP.TreatmentT$Species == "Potentilla gracilius", ] 
JustGHP.SYAL.TreatmentT <- JustGHP.TreatmentT[JustGHP.TreatmentT$Species == "Symphoricarpos albus", ] 
 
#Removing Metadata 
JustGHP.TreatmentT.Abundance <- JustGHP.TreatmentT[ , colnames(JustGHP.TreatmentT) %in% OTUNumbers] 
JustGHP.ACMI.TreatmentT.Abundance <- JustGHP.ACMI.TreatmentT[ , colnames(JustGHP.ACMI.TreatmentT) %in% 
OTUNumbers] 
JustGHP.AQFO.TreatmentT.Abundance <- JustGHP.AQFO.TreatmentT[ , colnames(JustGHP.AQFO.TreatmentT) 
%in% OTUNumbers] 
JustGHP.ASCU.TreatmentT.Abundance <- JustGHP.ASCU.TreatmentT[ , colnames(JustGHP.ASCU.TreatmentT) %in% 
OTUNumbers] 
JustGHP.BADE.TreatmentT.Abundance <- JustGHP.BADE.TreatmentT[ , colnames(JustGHP.BADE.TreatmentT) %in% 
OTUNumbers] 
JustGHP.CALE.TreatmentT.Abundance <- JustGHP.CALE.TreatmentT[ , colnames(JustGHP.CALE.TreatmentT) %in% 
OTUNumbers] 
JustGHP.CAQU.TreatmentT.Abundance <- JustGHP.CAQU.TreatmentT[ , colnames(JustGHP.CAQU.TreatmentT) 
%in% OTUNumbers] 
JustGHP.CEAR.TreatmentT.Abundance <- JustGHP.CEAR.TreatmentT[ , colnames(JustGHP.CEAR.TreatmentT) %in% 
OTUNumbers] 
JustGHP.DEME.TreatmentT.Abundance <- JustGHP.DEME.TreatmentT[ , colnames(JustGHP.DEME.TreatmentT) 
%in% OTUNumbers] 
JustGHP.ERSP.TreatmentT.Abundance <- JustGHP.ERSP.TreatmentT[ , colnames(JustGHP.ERSP.TreatmentT) %in% 
OTUNumbers] 
JustGHP.ERLA.TreatmentT.Abundance <- JustGHP.ERLA.TreatmentT[ , colnames(JustGHP.ERLA.TreatmentT) %in% 
OTUNumbers] 
JustGHP.FERO.TreatmentT.Abundance <- JustGHP.FERO.TreatmentT[ , colnames(JustGHP.FERO.TreatmentT) %in% 
OTUNumbers] 
JustGHP.LOTR.TreatmentT.Abundance <- JustGHP.LOTR.TreatmentT[ , colnames(JustGHP.LOTR.TreatmentT) %in% 
OTUNumbers] 
JustGHP.LOUT.TreatmentT.Abundance <- JustGHP.LOUT.TreatmentT[ , colnames(JustGHP.LOUT.TreatmentT) %in% 
OTUNumbers] 
JustGHP.LULE.TreatmentT.Abundance <- JustGHP.LULE.TreatmentT[ , colnames(JustGHP.LULE.TreatmentT) %in% 
OTUNumbers] 
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JustGHP.POGR.TreatmentT.Abundance <- JustGHP.POGR.TreatmentT[ , colnames(JustGHP.POGR.TreatmentT) 
%in% OTUNumbers] 
JustGHP.SYAL.TreatmentT.Abundance <- JustGHP.SYAL.TreatmentT[ , colnames(JustGHP.SYAL.TreatmentT) %in% 
OTUNumbers] 
 
#INITIAL DISTURBANCE TREATMENT PERMANOVA 
 
DisturbanceTreatment.GHP.ACMI.PERMANOVA <- adonis2(JustGHP.ACMI.TreatmentT.Abundance 
~Disturbance.Treatment, data = JustGHP.ACMI.TreatmentT, method = "bray") 
DisturbanceTreatment.GHP.ACMI.PERMANOVA 
 
DisturbanceTreatment.GHP.AQFO.PERMANOVA <- adonis2(JustGHP.AQFO.TreatmentT.Abundance 
~Disturbance.Treatment, data = JustGHP.AQFO.TreatmentT, method = "bray") 
DisturbanceTreatment.GHP.AQFO.PERMANOVA 
 
DisturbanceTreatment.GHP.ASCU.PERMANOVA <- adonis2(JustGHP.ASCU.TreatmentT.Abundance 
~Disturbance.Treatment, data = JustGHP.ASCU.TreatmentT, method = "bray") 
DisturbanceTreatment.GHP.ASCU.PERMANOVA 
 
DisturbanceTreatment.GHP.BADE.PERMANOVA <- adonis2(JustGHP.BADE.TreatmentT.Abundance 
~Disturbance.Treatment, data = JustGHP.BADE.TreatmentT, method = "bray") 
DisturbanceTreatment.GHP.BADE.PERMANOVA 
 
DisturbanceTreatment.GHP.CALE.PERMANOVA <- adonis2(JustGHP.CALE.TreatmentT.Abundance 
~Disturbance.Treatment, data = JustGHP.CALE.TreatmentT, method = "bray") 
DisturbanceTreatment.GHP.CALE.PERMANOVA 
 
DisturbanceTreatment.GHP.CAQU.PERMANOVA <- adonis2(JustGHP.CAQU.TreatmentT.Abundance 
~Disturbance.Treatment, data = JustGHP.CAQU.TreatmentT, method = "bray") 
DisturbanceTreatment.GHP.CAQU.PERMANOVA 
 
DisturbanceTreatment.GHP.CEAR.PERMANOVA <- adonis2(JustGHP.CEAR.TreatmentT.Abundance 
~Disturbance.Treatment, data = JustGHP.CEAR.TreatmentT, method = "bray") 
DisturbanceTreatment.GHP.CEAR.PERMANOVA 
 
DisturbanceTreatment.GHP.DEME.PERMANOVA <- adonis2(JustGHP.DEME.TreatmentT.Abundance 
~Disturbance.Treatment, data = JustGHP.DEME.TreatmentT, method = "bray") 
DisturbanceTreatment.GHP.DEME.PERMANOVA 
 
DisturbanceTreatment.GHP.ERLA.PERMANOVA <- adonis2(JustGHP.ERLA.TreatmentT.Abundance 
~Disturbance.Treatment, data = JustGHP.ERLA.TreatmentT, method = "bray") 
DisturbanceTreatment.GHP.ERLA.PERMANOVA 
 
DisturbanceTreatment.GHP.ERSP.PERMANOVA <- adonis2(JustGHP.ERSP.TreatmentT.Abundance 
~Disturbance.Treatment, data = JustGHP.ERSP.TreatmentT, method = "bray") 
DisturbanceTreatment.GHP.ERSP.PERMANOVA 
 
DisturbanceTreatment.GHP.FERO.PERMANOVA <- adonis2(JustGHP.FERO.TreatmentT.Abundance 
~Disturbance.Treatment, data = JustGHP.FERO.TreatmentT, method = "bray") 
DisturbanceTreatment.GHP.FERO.PERMANOVA 
 
DisturbanceTreatment.GHP.LOTR.PERMANOVA <- adonis2(JustGHP.LOTR.TreatmentT.Abundance 
~Disturbance.Treatment, data = JustGHP.LOTR.TreatmentT, method = "bray") 
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DisturbanceTreatment.GHP.LOTR.PERMANOVA 
 
DisturbanceTreatment.GHP.LOUT.PERMANOVA <- adonis2(JustGHP.LOUT.TreatmentT.Abundance 
~Disturbance.Treatment, data = JustGHP.LOUT.TreatmentT, method = "bray") 
DisturbanceTreatment.GHP.LOUT.PERMANOVA 
 
DisturbanceTreatment.GHP.LULE.PERMANOVA <- adonis2(JustGHP.LULE.TreatmentT.Abundance 
~Disturbance.Treatment, data = JustGHP.LULE.TreatmentT, method = "bray") 
DisturbanceTreatment.GHP.LULE.PERMANOVA 
 
DisturbanceTreatment.GHP.POGR.PERMANOVA <- adonis2(JustGHP.POGR.TreatmentT.Abundance 
~Disturbance.Treatment, data = JustGHP.POGR.TreatmentT, method = "bray") 
DisturbanceTreatment.GHP.POGR.PERMANOVA 
 
DisturbanceTreatment.GHP.SYAL.PERMANOVA <- adonis2(JustGHP.SYAL.TreatmentT.Abundance 
~Disturbance.Treatment, data = JustGHP.SYAL.TreatmentT, method = "bray") 
DisturbanceTreatment.GHP.SYAL.PERMANOVA 
 
DisturbanceTreatment.GHP.ALL.PERMANOVA <- adonis2(JustGHP.TreatmentT.Abundance ~Disturbance.Treatment 
+ Species + Disturbance.Treatment:Species, data = JustGHP.TreatmentT, method = "bray") 
DisturbanceTreatment.GHP.ALL.PERMANOVA 
 
#Only CEAR was significant, so I will perform a pairwise test on it alone 
CEAR.Initial.Disturbance.Pairwise <- pairwise.adonis(resp = vegdist(JustGHP.CEAR.TreatmentT.Abundance), fact = 
JustGHP.CEAR.TreatmentT$Disturbance.Treatment) 
CEAR.Initial.Disturbance.Pairwise <- do.call(rbind.data.frame, CEAR.Initial.Disturbance.Pairwise) 
 
#CONTINUOUS DISTURBANCE REGIME TREATMENT ANOVA 
source("Scripts/pairwise.adonis.R") 
 
DisturbanceRegimeTreatment.GHP.ACMI.PERMANOVA <- adonis2(JustGHP.ACMI.TreatmentT.Abundance 
~Disturbance.Regime, data = JustGHP.ACMI.TreatmentT, method = "bray") 
DisturbanceRegimeTreatment.GHP.ACMI.PERMANOVA 
 
DisturbanceRegimeTreatment.GHP.AQFO.PERMANOVA <- adonis2(JustGHP.AQFO.TreatmentT.Abundance 
~Disturbance.Regime, data = JustGHP.AQFO.TreatmentT, method = "bray") 
DisturbanceRegimeTreatment.GHP.AQFO.PERMANOVA 
 
DisturbanceRegimeTreatment.GHP.ASCU.PERMANOVA <- adonis2(JustGHP.ASCU.TreatmentT.Abundance 
~Disturbance.Regime, data = JustGHP.ASCU.TreatmentT, method = "bray") 
DisturbanceRegimeTreatment.GHP.ASCU.PERMANOVA 
 
DisturbanceRegimeTreatment.GHP.BADE.PERMANOVA <- adonis2(JustGHP.BADE.TreatmentT.Abundance 
~Disturbance.Regime, data = JustGHP.BADE.TreatmentT, method = "bray") 
DisturbanceRegimeTreatment.GHP.BADE.PERMANOVA 
 
DisturbanceRegimeTreatment.GHP.CALE.PERMANOVA <- adonis2(JustGHP.CALE.TreatmentT.Abundance 
~Disturbance.Regime, data = JustGHP.CALE.TreatmentT, method = "bray") 
DisturbanceRegimeTreatment.GHP.CALE.PERMANOVA 
 
