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Background and purpose: The TP53 induced glycolysis and apoptosis regulator (TIGAR) functions to lower
fructose-2,6-bisphosphate (Fru-2,6-P2) levels in cells, consequently decreasing glycolysis and leading to
the scavenging of reactive oxygen species (ROS), which correlate with a higher resistance to cell death.
The decrease in intracellular ROS levels in response to TIGAR may also play a role in the ability of p53
to protect from the accumulation of genomic lesions. Given these good prospects of TIGAR for metabolic
regulation and p53-response modulation, we analyzed the effects of TIGAR knockdown in U87MG and
T98G glioblastoma-derived cell lines.
Methods/results: After TIGAR-knockdown in glioblastoma cell lines, different metabolic parameters were
assayed, showing an increase in Fru-2,6-P2, lactate and ROS levels, with a concomitant decrease in
reduced glutathione (GSH) levels. In addition, cell growth was inhibited without evidence of apoptotic
or autophagic cell death. In contrast, a clear senescent phenotype was observed. We also found that
TIGAR protein levels were increased shortly after irradiation. In addition, avoiding radiotherapy-triggered
TIGAR induction by gene silencing resulted in the loss of capacity of glioblastoma cells to form colonies in
culture and the delay of DNA repair mechanisms, based in c-H2AX foci, leading cells to undergo morpho-
logical changes compatible with a senescent phenotype. Thus, the results obtained raised the possibility
to consider TIGAR as a therapeutic target to increase radiotherapy effects.
Conclusion: TIGAR abrogation provides a novel adjunctive therapeutic strategy against glial tumors by
increasing radiation-induced cell impairment, thus allowing the use of lower radiotherapeutic doses.

� 2011 Elsevier Ireland Ltd. All rights reserved. Radiotherapy and Oncology xxx (2011) xxx–xxx
TIGAR (TP53 induced glycolysis and apoptosis regulator) has
been identified as an early target of p53. By lowering the levels of
fructose-2,6-bisphosphate (Fru-2,6-P2), TIGAR redirects glucose
into the pentose phosphate pathway (PPP) enhancing NADPH
production and increasing the capacity of cells to handle redox
stress, thereby protecting them from apoptosis [1]. Recently Li
et al. made a structural analysis of TIGAR demonstrating that the TI-
GAR structure forms a histidine phosphatase fold and has an active
site with bisphosphatase activity [2], which leads to reduced Fru-
2,6-P2 levels. This metabolite is a key regulator of glycolysis and its
concentration depends on the activity of different bifunctional en-
zymes called 6-phosphofructo-2-kinase/fructose-2,6-bisphospha-
tase (PFK-2/FBPase-2) encoded by four genes (PFKFB1–4) [3]. In
particular, it is known that the transcription of PFKFB3 is modulated
by HIF-1 (Hypoxia Inducible Factor-1) and upregulated in cancer,
hence the synthesis and elimination of Fru-2,6-P2 by PFKFB3 and
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TIGAR are controlled by HIF-1 and p53 respectively, which points
out to the relevance of metabolic regulation for tumor suppression
[4].

The importance of TIGAR as a regulator of oxidative stress is re-
flected in its capacity to modulate apoptosis, autophagy and senes-
cence [1,5,6]. ROS regulate several cellular processes, although at
higher levels they can induce genotoxic damage and cell death
[7]. Indeed, an imbalance between ROS generation and elimination
can contribute to disease development, such as cancer. In this con-
text, oxidative stress is a condition that glioblastoma multiforme
(GBM) cells encounter in the necrotic zone, which is one of the
stressful conditions that GBM cells need to withstand in order to
survive [8]. GBM is the most aggressive primary brain tumor in
adults; its hallmark features are uncontrolled proliferation, diffuse
infiltration, propensity to necrosis, robust angiogenesis, intense
resistance to apoptosis and genomic instability [9]. Following sur-
gery or biopsy, radiotherapy, often in conjunction with adjuvant
chemotherapy, modestly improves survival, although glioma cell
resistance to radiotherapy remains a major obstacle [10,11].

A number of studies have identified several molecular mecha-
nisms of glioma cell radioresistance [12]. Despite these advances,
nd apoptosis regulator (TIGAR) knockdown results in radiosensitization of
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2 TIGAR knockdown as a radiosensitizer
a significant clinical improvement has not been achieved. There-
fore, an exhaustive characterization of the molecular mechanisms
of resistance is necessary in order to uncover targets for novel ther-
apies. One potential basis for radiosensitivity is through differences
in ROS levels, which are involved in radiation-induced damage. A
critical event in determining radiosensitivity is the repair of DNA
double-strand breaks (DSB) [13]. Furthermore, several authors
have described the importance of glycolytic metabolism and free
radicals in chemo- and radiotherapies in glioma cells. ROS levels
are influenced by a number of endogenous factors [14,15], includ-
ing TIGAR antioxidant activity, which increases the feeding of glu-
cose-6 phosphate into the PPP to produce glutathione (GSH)
[16,17]. A recent study has revealed that enhanced PPP and in-
creased antioxidant capacity correlate with metastasis of breast
cancer cells to the brain [18]. In addition, recent findings have
demonstrated that an anticancer molecule mediates its effects
via TIGAR downregulation associated with a decrease in NADPH
levels [19]. In the present study, we look at the TIGAR knockdown
effects in glioma U87MG and T98G cells and analyze its potential
therapeutic utility as an enhancer of radiotherapy action in glio-
blastoma derived cell-lines.