DisturbanceRegimeTreatment.GHP.CAQU.PERMANOVA <- adonis2(JustGHP.CAQU.TreatmentT.Abundance 
~Disturbance.Regime, data = JustGHP.CAQU.TreatmentT, method = "bray") 
DisturbanceRegimeTreatment.GHP.CAQU.PERMANOVA 
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DisturbanceRegimeTreatment.GHP.CEAR.PERMANOVA <- adonis2(JustGHP.CEAR.TreatmentT.Abundance 
~Disturbance.Regime, data = JustGHP.CEAR.TreatmentT, method = "bray") 
DisturbanceRegimeTreatment.GHP.CEAR.PERMANOVA 
 
DisturbanceRegimeTreatment.GHP.DEME.PERMANOVA <- adonis2(JustGHP.DEME.TreatmentT.Abundance 
~Disturbance.Regime, data = JustGHP.DEME.TreatmentT, method = "bray") 
DisturbanceRegimeTreatment.GHP.DEME.PERMANOVA 
 
DisturbanceRegimeTreatment.GHP.ERLA.PERMANOVA <- adonis2(JustGHP.ERLA.TreatmentT.Abundance 
~Disturbance.Regime, data = JustGHP.ERLA.TreatmentT, method = "bray") 
DisturbanceRegimeTreatment.GHP.ERLA.PERMANOVA 
 
DisturbanceRegimeTreatment.GHP.ERSP.PERMANOVA <- adonis2(JustGHP.ERSP.TreatmentT.Abundance 
~Disturbance.Regime, data = JustGHP.ERSP.TreatmentT, method = "bray") 
DisturbanceRegimeTreatment.GHP.ERSP.PERMANOVA 
 
DisturbanceRegimeTreatment.GHP.FERO.PERMANOVA <- adonis2(JustGHP.FERO.TreatmentT.Abundance 
~Disturbance.Regime, data = JustGHP.FERO.TreatmentT, method = "bray") 
DisturbanceRegimeTreatment.GHP.FERO.PERMANOVA 
 
DisturbanceRegimeTreatment.GHP.LOTR.PERMANOVA <- adonis2(JustGHP.LOTR.TreatmentT.Abundance 
~Disturbance.Regime, data = JustGHP.LOTR.TreatmentT, method = "bray") 
DisturbanceRegimeTreatment.GHP.LOTR.PERMANOVA 
 
DisturbanceRegimeTreatment.GHP.LOUT.PERMANOVA <- adonis2(JustGHP.LOUT.TreatmentT.Abundance 
~Disturbance.Regime, data = JustGHP.LOUT.TreatmentT, method = "bray") 
DisturbanceRegimeTreatment.GHP.LOUT.PERMANOVA 
 
DisturbanceRegimeTreatment.GHP.LULE.PERMANOVA <- adonis2(JustGHP.LULE.TreatmentT.Abundance 
~Disturbance.Regime, data = JustGHP.LULE.TreatmentT, method = "bray") 
DisturbanceRegimeTreatment.GHP.LULE.PERMANOVA 
 
DisturbanceRegimeTreatment.GHP.POGR.PERMANOVA <- adonis2(JustGHP.POGR.TreatmentT.Abundance 
~Disturbance.Regime, data = JustGHP.POGR.TreatmentT, method = "bray") 
DisturbanceRegimeTreatment.GHP.POGR.PERMANOVA 
 
DisturbanceRegimeTreatment.GHP.SYAL.PERMANOVA <- adonis2(JustGHP.SYAL.TreatmentT.Abundance 
~Disturbance.Regime, data = JustGHP.SYAL.TreatmentT, method = "bray") 
DisturbanceRegimeTreatment.GHP.SYAL.PERMANOVA 
 
DisturbanceRegimeTreatment.GHP.ALL.PERMANOVA <- adonis2(JustGHP.TreatmentT.Abundance 
~Disturbance.Regime + Species + Disturbance.Regime:Species, data = JustGHP.TreatmentT, method = "bray") 
DisturbanceRegimeTreatment.GHP.ALL.PERMANOVA 
 
#Only CEAR had a significant effect so I'll run pairwise 
CEAR.Disturbance.Regime.Pairwise <- pairwise.adonis(resp = vegdist(JustGHP.CEAR.TreatmentT.Abundance), fact = 
JustGHP.CEAR.TreatmentT$Disturbance.Regime) 
CEAR.Disturbance.Regime.Pairwise <- do.call(rbind.data.frame, CEAR.Disturbance.Regime.Pairwise) 
CEAR.Disturbance.Regime.Pairwise 
 
#BURN vs MOW TREATMENT ANOVA 
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BurnMowTreatment.GHP.ACMI.PERMANOVA <- adonis2(JustGHP.ACMI.TreatmentT.Abundance ~Burn.Mow, data 
= JustGHP.ACMI.TreatmentT, method = "bray") 
BurnMowTreatment.GHP.ACMI.PERMANOVA 
 
BurnMowTreatment.GHP.AQFO.PERMANOVA <- adonis2(JustGHP.AQFO.TreatmentT.Abundance ~Burn.Mow, data 
= JustGHP.AQFO.TreatmentT, method = "bray") 
BurnMowTreatment.GHP.AQFO.PERMANOVA 
 
BurnMowTreatment.GHP.ASCU.PERMANOVA <- adonis2(JustGHP.ASCU.TreatmentT.Abundance ~Burn.Mow, data 
= JustGHP.ASCU.TreatmentT, method = "bray") 
BurnMowTreatment.GHP.ASCU.PERMANOVA 
 
BurnMowTreatment.GHP.BADE.PERMANOVA <- adonis2(JustGHP.BADE.TreatmentT.Abundance ~Burn.Mow, data 
= JustGHP.BADE.TreatmentT, method = "bray") 
BurnMowTreatment.GHP.BADE.PERMANOVA 
 
BurnMowTreatment.GHP.CALE.PERMANOVA <- adonis2(JustGHP.CALE.TreatmentT.Abundance ~Burn.Mow, data = 
JustGHP.CALE.TreatmentT, method = "bray") 
BurnMowTreatment.GHP.CALE.PERMANOVA 
 
BurnMowTreatment.GHP.CAQU.PERMANOVA <- adonis2(JustGHP.CAQU.TreatmentT.Abundance ~Burn.Mow, data 
= JustGHP.CAQU.TreatmentT, method = "bray") 
BurnMowTreatment.GHP.CAQU.PERMANOVA 
 
BurnMowTreatment.GHP.CEAR.PERMANOVA <- adonis2(JustGHP.CEAR.TreatmentT.Abundance ~Burn.Mow, data 
= JustGHP.CEAR.TreatmentT, method = "bray") 
BurnMowTreatment.GHP.CEAR.PERMANOVA 
 
BurnMowTreatment.GHP.DEME.PERMANOVA <- adonis2(JustGHP.DEME.TreatmentT.Abundance ~Burn.Mow, data 
= JustGHP.DEME.TreatmentT, method = "bray") 
BurnMowTreatment.GHP.DEME.PERMANOVA 
 
BurnMowTreatment.GHP.ERLA.PERMANOVA <- adonis2(JustGHP.ERLA.TreatmentT.Abundance ~Burn.Mow, data = 
JustGHP.ERLA.TreatmentT, method = "bray") 
BurnMowTreatment.GHP.ERLA.PERMANOVA 
 
BurnMowTreatment.GHP.ERSP.PERMANOVA <- adonis2(JustGHP.ERSP.TreatmentT.Abundance ~Burn.Mow, data = 
JustGHP.ERSP.TreatmentT, method = "bray") 
BurnMowTreatment.GHP.ERSP.PERMANOVA 
 
BurnMowTreatment.GHP.FERO.PERMANOVA <- adonis2(JustGHP.FERO.TreatmentT.Abundance ~Burn.Mow, data 
= JustGHP.FERO.TreatmentT, method = "bray") 
BurnMowTreatment.GHP.FERO.PERMANOVA 
 
BurnMowTreatment.GHP.LOTR.PERMANOVA <- adonis2(JustGHP.LOTR.TreatmentT.Abundance ~Burn.Mow, data 
= JustGHP.LOTR.TreatmentT, method = "bray") 
BurnMowTreatment.GHP.LOTR.PERMANOVA 
 
BurnMowTreatment.GHP.LOUT.PERMANOVA <- adonis2(JustGHP.LOUT.TreatmentT.Abundance ~Burn.Mow, data 
= JustGHP.LOUT.TreatmentT, method = "bray") 
BurnMowTreatment.GHP.LOUT.PERMANOVA 
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BurnMowTreatment.GHP.LULE.PERMANOVA <- adonis2(JustGHP.LULE.TreatmentT.Abundance ~Burn.Mow, data = 
JustGHP.LULE.TreatmentT, method = "bray") 
BurnMowTreatment.GHP.LULE.PERMANOVA 
 
BurnMowTreatment.GHP.POGR.PERMANOVA <- adonis2(JustGHP.POGR.TreatmentT.Abundance ~Burn.Mow, data 
= JustGHP.POGR.TreatmentT, method = "bray") 
BurnMowTreatment.GHP.POGR.PERMANOVA 
 
BurnMowTreatment.GHP.SYAL.PERMANOVA <- adonis2(JustGHP.SYAL.TreatmentT.Abundance ~Burn.Mow, data = 
JustGHP.SYAL.TreatmentT, method = "bray") 
BurnMowTreatment.GHP.SYAL.PERMANOVA 
 
#Date Last Burned CEAR PERMANOVA 
 
Last.Treatment.CEAR.PERMANOVA <- adonis2(JustGHP.CEAR.TreatmentT.Abundance ~Date.Last.Treatment, data = 
JustGHP.CEAR.TreatmentT, method = "bray") 
Last.Treatment.CEAR.PERMANOVA 
#Date Last Burned Others 
Date.Last.Treatment.GHP.ACMI.PERMANOVA <- 
adonis2(JustGHP.ACMI.TreatmentT.Abundance[JustGHP.ACMI.TreatmentT$Burn.Mow == "Burn", ] 
~Date.Last.Treatment, data = JustGHP.ACMI.TreatmentT[JustGHP.ACMI.TreatmentT$Burn.Mow == "Burn", ], 
method = "bray") 
Date.Last.Treatment.GHP.ACMI.PERMANOVA 
 
Date.Last.Treatment.GHP.AQFO.PERMANOVA <- 
adonis2(JustGHP.AQFO.TreatmentT.Abundance[JustGHP.AQFO.TreatmentT$Burn.Mow == "Burn", ] 
~Date.Last.Treatment, data = JustGHP.AQFO.TreatmentT[JustGHP.AQFO.TreatmentT$Burn.Mow == "Burn", ], 
method = "bray") 
Date.Last.Treatment.GHP.AQFO.PERMANOVA 
 
Date.Last.Treatment.GHP.ASCU.PERMANOVA <- 
adonis2(JustGHP.ASCU.TreatmentT.Abundance[JustGHP.ASCU.TreatmentT$Burn.Mow == "Burn", ] 
~Date.Last.Treatment, data = JustGHP.ASCU.TreatmentT[JustGHP.ASCU.TreatmentT$Burn.Mow == "Burn", ], 
method = "bray") 
Date.Last.Treatment.GHP.ASCU.PERMANOVA 
 
Date.Last.Treatment.GHP.BADE.PERMANOVA <- 
adonis2(JustGHP.BADE.TreatmentT.Abundance[JustGHP.BADE.TreatmentT$Burn.Mow == "Burn", ] 
~Date.Last.Treatment, data = JustGHP.BADE.TreatmentT[JustGHP.BADE.TreatmentT$Burn.Mow == "Burn", ], 
method = "bray") 
Date.Last.Treatment.GHP.BADE.PERMANOVA 
 
Date.Last.Treatment.GHP.CALE.PERMANOVA <- 
adonis2(JustGHP.CALE.TreatmentT.Abundance[JustGHP.CALE.TreatmentT$Burn.Mow == "Burn", ] 
~Date.Last.Treatment, data = JustGHP.CALE.TreatmentT[JustGHP.CALE.TreatmentT$Burn.Mow == "Burn", ], 
method = "bray") 
Date.Last.Treatment.GHP.CALE.PERMANOVA 
 
Date.Last.Treatment.GHP.CAQU.PERMANOVA <- 
adonis2(JustGHP.CAQU.TreatmentT.Abundance[JustGHP.CAQU.TreatmentT$Burn.Mow == "Burn", ] 
~Date.Last.Treatment, data = JustGHP.CAQU.TreatmentT[JustGHP.CAQU.TreatmentT$Burn.Mow == "Burn", ], 
method = "bray") 
Date.Last.Treatment.GHP.CAQU.PERMANOVA 
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Date.Last.Treatment.GHP.CEAR.PERMANOVA <- 
adonis2(JustGHP.CEAR.TreatmentT.Abundance[JustGHP.CEAR.TreatmentT$Burn.Mow == "Burn", ] 
~Date.Last.Treatment, data = JustGHP.CEAR.TreatmentT[JustGHP.CEAR.TreatmentT$Burn.Mow == "Burn", ], 
method = "bray") 
Date.Last.Treatment.GHP.CEAR.PERMANOVA 
 
Date.Last.Treatment.GHP.DEME.PERMANOVA <- 
adonis2(JustGHP.DEME.TreatmentT.Abundance[JustGHP.DEME.TreatmentT$Burn.Mow == "Burn", ] 
~Date.Last.Treatment, data = JustGHP.DEME.TreatmentT[JustGHP.DEME.TreatmentT$Burn.Mow == "Burn", ], 
method = "bray") 
Date.Last.Treatment.GHP.DEME.PERMANOVA 
 
Date.Last.Treatment.GHP.ERLA.PERMANOVA <- 
adonis2(JustGHP.ERLA.TreatmentT.Abundance[JustGHP.ERLA.TreatmentT$Burn.Mow == "Burn", ] 
~Date.Last.Treatment, data = JustGHP.ERLA.TreatmentT[JustGHP.ERLA.TreatmentT$Burn.Mow == "Burn", ], 
method = "bray") 
Date.Last.Treatment.GHP.ERLA.PERMANOVA 
 
Date.Last.Treatment.GHP.ERSP.PERMANOVA <- 
adonis2(JustGHP.ERSP.TreatmentT.Abundance[JustGHP.ERSP.TreatmentT$Burn.Mow == "Burn", ] 
~Date.Last.Treatment, data = JustGHP.ERSP.TreatmentT[JustGHP.ERSP.TreatmentT$Burn.Mow == "Burn", ], 
method = "bray") 
Date.Last.Treatment.GHP.ERSP.PERMANOVA 
 
Date.Last.Treatment.GHP.FERO.PERMANOVA <- 
adonis2(JustGHP.FERO.TreatmentT.Abundance[JustGHP.FERO.TreatmentT$Burn.Mow == "Burn", ] 
~Date.Last.Treatment, data = JustGHP.FERO.TreatmentT[JustGHP.FERO.TreatmentT$Burn.Mow == "Burn", ], 
method = "bray") 
Date.Last.Treatment.GHP.FERO.PERMANOVA 
 
Date.Last.Treatment.GHP.LOTR.PERMANOVA <- 
adonis2(JustGHP.LOTR.TreatmentT.Abundance[JustGHP.LOTR.TreatmentT$Burn.Mow == "Burn", ] 
~Date.Last.Treatment, data = JustGHP.LOTR.TreatmentT[JustGHP.LOTR.TreatmentT$Burn.Mow == "Burn", ], 
method = "bray") 
Date.Last.Treatment.GHP.LOTR.PERMANOVA 
 
Date.Last.Treatment.GHP.LOUT.PERMANOVA <- 
adonis2(JustGHP.LOUT.TreatmentT.Abundance[JustGHP.LOUT.TreatmentT$Burn.Mow == "Burn", ] 
~Date.Last.Treatment, data = JustGHP.LOUT.TreatmentT[JustGHP.LOUT.TreatmentT$Burn.Mow == "Burn", ], 
method = "bray") 
Date.Last.Treatment.GHP.LOUT.PERMANOVA 
 
Date.Last.Treatment.GHP.LULE.PERMANOVA <- 
adonis2(JustGHP.LULE.TreatmentT.Abundance[JustGHP.LULE.TreatmentT$Burn.Mow == "Burn", ] 
~Date.Last.Treatment, data = JustGHP.LULE.TreatmentT[JustGHP.LULE.TreatmentT$Burn.Mow == "Burn", ], 
method = "bray") 
Date.Last.Treatment.GHP.LULE.PERMANOVA 
 
Date.Last.Treatment.GHP.POGR.PERMANOVA <- 
adonis2(JustGHP.POGR.TreatmentT.Abundance[JustGHP.POGR.TreatmentT$Burn.Mow == "Burn", ] 
~Date.Last.Treatment, data = JustGHP.POGR.TreatmentT[JustGHP.POGR.TreatmentT$Burn.Mow == "Burn", ], 
method = "bray") 
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Date.Last.Treatment.GHP.POGR.PERMANOVA 
 
Date.Last.Treatment.GHP.SYAL.PERMANOVA <- 
adonis2(JustGHP.SYAL.TreatmentT.Abundance[JustGHP.SYAL.TreatmentT$Burn.Mow == "Burn", ] 
~Date.Last.Treatment, data = JustGHP.SYAL.TreatmentT[JustGHP.SYAL.TreatmentT$Burn.Mow == "Burn", ], 
method = "bray") 
Date.Last.Treatment.GHP.SYAL.PERMANOVA 
 
#CEAR had a significant effect so I'll run pairwise 
#BURN AND MOW 
CEAR.Last.Treatment.Pairwise <- pairwise.adonis(resp = vegdist(CEAR[ , colnames(JustGHP.ACMI.TreatmentT) 
%in% OTUNumbers]), fact = CEAR$Date.Last.Treatment) 
CEAR.Last.Treatment.Pairwise <- do.call(rbind.data.frame, CEAR.Last.Treatment.Pairwise) 
CEAR.Last.Treatment.Pairwise 
 
#PARASITISM 
### PARASITISM TRIO'S 
 
ACMI1 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0124", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0167", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0121", ]) 
ACMI2 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0057", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0059", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0056", ]) 
ACMI3 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0417", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0429", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0416", ]) 
ACMI4 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0417", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0453", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0416", ]) 
 
JustACMI <- rbind(ACMI1, ACMI2, ACMI3, ACMI4) 
 
#AQFO Trio's 
 
AQFO1 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0092", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0102", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0086", ]) 
AQFO2 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0327", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0102", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0326", ]) 
 
#ASCU Trio's 
 
ASCU1 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0139", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0140", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0136", ]) 
#ASCU2 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0038", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0280", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0036", ]) 
ASCU3 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0269", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0282", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0265", ]) 
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ASCU4 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0269", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0283", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0265", ]) 
ASCU5 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0269", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0281", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0265", ]) 
ASCU6 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0139", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0130", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0136", ]) 
#ASCU7 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0038", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0284", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0036", ]) 
 
#BADE Trio's 
 
BADE1 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0094", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0244", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0093", ]) 
BADE2 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0094", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0101", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0093", ]) 
BADE3 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0236", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0101", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0235", ]) 
BADE4 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0236", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0244", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0235", ]) 
BADE5 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0243", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0101", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0242", ]) 
BADE6 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0243", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0244", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0242", ]) 
BADE7 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0334", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0182", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0332", ]) 
 
#CAQU Trio's 
 
CAQU1 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0047", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0048", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0046", ]) 
#CAQU2 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0047", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0049", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0046", ]) 
#CAQU3 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0053", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0055", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0051", ]) 
CAQU4 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0077", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0080", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0076", ]) 
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CAQU5 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0088", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0103", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0086", ]) 
CAQU6 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0088", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0104", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0086", ]) 
CAQU7 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0108", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0103", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0105", ]) 
CAQU8 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0108", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0104", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0105", ]) 
CAQU9 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0227", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0234", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0225", ]) 
#CAQU10 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0324", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0103", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0323", ]) 
CAQU11 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0324", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0104", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0323", ]) 
 
#CEAR Trio's' 
 
#CEAR1 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0266", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0044", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0265", ]) 
#CEAR2 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0266", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0273", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0265", ]) 
CEAR3 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0266", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0274", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0265", ]) 
CEAR4 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0266", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0285", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0265", ]) 
CEAR5 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0266", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0286", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0265", ]) 
CEAR6 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0312", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0307", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0309", ]) 
CEAR7 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0293", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0285", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0290", ]) 
CEAR8 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0293", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0286", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0290", ]) 
 
#DEME Trio's 
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DEME1 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0207", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0232", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0201", ]) 
DEME2 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0222", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0232", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0220", ]) 
 
#ERLA Trio's 
 
#ERLA1 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0058", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0060", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0046", ]) 
#ERLA2 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0090", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0099", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0046", ]) 
#ERLA3 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0098", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0099", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0051", ]) 
ERLA4 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0106", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0099", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0076", ]) 
ERLA5 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0123", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0162", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0086", ]) 
ERLA6 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0123", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0163", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0086", ]) 
ERLA7 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0123", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0164", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0105", ]) 
ERLA8 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0123", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0165", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0105", ]) 
ERLA9 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0123", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0166", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0225", ]) 
ERLA10 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0194", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0162", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0191", ]) 
ERLA11 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0194", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0163", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0191", ]) 
ERLA12 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0194", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0164", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0191", ]) 
ERLA13 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0194", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0165", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0191", ]) 
ERLA14 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0194", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0166", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0191", ]) 
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ERLA15 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0238", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0099", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0235", ]) 
ERLA16 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0311", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0493", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0309", ]) 
ERLA17 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0331", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0099", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0326", ]) 
 
#FERO's Trio's 
 
FERO1 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0421", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0424", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0420", ]) 
FERO2 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0421", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0430", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0420", ]) 
FERO3 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0421", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0431", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0420", ]) 
FERO4 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0421", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0432", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0420", ]) 
FERO5 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0421", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0454", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0420", ]) 
FERO6 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0423", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0424", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0422", ]) 
FERO7 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0423", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0430", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0422", ]) 
FERO8 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0423", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0431", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0422", ]) 
FERO9 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0423", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0432", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0422", ]) 
FERO10 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0423", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0454", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0422", ]) 
FERO11 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0426", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0424", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0425", ]) 
FERO12 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0426", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0430", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0425", ]) 
FERO13 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0426", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0431", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0425", ]) 
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FERO14 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0426", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0432", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0425", ]) 
FERO15 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0426", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0454", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0425", ]) 
FERO16 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0489", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0490", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0488", ]) 
FERO17 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0405", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0408", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0403", ]) 
 
#LOUT Trio's 
 
LOUT1 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0091", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0100", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0086", ]) 
LOUT2 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0097", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0100", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0093", ]) 
LOUT3 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0109", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0100", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0105", ]) 
LOUT4 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0137", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0161", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0136", ]) 
LOUT5 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0137", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0160", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0136", ]) 
 
#LULE Trio's' 
 
LULE1 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0089", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0135", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0086", ]) 
LULE2 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0089", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0302", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0086", ]) 
LULE3 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0089", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0303", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0086", ]) 
LULE4 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0096", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0135", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0093", ]) 
LULE5 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0096", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0305", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0093", ]) 
LULE6 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0096", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0135", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0093", ]) 
 
#POGR Trio's' 
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POGR1 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0125", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0120", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0121", ]) 
POGR2 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0213", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0233", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0210", ]) 
 
#SYAL Trio's 
 
SYAL1 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0202", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0215", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0201", ]) 
SYAL2 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0202", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0216", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0201", ]) 
SYAL3 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0202", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0217", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0201", ]) 
SYAL4 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0202", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0218", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0201", ]) 
SYAL5 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0202", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0219", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0201", ]) 
SYAL6 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0212", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0215", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0210", ]) 
SYAL7 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0212", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0216", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0210", ]) 
SYAL8 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0212", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0217", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0210", ]) 
SYAL9 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0212", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0218", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0210", ]) 
SYAL10 <- rbind(AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0212", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0219", ], 
AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample == "0210", ]) 
 
 
#PARASITISM Paired T TEST 
TrioID <- readxl::read_xlsx("Tables/Trio ID.xlsx") 
Pair.Distances <- c() 
for(i in 1:nrow(TrioID)) { 
  trio.data <- AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Sample %in% TrioID[i, c("Host", 
"NonHost", "Parasite")] , ] 
  trio.data$Row <- rownames(trio.data) 
  rownames(trio.data) <- trio.data$ParasiteStatus 
  trio.dist <- as.matrix(vegdist(trio.data[ , colnames(trio.data) %in% OTUNumbers], method = "bray")) 
  temp1 <- data.frame(From = "Host", To = "NonHost", Dist = trio.dist["Host", "Non-host"]) 
  temp2 <- data.frame(From = "Host", To = "Parasite", Dist = trio.dist["Host", "Parasite"]) 
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  temp3 <- data.frame(From = "NonHost", To = "Parasite", Dist = trio.dist["Non-host", "Parasite"]) 
  temp <- rbind(temp1,temp2, temp3) 
  temp$Trio.ID <- TrioID$`Trio ID`[i] 
  Pair.Distances <- rbind(Pair.Distances, temp) 
} 
Pair.Distances$Pair <- paste(Pair.Distances$From, Pair.Distances$To, sep = ".") 
 
#Merging Pair Distances and Trio ID Tables 
TrioMerge <- merge(x = TrioID, y = Pair.Distances, by.x = "Trio ID", by.y = "Trio.ID") 
write.csv(TrioMerge, "Trio.dist.csv") 
 
#Averaging the distances between hosts/parasites that are paired with different non-hosts 
Pair.Averages <- TrioMerge  %>% 
  rename(Trio.ID = `Trio ID`) %>% 
  separate(Trio.ID, into = c("Species", "Rep"), sep = 4) %>% 
  mutate(Duo.ID = paste(Host, Parasite, sep = "_")) %>% 
  group_by(Duo.ID, Pair, Species) %>% 
  summarize(mean.Dist = mean(Dist), min.Dist = min(Dist), max.Dist = max(Dist), N = length(Dist)) 
 
#Grouping based on Duo ID 
library(tidyverse) 
Pair.Averages.Grouped <- Pair.Averages %>% 
  dplyr::select(Pair, mean.Dist, Duo.ID, Species) %>% 
  pivot_wider(names_from = Pair, values_from = mean.Dist) 
 
write.csv(Pair.Averages.Grouped, "Pair.Averages.Grouped.csv") 
 
#Paired T Test including All Species 
t.test(x = Pair.Averages.Grouped$Host.Parasite, 
       y = Pair.Averages.Grouped$NonHost.Parasite, 
       paired = TRUE) 
 
#Paired T Test for Individual Species 
ACMI.Pair <- Pair.Averages.Grouped[Pair.Averages.Grouped$Species == "ACMI", ] 
AQFO.Pair <- Pair.Averages.Grouped[Pair.Averages.Grouped$Species == "AQFO", ] 
ASCU.Pair <- Pair.Averages.Grouped[Pair.Averages.Grouped$Species == "ASCU", ] 
BADE.Pair <- Pair.Averages.Grouped[Pair.Averages.Grouped$Species == "BADE", ] 
CAQU.Pair <- Pair.Averages.Grouped[Pair.Averages.Grouped$Species == "CAQU", ] 
CEAR.Pair <- Pair.Averages.Grouped[Pair.Averages.Grouped$Species == "CEAR", ] 
DEME.Pair <- Pair.Averages.Grouped[Pair.Averages.Grouped$Species == "DEME", ] 
ERLA.Pair <- Pair.Averages.Grouped[Pair.Averages.Grouped$Species == "ERLA", ] 
FERO.Pair <- Pair.Averages.Grouped[Pair.Averages.Grouped$Species == "FERO", ] 
LOUT.Pair <- Pair.Averages.Grouped[Pair.Averages.Grouped$Species == "LOUT", ] 
LULE.Pair <- Pair.Averages.Grouped[Pair.Averages.Grouped$Species == "LULE", ] 
POGR.Pair <- Pair.Averages.Grouped[Pair.Averages.Grouped$Species == "POGR", ] 
SYAL.Pair <- Pair.Averages.Grouped[Pair.Averages.Grouped$Species == "SYAL", ] 
 
#ACMI Paired T Test 
t.test(x = (ACMI.Pair$Host.Parasite), 
       y = (ACMI.Pair$NonHost.Parasite), 
       paired = TRUE) 
 
#AQFO Paired T Test 
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t.test(x = (AQFO.Pair$Host.Parasite), 
       y = (AQFO.Pair$NonHost.Parasite), 
       paired = TRUE) 
 
#ASCU Paired T Test 
t.test(x = (ASCU.Pair$Host.Parasite), 
       y = (ASCU.Pair$NonHost.Parasite), 
       paired = TRUE) 
 
#BADE Paired T Test 
t.test(x = (BADE.Pair$Host.Parasite), 
       y = (BADE.Pair$NonHost.Parasite), 
       paired = TRUE) 
 
#CAQU Paired T Test 
t.test(x = (CAQU.Pair$Host.Parasite), 
       y = (CAQU.Pair$NonHost.Parasite), 
       paired = TRUE) 
 
#CEAR Paired T Test 
t.test(x = (CEAR.Pair$Host.Parasite), 
       y = (CEAR.Pair$NonHost.Parasite), 
       paired = TRUE) 
 
#DEME Paired T Test 
t.test(x = (DEME.Pair$Host.Parasite), 
       y = (DEME.Pair$NonHost.Parasite), 
       paired = TRUE) 
 
#ERLA Paired T Test 
t.test(x = (ERLA.Pair$Host.Parasite), 
       y = (ERLA.Pair$NonHost.Parasite), 
       paired = TRUE) 
 
#FERO Paired T Test 
t.test(x = (FERO.Pair$Host.Parasite), 
       y = (FERO.Pair$NonHost.Parasite), 
       paired = TRUE) 
 
#LOUT Paired T Test 
t.test(x = (LOUT.Pair$Host.Parasite), 
       y = (LOUT.Pair$NonHost.Parasite), 
       paired = TRUE) 
 
#LULE Paired T Test 
t.test(x = (LULE.Pair$Host.Parasite), 
       y = (LULE.Pair$NonHost.Parasite), 
       paired = TRUE) 
 
#POGR Paired T Test 
t.test(x = (POGR.Pair$Host.Parasite), 
       y = (POGR.Pair$NonHost.Parasite), 
       paired = TRUE) 
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#SYAL Paired T Test 
t.test(x = (SYAL.Pair$Host.Parasite), 
       y = (SYAL.Pair$NonHost.Parasite), 
       paired = TRUE) 
 
#Graphs of differences for visualizations 
#(1x1) 
#First with all species, even ones not included in the “official” testing with df > 2 
 
Parasite.Diff.Plot <-  
  ggplot(data = Pair.Averages.Grouped, aes(x=Host.Parasite, y=NonHost.Parasite))+ 
  geom_point(aes(col = Species), size = 3) + 
  labs(title = "Host.Parasite Distance vs. NonHost.Parasite Distance",  
       x = "Host.Parasite", y = "Nonhost.Parasite") + 
  geom_abline(intercept = 0, slope = 1) + 
  xlim(0.45, 1.01) + 
  ylim(0.45, 1.01)+ 
  theme_bw() + 
  theme(legend.title = element_text(color = "black", size = 12, face = "bold")) + 
  guides(col = guide_legend(title = "Species"))+ 
  ggsave("Graphics/Parasite.Diff.Plot.jpg",  
         width = 8, height = 8, units = "in", dpi = 1000) 
Parasite.Diff.Plot 
 
Parasite.Diff.Facet <-  
  ggplot(data = Pair.Averages.Grouped, aes(x=Host.Parasite, y=NonHost.Parasite))+ 
  geom_point(aes(col = Species), size = 3) + 
  facet_wrap(facets = ~Species) + 
  labs(title = "Host.Parasite Distance vs. NonHost.Parasite Distance Facet",  
       x = "Host.Parasite", y = "Nonhost.Parasite") + 
  geom_abline(intercept = 0, slope = 1) + 
  xlim(0.45, 1.01) + 
  ylim(0.45, 1.01)+ 
  theme_bw() + 
  theme(legend.title = element_text(color = "black", size = 12, face = "bold")) + 
  guides(col = guide_legend(title = "Species"))+ 
  ggsave("Graphics/Parasite.Diff.Facet.jpg",  
         width = 8, height = 8, units = "in", dpi = 1000) 
Parasite.Diff.Facet 
 
#Only the select species 
 
Pair.Averages.Grouped.Select <- rbind(Pair.Averages.Grouped[Pair.Averages.Grouped$Species == "BADE",], 
Pair.Averages.Grouped[Pair.Averages.Grouped$Species == "CAQU",],  
                                      Pair.Averages.Grouped[Pair.Averages.Grouped$Species == "CAQU",], 
Pair.Averages.Grouped[Pair.Averages.Grouped$Species == "ERLA",],  
                                      Pair.Averages.Grouped[Pair.Averages.Grouped$Species == "FERO",], 
Pair.Averages.Grouped[Pair.Averages.Grouped$Species == "LOUT",]) 
 
Parasite.Diff.Plot.Select <-  
  ggplot(data = Pair.Averages.Grouped.Select, aes(x=Host.Parasite, y=NonHost.Parasite))+ 
  geom_point(aes(col = Species), size = 3) + 
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  labs(title = "Host.Parasite Distance vs. NonHost.Parasite Distance",  
       x = "Host.Parasite", y = "Nonhost.Parasite") + 
  geom_abline(intercept = 0, slope = 1) + 
  xlim(0.775, 1.01) + 
  ylim(0.775, 1.01)+ 
  theme_bw() + 
  theme(legend.title = element_text(color = "black", size = 12, face = "bold")) + 
  guides(col = guide_legend(title = "Species"))+ 
  ggsave("Graphics/Parasite.Diff.Plot.Select.jpg",  
         width = 8, height = 8, units = "in", dpi = 1000) 
Parasite.Diff.Plot.Select 
 
Parasite.Diff.Facet.Select <-  
  ggplot(data = Pair.Averages.Grouped.Select, aes(x=Host.Parasite, y=NonHost.Parasite))+ 
  geom_point(aes(col = Species), size = 3) + 
  facet_wrap(facets = ~Species) + 
  labs(title = "Host.Parasite Distance vs. NonHost.Parasite Distance Facet",  
       x = "Host.Parasite", y = "Nonhost.Parasite") + 
  geom_abline(intercept = 0, slope = 1) + 
  xlim(0.775, 1.01) + 
  ylim(0.775, 1.01)+ 
  theme_bw() + 
  theme(legend.title = element_text(color = "black", size = 12, face = "bold")) + 
  guides(col = guide_legend(title = "Species"))+ 
  ggsave("Graphics/Parasite.Diff.Facet.Select.jpg",  
         width = 8, height = 8, units = "in", dpi = 1000) 
Parasite.Diff.Facet.Select 
 
###ORDINATIONS 
#3 Dimensional Ordinations 
#Species Ordination 
SpeciesNMDS3D <- metaMDS(comm = AbundanceMBWOBR, autotransform = FALSE, 
                         distance = "bray", engine = "monoMDS", 
                         k = 3, weakties = TRUE, model = "global", 
                         maxit = 300, try = 40, trymax = 100) 
SpeciesNMDS3D$stress 
 
SpeciesNMDS3DPoints <- data.frame(SpeciesNMDS3D$points) 
 
AllDataABPointsMBWOBR3D <- data.frame(AllDataABMBWOBR, SpeciesNMDS3DPoints) 
AllDataABPointsMBWOBR3D$SpeciesCode <- OTUAbundanceMBTableWOBR$SpeciesCode 
 
#ORDINATION WITH SPECIES OVERLAY 
SpeciesOrdination3D <-  
  ggplot(data = AllDataABPointsMBWOBR3D, aes(x=MDS1, y=MDS2))+ 
  geom_point(aes(col = Species), size = 4) + 
  labs(title = "NMDS with Species Overlay 3D",  
       x = "MDS1", y = "MDS2") + 
  theme_bw() + 
  theme(axis.line = element_line(), 
        axis.ticks = element_blank(), 
        axis.text = element_blank(), 
        legend.title = element_text(color = "black", size = 12, face = "bold")) + 
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  guides(col = guide_legend(title = "Species"))+ 
  ggsave("Graphics/PlantSpeciesOrdination3D WO438.jpg",  
         width = 8, height = 8, units = "in", dpi = 1000) 
SpeciesOrdination3D 
 
SpeciesOrdination3D.GOF <- goodness(object = SpeciesNMDS3D) 
SpeciesOrdinationShepard.3D <- plot(SpeciesNMDS3D$diss, SpeciesNMDS3D$dist) 
SpeciesOrdinationShepard.3D <- stressplot(SpeciesNMDS3D, p.col = "blue", l.col = "red", lwd = 2) 
 
#ORDINATION WITH FAMILY OVERLAY 
 
AllDataABTaxonomy <- AllDataABMBWOBR 
AllDataABTaxonomy$SpeciesCode <- as.character(OTUAbundanceMBTableWOBR$SpeciesCode) 
PlantTaxonomy$Code <- as.character(PlantTaxonomy$Code) 
PlantTaxonomy$Kingdom <- as.character(PlantTaxonomy$Kingdom) 
PlantTaxonomy$Division <- as.character(PlantTaxonomy$Division) 
PlantTaxonomy$Class <- as.character(PlantTaxonomy$Class) 
PlantTaxonomy$Order <- as.character(PlantTaxonomy$Order) 
PlantTaxonomy$Family <- as.character(PlantTaxonomy$Family) 
PlantTaxonomy$Genus <- as.character(PlantTaxonomy$Genus) 
PlantTaxonomy$Species <- as.character(PlantTaxonomy$Species) 
 
AllDataABTaxonomy$Family <- ifelse(AllDataABTaxonomy$SpeciesCode == "ACMI", 
PlantTaxonomy[PlantTaxonomy$Code=="ACMI","Family"], 
                            ifelse(AllDataABTaxonomy$SpeciesCode == "AQFO", 
PlantTaxonomy[PlantTaxonomy$Code=="AQFO", "Family"], 
                            ifelse(AllDataABTaxonomy$SpeciesCode == "ASCU", 
PlantTaxonomy[PlantTaxonomy$Code=="ASCU", "Family"], 
                            ifelse(AllDataABTaxonomy$SpeciesCode == "BADE", 
PlantTaxonomy[PlantTaxonomy$Code=="BADE", "Family"], 
                            ifelse(AllDataABTaxonomy$SpeciesCode == "CAQU", 
PlantTaxonomy[PlantTaxonomy$Code=="CAQU", "Family"], 
                            ifelse(AllDataABTaxonomy$SpeciesCode == "CALE", 
PlantTaxonomy[PlantTaxonomy$Code=="CALE", "Family"], 
                            ifelse(AllDataABTaxonomy$SpeciesCode == "CEAR", 
PlantTaxonomy[PlantTaxonomy$Code=="CEAR", "Family"], 
                            ifelse(AllDataABTaxonomy$SpeciesCode == "DEME", 
PlantTaxonomy[PlantTaxonomy$Code=="DEME", "Family"], 
                            ifelse(AllDataABTaxonomy$SpeciesCode == "ERSP", 
PlantTaxonomy[PlantTaxonomy$Code=="ERSP", "Family"], 
                            ifelse(AllDataABTaxonomy$SpeciesCode == "ERLA", 
PlantTaxonomy[PlantTaxonomy$Code=="ERLA", "Family"], 
                            ifelse(AllDataABTaxonomy$SpeciesCode == "FERO", 
PlantTaxonomy[PlantTaxonomy$Code=="FERO", "Family"], 
                            ifelse(AllDataABTaxonomy$SpeciesCode == "LOTR", 
PlantTaxonomy[PlantTaxonomy$Code=="LOTR", "Family"], 
                            ifelse(AllDataABTaxonomy$SpeciesCode == "LOUT", 
PlantTaxonomy[PlantTaxonomy$Code=="LOUT", "Family"], 
                            ifelse(AllDataABTaxonomy$SpeciesCode == "LULE", 
PlantTaxonomy[PlantTaxonomy$Code=="LULE", "Family"], 
                            ifelse(AllDataABTaxonomy$SpeciesCode == "POGR", 
PlantTaxonomy[PlantTaxonomy$Code=="POGR", "Family"], 
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                            ifelse(AllDataABTaxonomy$SpeciesCode == "SYAL", 
PlantTaxonomy[PlantTaxonomy$Code=="SYAL", "Family"], 
                            NA)))))))))))))))) 
 
AllDataABFamilyPoints3D <- data.frame(AllDataABTaxonomy, SpeciesNMDS3DPoints) 
 
PlantTaxonomyOrdination3D <-  
  ggplot(data = AllDataABFamilyPoints3D, aes(x=MDS1, y=MDS2))+ 
  geom_point(aes(col = Family), size = 4) + 
  labs(title = "NMDS with Plant Family Overlay 3D",  
       x = "MDS1", y = "MDS2") +  
  theme_bw() + 
  theme(axis.line = element_line(), 
        axis.ticks = element_blank(), 
        axis.text = element_blank(), 
        legend.title = element_text(color = "black", size = 12, face = "bold")) + 
  guides(col = guide_legend(title = "Family"))+ 
  ggsave("Graphics/PlantFamilyOrdination3D WO438.jpg",  
         width = 8, height = 8, units = "in", dpi = 1000) 
PlantTaxonomyOrdination3D 
 
#Species Facet  
SpeciesFacet <-  
  ggplot(data = AllDataABPointsMBWOBR3D, aes(x=MDS1, y=MDS2))+ 
  geom_point(data = transform(AllDataABPointsMBWOBR3D, Species = NULL), colour = "grey85") + 
  geom_point(aes(col = Species), size = 4) + 
  facet_wrap(facets = ~Species) + 
  labs(title = "NMDS and Species",  
       x = "MDS1", y = "MDS2") + 
#  geom_text_repel(aes(label = AllDataABPointsMBWOBR3D$Sample), point.padding = unit(0.1, "lines"), vjust = 0, 
size = 3.5)+ 
  theme_bw() + 
  theme(axis.line = element_line(), 
        axis.ticks = element_blank(), 
        axis.text = element_blank(), 
        legend.title = element_text(color = "black", size = 12, face = "bold")) + 
  guides(col = guide_legend(title = "Species"))+ 
  ggsave("Graphics/SpeciesFacet 3D.jpg",  
         width = 8, height = 8, units = "in", dpi = 1000) 
SpeciesFacet 
 
#Facet with Initial Disturbance overlay 
AllDataABPointsID <- merge(x = AllDataABPointsMBWOBR3D, y = SiteTreatmentMetadata[ , c("Plot.Name", 
"Disturbance.Treatment", "Disturbance.Regime", "Burn.Mow", "Date.Last.Treatment")], 
                                    by.x = "Collection.Site", by.y = "Plot.Name", all.x = TRUE) 
AllDataABPointsID <- AllDataABPointsID %>% 
  select("Disturbance.Treatment", "Disturbance.Regime", "Burn.Mow", "Date.Last.Treatment", everything()) 
 
AllDataABPointsID <- AllDataABPointsID[c(-grep("GHP-  2009 Array", AllDataABPointsID$Collection.Site), -
grep("GHP- Mounded", AllDataABPointsID$Collection.Site), -grep("GHP- Mounded #2", 
AllDataABPointsID$Collection.Site), -grep("SM Fenced: East", AllDataABPointsID$Collection.Site), 
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                                                        -grep("GHP- 100X2 2011", AllDataABPointsID$Collection.Site), -grep("GHP- 100X3 
2012", AllDataABPointsID$Collection.Site), -grep("GHP- 10X1 SF", AllDataABPointsID$Collection.Site), -grep("GHP- 
10X2 BF", AllDataABPointsID$Collection.Site),    
                                                        -grep("GHP- 10X5 HF", AllDataABPointsID$Collection.Site), -grep("GHP- 10X6 HF", 
AllDataABPointsID$Collection.Site), -grep("SM 10X1 HM", AllDataABPointsID$Collection.Site)), ] 
 
InitialDisturbanceFacet <-  
  ggplot(data = AllDataABPointsID, aes(x=MDS1, y=MDS2))+ 
  geom_point(data = AllDataABPointsID, colour = "grey85") + 
  geom_point(aes(col = Disturbance.Treatment, shape = GHP.SM), size = 2) + 
  facet_wrap(facets = ~Species) + 
  labs(title = "NMDS with Initial Disturbance Overlay",  
       x = "MDS1", y = "MDS2") +  
  theme_bw() + 
  theme(axis.line = element_line(), 
        axis.ticks = element_blank(), 
        axis.text = element_blank(), 
        legend.title = element_text(color = "black", size = 12, face = "bold")) + 
  guides(col = guide_legend(title = "Blank Batch"))+ 
  ggsave("Graphics/InitialDisturbanceFacetMBWOBR WOB1B2.jpg",  
         width = 10, height = 10, units = "in", dpi = 1000) 
InitialDisturbanceFacet 
 
#Just GHP Initial Disturbance Ordination 
 
JustGHP.PointsID <- AllDataABPointsID[c((-grep("SM 10X1 HM",  AllDataABPointsID$Collection.Site)), (-grep("SM 
2010 06", AllDataABPointsID$Collection.Site)), (-grep("SM 2010 11",  AllDataABPointsID$Collection.Site)), (-
grep("SM 2010 13", AllDataABPointsID$Collection.Site)), 
                                                (-grep("SM 2010 16",  AllDataABPointsID$Collection.Site)), (-grep("SM 2010 18", 
AllDataABPointsID$Collection.Site)), (-grep("SM 2010 22",  AllDataABPointsID$Collection.Site)), (-grep("SM 2010 
28", AllDataABPointsID$Collection.Site)), 
                                                (-grep("SM 2010 29",  AllDataABPointsID$Collection.Site)), (-grep("SM 2011 16", 
AllDataABPointsID$Collection.Site)), (-grep("SM 2011 26",  AllDataABPointsID$Collection.Site)), (-grep("SM 2011 
28", AllDataABPointsID$Collection.Site))),] 
 
InitialDisturbanceFacetGHP <-  
  ggplot(data = JustGHP.PointsID, aes(x=MDS1, y=MDS2))+ 
  geom_point(data = JustGHP.PointsID, colour = "grey85") + 
  geom_point(aes(col = Disturbance.Treatment), size = 2) + 
  facet_wrap(facets = ~Species) + 
  labs(title = "NMDS with Initial Disturbance Overlay (GHP)",  
       x = "MDS1", y = "MDS2") +  
  theme_bw() + 
  theme(axis.line = element_line(), 
        axis.ticks = element_blank(), 
        axis.text = element_blank(), 
        legend.title = element_text(color = "black", size = 12, face = "bold")) + 
  guides(col = guide_legend(title = "Blank Batch"))+ 
  ggsave("Graphics/InitialDisturbanceFacetGHP WOB1B2.jpg",  
         width = 10, height = 10, units = "in", dpi = 1000) 
InitialDisturbanceFacetGHP 
 
#Facet with Continuous Disturbance Overlay 
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ContinuousDisturbanceFacet <-  
  ggplot(data = AllDataABPointsID, aes(x=MDS1, y=MDS2))+ 
  geom_point(data = AllDataABPointsID, colour = "grey85") + 
  geom_point(aes(col = Disturbance.Regime, shape = Burn.Mow), size = 2) + 
  facet_wrap(facets = ~Species) + 
  labs(title = "NMDS with Continuous Disturbance Overlay",  
       x = "MDS1", y = "MDS2") +  
  theme_bw() + 
  theme(axis.line = element_line(), 
        axis.ticks = element_blank(), 
        axis.text = element_blank(), 
        legend.title = element_text(color = "black", size = 12, face = "bold")) + 
  guides(col = guide_legend(title = "Blank Batch"))+ 
  ggsave("Graphics/DisturbanceRegimeFacetMBWOBR WOB1B2.jpg",  
         width = 10, height = 10, units = "in", dpi = 1000) 
ContinuousDisturbanceFacet 
 
#JUSTGHP 
InitialDisturbanceFacetGHP <-  
  ggplot(data = JustGHP.PointsID, aes(x=MDS1, y=MDS2))+ 
  geom_point(data = JustGHP.PointsID, colour = "grey85") + 
  geom_point(aes(col = Disturbance.Regime, shape = Burn.Mow), size = 2) + 
  facet_wrap(facets = ~Species) + 
  labs(title = "NMDS with Continuous Disturbance Overlay (GHP)",  
       x = "MDS1", y = "MDS2") +  
  theme_bw() + 
  theme(axis.line = element_line(), 
        axis.ticks = element_blank(), 
        axis.text = element_blank(), 
        legend.title = element_text(color = "black", size = 12, face = "bold")) + 
  guides(col = guide_legend(title = "Blank Batch"))+ 
  ggsave("Graphics/DisturbanceRegimeFacetGHP WOB1B2.jpg",  
         width = 10, height = 10, units = "in", dpi = 1000) 
InitialDisturbanceFacetGHP 
 
#SPECIES ORDINATION with GHP/SM SITES OVERLAY 
SitesOrdination <-  
  ggplot(data = AllDataABPointsMBWOBR3D, aes(x=MDS1, y=MDS2))+ 
  geom_point(aes(col = Species, shape = GHP.SM), size = 4) + 
  labs(title = "NMDS with Species and Sites Overlay",  
       x = "MDS1", y = "MDS2") +  
  theme_bw() + 
  theme(axis.line = element_line(), 
        axis.ticks = element_blank(), 
        axis.text = element_blank(), 
        legend.title = element_text(color = "black", size = 12, face = "bold")) + 
  guides(col = guide_legend(title = "Sites")) 
SitesOrdination 
 
#DIFFERENCE IN ACMI BETWEEN GHP and SM 
Sites.ACMI.NMDS.2D <- metaMDS(comm = ACMIAbundance, autotransform = FALSE, 
                         distance = "bray", engine = "monoMDS", 
                         k = 2, weakties = TRUE, model = "global", 
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                         maxit = 300, try = 40, trymax = 100) 
Sites.ACMI.NMDS.2D$stress 
Sites.ACMI.NMDS.2DPoints <- data.frame(Sites.ACMI.NMDS.2D$points) 
AllDataABPoints.ACMI <- data.frame(ACMI, Sites.ACMI.NMDS.2DPoints) 
 
SitesOrdination.ACMI <-  
  ggplot(data = AllDataABPoints.ACMI, aes(x=MDS1, y=MDS2))+ 
  geom_point(aes(col = GHP.SM), size = 4) + 
  labs(title = "ACMI NMDS with Sites Overlay",  
       x = "MDS1", y = "MDS2") +  
  theme_bw() + 
  theme(axis.line = element_line(), 
        axis.ticks = element_blank(), 
        axis.text = element_blank(), 
        legend.title = element_text(color = "black", size = 12, face = "bold")) + 
  guides(col = guide_legend(title = "Sites"), 
  ggsave("Graphics/SitesOrdination.ACMI.jpg",  
  width = 6, height = 6, units = "in", dpi = 1000)) 
SitesOrdination.ACMI 
 
#DIFFERENCE IN CALE BETWEEN GHP and SM 
Sites.CALE.NMDS.2D <- metaMDS(comm = CALEAbundance, autotransform = FALSE, 
                              distance = "bray", engine = "monoMDS", 
                              k = 2, weakties = TRUE, model = "global", 
                              maxit = 300, try = 40, trymax = 100) 
Sites.CALE.NMDS.2D$stress 
Sites.CALE.NMDS.2DPoints <- data.frame(Sites.CALE.NMDS.2D$points) 
AllDataABPoints.CALE <- data.frame(CALE, Sites.CALE.NMDS.2DPoints) 
 
SitesOrdination.CALE <-  
  ggplot(data = AllDataABPoints.CALE, aes(x=MDS1, y=MDS2))+ 
  geom_point(aes(col = GHP.SM), size = 4) + 
  labs(title = "CALE NMDS with Sites Overlay",  
       x = "MDS1", y = "MDS2") +  
  theme_bw() + 
  theme(axis.line = element_line(), 
        axis.ticks = element_blank(), 
        axis.text = element_blank(), 
        legend.title = element_text(color = "black", size = 12, face = "bold")) + 
  guides(col = guide_legend(title = "Sites"), 
  ggsave("Graphics/SitesOrdination.CALE.jpg",  
       width = 6, height = 6, units = "in", dpi = 1000)) 
SitesOrdination.CALE 
 
#DIFFERENCE IN ERLA BETWEEN GHP and SM 
Sites.ERLA.NMDS.2D <- metaMDS(comm = ERLAAbundance, autotransform = FALSE, 
                              distance = "bray", engine = "monoMDS", 
                              k = 2, weakties = TRUE, model = "global", 
                              maxit = 300, try = 40, trymax = 100) 
Sites.ERLA.NMDS.2D$stress 
Sites.ERLA.NMDS.2DPoints <- data.frame(Sites.ERLA.NMDS.2D$points) 
AllDataABPoints.ERLA <- data.frame(ERLA, Sites.ERLA.NMDS.2DPoints) 
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SitesOrdination.ERLA <-  
  ggplot(data = AllDataABPoints.ERLA, aes(x=MDS1, y=MDS2))+ 
  geom_point(aes(col = GHP.SM), size = 4) + 
  labs(title = "ERLA NMDS with Sites Overlay",  
       x = "MDS1", y = "MDS2") +  
#  geom_text_repel(aes(label = AllDataABPoints.ERLA$Sample), point.padding = unit(0.1, "lines"), vjust = 0, size = 
3.5)+ 
  theme_bw() + 
  theme(axis.line = element_line(), 
        axis.ticks = element_blank(), 
        axis.text = element_blank(), 
        legend.title = element_text(color = "black", size = 12, face = "bold")) + 
  guides(col = guide_legend(title = "Sites"), 
  ggsave("Graphics/SitesOrdination.ERLA.jpg",  
  width = 6, height = 6, units = "in", dpi = 1000)) 
SitesOrdination.ERLA 
 
#DIFFERENCE IN FERO BETWEEN GHP and SM 
Sites.FERO.NMDS.2D <- metaMDS(comm = FEROAbundance, autotransform = FALSE, 
                              distance = "bray", engine = "monoMDS", 
                              k = 2, weakties = TRUE, model = "global", 
                              maxit = 300, try = 40, trymax = 100) 
Sites.FERO.NMDS.2D$stress 
Sites.FERO.NMDS.2DPoints <- data.frame(Sites.FERO.NMDS.2D$points) 
AllDataABPoints.FERO <- data.frame(FERO, Sites.FERO.NMDS.2DPoints) 
 
SitesOrdination.FERO <-  
  ggplot(data = AllDataABPoints.FERO, aes(x=MDS1, y=MDS2))+ 
  geom_point(aes(col = GHP.SM), size = 4) + 
  labs(title = "FERO NMDS with Sites Overlay",  
       x = "MDS1", y = "MDS2") +  
  theme_bw() + 
  theme(axis.line = element_line(), 
        axis.ticks = element_blank(), 
        axis.text = element_blank(), 
        legend.title = element_text(color = "black", size = 12, face = "bold")) + 
  guides(col = guide_legend(title = "Sites"), 
  ggsave("Graphics/SitesOrdination.FERO.jpg",  
  width = 6, height = 6, units = "in", dpi = 1000)) 
SitesOrdination.FERO 
 
###COMBO ACMI, CALE, ERLA and FERO 
 
Sites.ALLSP.NMDS.2D <- metaMDS(comm = ALLSPAbundance, autotransform = FALSE, 
                              distance = "bray", engine = "monoMDS", 
                              k = 2, weakties = TRUE, model = "global", 
                              maxit = 300, try = 40, trymax = 100) 
Sites.ALLSP.NMDS.2D$stress 
Sites.ALLSP.NMDS.2DPoints <- data.frame(Sites.ALLSP.NMDS.2D$points) 
AllDataABPoints.ALLSP <- data.frame(ALLSP, Sites.ALLSP.NMDS.2DPoints) 
 
SitesOrdination.ALLSP <-  
  ggplot(data = AllDataABPoints.ALLSP, aes(x=MDS1, y=MDS2))+ 
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  geom_point(aes(col = GHP.SM, shape= Species, fill = GHP.SM), size = 2) + 
  scale_shape_manual(values = c(21, 22, 23, 24)) + 
  scale_fill_manual(values = c("deepskyblue2", "firebrick2")) + 
  scale_color_manual(values = c("gray0", "gray0")) + 
  labs(title = "ACMI, CALE, ERLA and FERO NMDS with Sites Overlay",  
       x = "MDS1", y = "MDS2") +  
  theme_bw() + 
  theme(axis.line = element_line(), 
        axis.ticks = element_blank(), 
        axis.text = element_blank(), 
        legend.title = element_text(color = "black", size = 12, face = "bold")) + 
  guides(col = guide_legend(title = "Sites"), 
         ggsave("Graphics/SitesOrdination.ALLSP.jpg",  
                width = 6, height = 6, units = "in", dpi = 1000)) 
SitesOrdination.ALLSP 
 
#Ordination for CEAR in Initial Disturbance Treatment 
CEAR <- AllDataABMBWOBR.TreatmentT[AllDataABMBWOBR.TreatmentT$Species == "Cerastium arvense", ] 
CEAR <- CEAR[-c(grep("N/A", CEAR$Disturbance.Treatment), grep("N/A", CEAR$Disturbance.Regime)), ] 
CEARAbundance <- CEAR[ , colnames(CEAR) %in% OTUNumbers] 
 
Disturbance.CEAR <- metaMDS(comm = CEARAbundance, autotransform = FALSE, 
                              distance = "bray", engine = "monoMDS", 
                              k = 2, weakties = TRUE, model = "global", 
                              maxit = 300, try = 40, trymax = 100) 
Disturbance.CEAR$stress 
Disturbance.CEARPoints <- data.frame(Disturbance.CEAR$points) 
AllDataABPoints.CEAR <- data.frame(CEAR, Disturbance.CEARPoints) 
 
Initial.Disurbance.Ordination.CEAR <-  
  ggplot(data = AllDataABPoints.CEAR, aes(x=MDS1, y=MDS2))+ 
  geom_point(aes(col = Disturbance.Treatment), size = 4) + 
  labs(title = "CEAR NMDS with Initial Disturbance Treatment Overlay",  
       x = "MDS1", y = "MDS2") +  
  theme_bw() + 
  theme(axis.line = element_line(), 
        axis.ticks = element_blank(), 
        axis.text = element_blank(), 
        legend.title = element_text(color = "black", size = 12, face = "bold")) + 
  guides(col = guide_legend(title = "Sites"), 
  ggsave("Graphics/Initial.Disturbance.CEAR.jpg",  
  width = 6, height = 6, units = "in", dpi = 1000)) 
Initial.Disurbance.Ordination.CEAR 
 
#Ordination for CEAR with Initial Disturbance Treatment AND Year of Inception 
AllDataABPoints.CEAR$YearInception <- c("2009", "2009", "2009", "2009", "2009", "2009", "2009", "2009", "2009", 
"2009", "2009", "2010", "2010", "2010", "2010", "2011", "2011") 
 
InitialDisurbance.and.YearInception.Ordination.CEAR <-  
  ggplot(data = AllDataABPoints.CEAR, aes(x=MDS1, y=MDS2))+ 
  geom_point(aes(col = Disturbance.Treatment, shape = YearInception), size = 4) + 
  labs(title = "CEAR NMDS with Initial Disturbance Treatment and Year of Inception Overlay",  
       x = "MDS1", y = "MDS2") +  
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  theme_bw() + 
  theme(axis.line = element_line(), 
        axis.ticks = element_blank(), 
        axis.text = element_blank(), 
        legend.title = element_text(color = "black", size = 12, face = "bold")) + 
  guides(col = guide_legend(title = "Sites"), 
         ggsave("Graphics/InitialDisturbance.and.YearInception.CEAR.jpg",  
          width = 6, height = 6, units = "in", dpi = 1000)) 
InitialDisurbance.and.YearInception.Ordination.CEAR 
 
#Ordination for CEAR in Disturbance Regime Treatment 
Disturbance.Regime.Ordination.CEAR <-  
  ggplot(data = AllDataABPoints.CEAR, aes(x=MDS1, y=MDS2))+ 
  geom_point(aes(col = Disturbance.Regime), size = 4) + 
  labs(title = "CEAR NMDS with Disturbance Regime Treatment Overlay",  
       x = "MDS1", y = "MDS2") +  
  theme_bw() + 
  theme(axis.line = element_line(), 
        axis.ticks = element_blank(), 
        axis.text = element_blank(), 
        legend.title = element_text(color = "black", size = 12, face = "bold")) + 
  guides(col = guide_legend(title = "Sites"), 
  ggsave("Graphics/Disturbance.Regime.CEAR.jpg",  
  width = 6, height = 6, units = "in", dpi = 1000)) 
Disturbance.Regime.Ordination.CEAR 
 
#Ordination for CEAR with Disturbance Treatment AND Date Last Treatment 
Disturbance.and.Year.Ordination.CEAR <-  
  ggplot(data = AllDataABPoints.CEAR, aes(x=MDS1, y=MDS2))+ 
  geom_point(aes(col = Disturbance.Regime, shape = Date.Last.Treatment), size = 4) + 
  labs(title = "CEAR NMDS with Disturbance Regime and Date of Last Treatment Overlay",  
       x = "MDS1", y = "MDS2") +  
  theme_bw() + 
  theme(axis.line = element_line(), 
        axis.ticks = element_blank(), 
        axis.text = element_blank(), 
        legend.title = element_text(color = "black", size = 12, face = "bold")) + 
  guides(col = guide_legend(title = "Sites"), 
         ggsave("Graphics/DisturbanceRegime.and.DateofLastBurn.CEAR.jpg",  
                width = 6, height = 6, units = "in", dpi = 1000)) 
Disturbance.and.Year.Ordination.CEAR 
 
#ORDINATION WITH HOST/NON-HOST/PARASITE OVERLAY 
HostOrdination <-  
  ggplot(data = AllDataABPointsMBWOBR3D, aes(x=MDS1, y=MDS2))+ 
  geom_point(aes(col = Species, shape = ParasiteStatus), size = 4) + 
  labs(title = "NMDS and Host/Non-host/Parasite Status",  
       x = "MDS1", y = "MDS2") +  
  theme_bw() + 
  theme(axis.line = element_line(), 
        axis.ticks = element_blank(), 
        axis.text = element_blank(), 
        legend.title = element_text(color = "black", size = 12, face = "bold")) + 
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  guides(col = guide_legend(title = "Host/Non-Host/Parasite Status")) 
HostOrdination 
 
 
#Facet with Host/Non-host/Parasite overlay 
SpeciesParasiteFacet <-  
  ggplot(data = AllDataABPointsMBWOBR3D, aes(x=MDS1, y=MDS2))+ 
  geom_point(data = AllDataABPointsMBWOBR3D[AllDataABPointsMBWOBR3D$Host.Parasite == "Parasite", ], 
colour = "grey85") + 
  geom_point(aes(col = ParasiteStatus, shape = ParasiteStatus), size = 2) + 
  facet_wrap(facets = ~Species) + 
  labs(title = "NMDS with Parasite Status Overlay",  
       x = "MDS1", y = "MDS2") +  
  theme_bw() + 
  theme(axis.line = element_line(), 
        axis.ticks = element_blank(), 
        axis.text = element_blank(), 
        legend.title = element_text(color = "black", size = 12, face = "bold")) + 
  guides(col = guide_legend(title = "Parasite Status"))+ 
  ggsave("Graphics/SpeciesParasiteFacetMBWOBR WOB1B2.jpg",  
         width = 10, height = 10, units = "in", dpi = 1000) 
SpeciesParasiteFacet 
 
###PHYLOGENETIC HISTOGRAMS#### 
#For the OTU Table: Taxa are Columns and Samples are Rows 
OTUTableWOBR <- AbundanceMBWOBR 
rownames(OTUTableWOBR) <- SampleNumberWOBR 
colnames(OTUTableWOBR) <- OTUNumbersWOBR 
OTUTableWOBR <- as.matrix(OTUTableWOBR) 
OTUWOBR <- otu_table(OTUTableWOBR, taxa_are_rows = FALSE) 
 
TAXATableWOBR <- as.data.frame(Taxa[,c("Kingdom", "Phylum", "Class", "Order", "Family", "Genus", "Species")]) 
rownames(TAXATableWOBR) <- (OTUNumbersWOBR) 
colnames(TAXATableWOBR) <- c("Kingdom", "Phylum", "Class", "Order", "Family", "Genus", "Species") 
TAXATableWOBR <- as.matrix(TAXATableWOBR) 
TAXWOBR <- tax_table(TAXATableWOBR) 
physeq <- phyloseq(OTUWOBR, TAXWOBR) 
Phylum level 
plot_bar(physeq, fill = "Phylum") 
PhylumGlommed <- tax_glom(physeq, "Phylum") 
plot_bar(PhylumGlommed, fill ="Phylum") 
 
#Class level 
#plot_bar(physeq, fill = "Class") 
#ClassGlommed <- tax_glom(physeq, "Class") 
#plot_bar(ClassGlommed, fill ="Class") 
 
#Family level 
#plot_bar(physeq, fill = "Family") 
#FamilyGlommed <- tax_glom(physeq, "Family") 
#plot_bar(FamilyGlommed, fill ="Family") 
 
TaxPhylumTable <- count(Taxa, vars=Taxa$Phylum) 
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TaxPhylumTable <- TaxPhylumTable[order(TaxPhylumTable$n, decreasing = TRUE),] 
colnames(TaxPhylumTable) <- c("Phyla", "OTUs") 
TaxClassTable <- count(Taxa, vars = Taxa$Class)  
TaxClassTable <- TaxClassTable[order(TaxClassTable$n, decreasing = TRUE),] 
colnames(TaxClassTable) <- c("Phyla", "OTUs") 
TaxOrderTable <- count(Taxa, vars = Taxa$Order)  
TaxOrderTable <- TaxOrderTable[order(TaxOrderTable$n, decreasing = TRUE),] 
colnames(TaxOrderTable) <- c("Phyla", "OTUs") 
TaxFamilyTable <- count(Taxa, vars = Taxa$Family) 
TaxFamilyTable <- TaxFamilyTable[order(TaxFamilyTable$n, decreasing = TRUE),] 
colnames(TaxFamilyTable) <- c("Phyla", "OTUs") 
TaxGenusTable <- count(Taxa, vars = Taxa$Genus) 
TaxGenusTable <- TaxGenusTable[order(TaxGenusTable$n, decreasing = TRUE),] 
colnames(TaxGenusTable) <- c("Phyla", "OTUs") 
TaxSpeciesTable <- count(Taxa, vars = Taxa$Species) 
TaxSpeciesTable <- TaxSpeciesTable[order(TaxSpeciesTable$n, decreasing = TRUE),] 
colnames(TaxSpeciesTable) <- c("Phyla", "OTUs") 
 
write.csv(TaxPhylumTable, "Tables/Tables for Graphics/TaxPhylumTable.csv") 
write.csv(TaxClassTable, "Tables/Tables for Graphics/TaxClassTable.csv") 
write.csv(TaxOrderTable, "Tables/Tables for Graphics/TaxOrderTable.csv") 
write.csv(TaxFamilyTable, "Tables/Tables for Graphics/TaxFamilyTable.csv") 
write.csv(TaxGenusTable, "Tables/Tables for Graphics/TaxGenusTable.csv") 
 
#For the OTU Table: Taxa are Columns and Species are Rows 
 
AveACMIAbundance <- AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Species == "Achillea 
millefolium", colnames(AbundanceMetadataMBWOBR) %in% OTUNumbers] 
AveACMIAbundance <- colMeans(AveACMIAbundance) 
AveAQFOAbundance <- AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Species == "Aquilegia 
formosa", colnames(AbundanceMetadataMBWOBR) %in% OTUNumbers] 
AveAQFOAbundance <- colMeans(AveAQFOAbundance) 
AveASCUAbundance <- AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Species == "Aster curtisii", 
colnames(AbundanceMetadataMBWOBR) %in% OTUNumbers] 
AveASCUAbundance <- colMeans(AveASCUAbundance) 
AveBADEAbundance <- AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Species == "Balsamorhiza 
deltoidea", colnames(AbundanceMetadataMBWOBR) %in% OTUNumbers] 
AveBADEAbundance <- colMeans(AveBADEAbundance) 
AveCALEAbundance <- AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Species == "Castilleja 
levisecta", colnames(AbundanceMetadataMBWOBR) %in% OTUNumbers] 
AveCALEAbundance <- colMeans(AveCALEAbundance) 
AveCAQUAbundance <- AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Species == "Camassia 
quamash", colnames(AbundanceMetadataMBWOBR) %in% OTUNumbers] 
AveCAQUAbundance <- colMeans(AveCAQUAbundance) 
AveCEARAbundance <- AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Species == "Cerastium 
arvense", colnames(AbundanceMetadataMBWOBR) %in% OTUNumbers] 
AveCEARAbundance <- colMeans(AveCEARAbundance) 
AveDEMEAbundance <- AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Species == "Delphinium 
menziesii", colnames(AbundanceMetadataMBWOBR) %in% OTUNumbers] 
AveDEMEAbundance <- colMeans(AveDEMEAbundance) 
AveERLAAbundance <- AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Species == "Eriophyllum 
lanatum", colnames(AbundanceMetadataMBWOBR) %in% OTUNumbers] 
AveERLAAbundance <- colMeans(AveERLAAbundance) 
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AveERSPAbundance <- AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Species == "Erigeron 
speciosus", colnames(AbundanceMetadataMBWOBR) %in% OTUNumbers] 
AveERSPAbundance <- colMeans(AveERSPAbundance) 
AveFEROAbundance <- AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Species == "Festuca 
roemeri", colnames(AbundanceMetadataMBWOBR) %in% OTUNumbers] 
AveFEROAbundance <- colMeans(AveFEROAbundance) 
AveLOTRAbundance <- AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Species == "Lomatium 
triternatum", colnames(AbundanceMetadataMBWOBR) %in% OTUNumbers] 
AveLOTRAbundance <- colMeans(AveLOTRAbundance) 
AveLOUTAbundance <- AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Species == "Lomatium 
utriculatum", colnames(AbundanceMetadataMBWOBR) %in% OTUNumbers] 
AveLOUTAbundance <- colMeans(AveLOUTAbundance) 
AveLULEAbundance <- AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Species == "Lupinus 
lepidus", colnames(AbundanceMetadataMBWOBR) %in% OTUNumbers] 
AveLULEAbundance <- colMeans(AveLULEAbundance) 
AvePOGRAbundance <- AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Species == "Potentilla 
gracilius", colnames(AbundanceMetadataMBWOBR) %in% OTUNumbers] 
AvePOGRAbundance <- colMeans(AvePOGRAbundance) 
AveSYALAbundance <- AbundanceMetadataMBWOBR[AbundanceMetadataMBWOBR$Species == 
"Symphoricarpos albus", colnames(AbundanceMetadataMBWOBR) %in% OTUNumbers] 
AveSYALAbundance <- colMeans(AveSYALAbundance) 
AverageAbundanceTable <- cbind(AveACMIAbundance, AveAQFOAbundance, AveASCUAbundance, 
AveBADEAbundance, AveCALEAbundance, AveCAQUAbundance, AveCEARAbundance, AveDEMEAbundance, 
AveERLAAbundance, AveERSPAbundance, AveFEROAbundance, AveLOTRAbundance, AveLOUTAbundance, 
AveLULEAbundance, AvePOGRAbundance, AveSYALAbundance) 
AverageAbundanceTable <- t(round(AverageAbundanceTable, digits = 0)) 
rownames(AverageAbundanceTable) <- c("ACMI", "AQFO", "ASCU", "BADE", "CALE", "CAQU", "CEAR", "DEME", 
"ERLA", "ERSP", "FERO", "LOTR", "LOUT", "LULE", "POGR", "SYAL") 
as.data.frame(AverageAbundanceTable) 
write.csv(AverageAbundanceTable, "Tables/AverageAbundanceTable.csv") 
OTUTableSPECIESWOBR <- AverageAbundanceTable 
OTUTableSPECIESWOBR <- as.matrix(OTUTableSPECIESWOBR) 
OTUSPECIESWOBR <- otu_table(OTUTableSPECIESWOBR, taxa_are_rows = FALSE) 
 
TAXATableWOBR <- as.data.frame(Taxa[,c("Kingdom", "Phylum", "Class", "Order", "Family", "Genus", "Species")]) 
rownames(TAXATableWOBR) <- (OTUNumbersWOBR) 
colnames(TAXATableWOBR) <- c("Kingdom", "Phylum", "Class", "Order", "Family", "Genus", "Species") 
TAXATableWOBR <- as.matrix(TAXATableWOBR) 
TAXWOBR <- tax_table(TAXATableWOBR) 
write.csv(TAXATableWOBR, "Tables/TAXATableWOBR.csv") 
 
physeqSPECIES <- phyloseq(OTUSPECIESWOBR, TAXWOBR) 
PhylumGlommedSPECIES <- tax_glom(physeqSPECIES, "Phylum") 
plot_bar(PhylumGlommedSPECIES, fill ="Phylum") 
 
#What comprises each species community profile? 
FirstOTU <- which(colnames(ACMIGroupMB) == "OTU0001") 
LastOTU <- which(colnames(ACMIGroupMB) == "OTU7365") 
 
ACMITAX <- ACMIGroupMB[c(ACMIGroupMB$Species == "Achillea millefolium"), FirstOTU:LastOTU] 
AQFOTAX <- AQFOGroupMB[c(AQFOGroupMB$Species == "Aquilegia formosa"), FirstOTU:LastOTU] 
ASCUTAX <- ASCUGroupMB[c(ASCUGroupMB$Species == "Aster curtisii"), FirstOTU:LastOTU] 
BADETAX <- BADEGroupMB[c(BADEGroupMB$Species == "Balsamorhiza deltoidea"), FirstOTU:LastOTU] 



176 

 

 

CALETAX <- AbundanceMetadataMBWOBR[c(AbundanceMetadataMBWOBR$Species == "Castilleja levisecta"), 
FirstOTU:LastOTU] 
CAQUTAX <- CAQUGroupMB[c(CAQUGroupMB$Species == "Camassia quamash"), FirstOTU:LastOTU] 
CEARTAX <- CEARGroupMB[c(CEARGroupMB$Species == "Cerastium arvense"), FirstOTU:LastOTU] 
DEMETAX <- DEMEGroupMB[c(DEMEGroupMB$Species == "Delphinium menziesii"), FirstOTU:LastOTU] 
ERLATAX <- ERLAGroupMB[c(ERLAGroupMB$Species == "Eriophyllum lanatum"), FirstOTU:LastOTU] 
ERSPTAX <- AbundanceMetadataMBWOBR[c(AbundanceMetadataMBWOBR$Species == "Erigeron speciosis"), 
FirstOTU:LastOTU] 
FEROTAX <- FEROGroupMB[c(FEROGroupMB$Species == "Festuca roemeri"), FirstOTU:LastOTU] 
LOTRTAX <- LOTRGroupMB[c(LOTRGroupMB$Species == "Lomatium triternatum"), FirstOTU:LastOTU] 
LOUTTAX <- LOUTGroupMB[c(LOUTGroupMB$Species == "Lomatum utriculatum"), FirstOTU:LastOTU] 
LULETAX <- LULEGroupMB[c(LULEGroupMB$Species == "Lupinus lepidus"), FirstOTU:LastOTU] 
POGRTAX <- POGRGroupMB[c(POGRGroupMB$Species == "Potentilla gracilius"), FirstOTU:LastOTU] 
SYALTAX <- SYALGroupMB[c(SYALGroupMB$Species == "Symphoricarpos albus"), FirstOTU:LastOTU] 
 
ACMITAXSUMS <- as.data.frame(colSums(ACMITAX)) 
AQFOTAXSUMS <- as.data.frame(colSums(AQFOTAX)) 
ASCUTAXSUMS <- as.data.frame(colSums(ASCUTAX)) 
BADETAXSUMS <- as.data.frame(colSums(BADETAX)) 
CALETAXSUMS <- as.data.frame(colSums(CALETAX)) 
CAQUTAXSUMS <- as.data.frame(colSums(CAQUTAX)) 
CEARTAXSUMS <- as.data.frame(colSums(CEARTAX)) 
DEMETAXSUMS <- as.data.frame(colSums(DEMETAX)) 
ERLATAXSUMS <- as.data.frame(colSums(ERLATAX)) 
ERSPTAXSUMS <-as.data.frame(colSums(ERSPTAX)) 
FEROTAXSUMS <- as.data.frame(colSums(FEROTAX)) 
LOTRTAXSUMS <- as.data.frame(colSums(LOTRTAX)) 
LOUTTAXSUMS <- as.data.frame(colSums(LOUTTAX)) 
LULETAXSUMS <- as.data.frame(colSums(LULETAX)) 
POGRTAXSUMS <- as.data.frame(colSums(POGRTAX)) 
SYALTAXSUMS <- as.data.frame(colSums(SYALTAX)) 
 
TAXSpeciesSumTable <- 
t(cbind(ACMITAXSUMS,AQFOTAXSUMS,ASCUTAXSUMS,BADETAXSUMS,CALETAXSUMS,CAQUTAXSUMS,CEARTAXS
UMS,DEMETAXSUMS,ERLATAXSUMS, 
                            
ERSPTAXSUMS,FEROTAXSUMS,LOTRTAXSUMS,LOUTTAXSUMS,LULETAXSUMS,POGRTAXSUMS,SYALTAXSUMS)) 
rownames(TAXSpeciesSumTable) <- c("ACMI", "AQFO", "ASCU", "BADE", "CALE", "CAQU", "CEAR", "DEME", 
"ERLA", "ERSP", "FERO", "LOTR", "LOUT", "LULE", "POGR", "SYAL") 
 
unique(Taxa$Phylum) 
 
#INDICATOR SPECIES ANALYSIS 
 
library(indicspecies) 
#Practice: based on species 
#Use as.character to remove blanks from level 
Species.ISA <- multipatt(x = AbundanceMBWOBR, cluster = as.character(AllDataABMBWOBR$Species), duleg = 
TRUE) 
 
summary(Species.ISA) 
str(Species.ISA) 
Species.ISA$sign$stat[Species.ISA$sign$stat == 1 & !is.na(Species.ISA$sign$stat)] 
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