Materials and methods

Cell culture

U87MG (TP53 wild-type) and T98G (TP53 mutant, M237I) hu-
man glioma cell lines were obtained from the American Type Cul-
ture Collection and cultured with DMEM with 10% fetal calf serum
(FCS) supplemented with L-glutamine (2 mM) and penicillin–strep-
tomycin (100 U/ml–100 lg/ml) in a humidified atmosphere of 5%
CO2. Both cell lines were verified to be mycoplasma-free and p53
status was determined by sequencing.
siRNA design and transfection

Small interfering RNAs (siRNAs) were designed according to cri-
teria outlined elsewhere [20]. Specificity was checked by BLAST.
Transfections were carried out using three Stealth siRNAs (Invitro-
gen Corp.) sequences targeted against TIGAR (‘‘TIGAR-siRNA’’) (T1:
50-GAAGUUAAACCAACGGUUCAGUGUA-30, T2: 50-CAGGAUCAUCU
AAAUGGACUGACUG-30 and T3: 50-CAAGCAGCAGCUGCUGGUAUAU
UUC-30) and two medium GC negative control Stealth siRNAs
(‘‘Neg-siRNA’’) (50-GAAGUUAAACCAACGGUUCAGUGUA-30 and 50-
CAGGAUCAUCUAAAUGGACUGACUG-30). Cells were plated at a
density of 2.5 � 105 cells in 6-well plates and allowed to attach over-
night. Cells were then transfected using Oligofectamine (Invitrogen
Corp.) diluted in Opti-MEM Reduced Serum Medium (GIBCO). The fi-
nal siRNA concentration was 75 nM. After 4 h, complete media was
added to each well. 24 h after transfection, cells were trypsinized,
resuspended in fresh media, and re-plated for clonogenic cell sur-
vival and cell viability assays.
Irradiation

Forty-eight hours after siRNA transfection, cells were treated at
room temperature with c-irradiation using an c-ray unit (Clinac
600 CD, M/S Varian AG) at dose-rate of 0.90 Gy/min to a total ab-
sorbed dose of 2.0, 4.0, 6.0, 8.0 and 10.0 Gy. Irradiation was under-
taken at Hospital Duran i Reynals from the Applied Radiobiology
and Experimental Radiotherapy Group from ICO -IDIBELL.
Cell number assay

Cell number was determined by crystal violet staining as in
Calvo et al. [21]. Cells attached to the culture plate were stained
with crystal violet and, after dissolving the dye with 1% SDS, the
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absorbance read at 550 nm was plotted as proportional to the cell
number.
Protein extraction and Western blot analysis

Protein was extracted from cells using SDS buffer (50 mM Tris–
Cl, 1% SDS, 10% glycerol) supplemented with protease inhibitors.
Protein concentration was determined by BCA protein assay (Bio-
Rad). Equal amounts of total protein extracts were analyzed in
10% (w/v) SDS–PAGE. Western blot was performed [22] using a
rabbit polyclonal antibody against TIGAR (1:1000) (Lifespan),
and, for protein loading control, a mouse monoclonal antibody
against a-tubulin (1:1000) (Sigma). Peroxidase-conjugated sec-
ondary antibodies against mouse and rabbit (Amersham Biosci-
ence) were used at 1:5000. Immunostaining was carried out
using the ECL technique (Amersham–Pharmacia Biotech). Densito-
metric analysis was carried out using Multi-Gauge v3.0 (FujiFilm
Corporation, 2007) software.

Metabolite determination

To measure Fru-2,6-P2 levels, U87MG cells were homogenized
in 0.1 M NaOH containing 0.1% (v/v) Triton X-100, heated to
80 �C for 15 min, and centrifuged at 14,000g for 5 min. Fru-2,6-P2

was determined in supernatants by its ability to activate pyrophos-
phate-dependent PFK-1 from potato tubers as described by Van
Schaftingen et al. [23]. Lactate was measured spectrophotometri-
cally in neutralized perchloric extracts by using standard enzy-
matic methods [24]. Protein concentration was determined by
the Bradford-based Bio-Rad assay. For GSH determination U8MG
cells were homogenized directly in a cold medium containing
20 mM HCl, 5 mM diethylenetriaminepentaacetic acid (DTPA),
10 mM ascorbic acid, and 5% trichloroacetic acid (TCA). Suspen-
sions were centrifuged at 14,000g and the resulting supernatants
containing GSH were collected and stored at �70 �C, whereas the
pellets were washed twice, neutralized in 0.1 M NaOH, and stored
at �20 �C for protein determination. Levels of GSH were deter-
mined fluorometrically using the fluorescent probe o-phthalalde-
hyde (OPA), as reported elsewhere [25].

Total cellular ROS Levels

siRNA-transfected cells were incubated for 24, 48 or 72 h. After
three washes with PBS, cells were loaded with the oxidative-sensi-
tive dye 20,70-dichlorodihydrofluorescein diacetate (H2DCFDA) by
replacing the medium with phenol red-free DPBS containing 10%
FBS and 10 lM H2DCFDA for 30 min at 37 �C, in a 5% CO2 cell incu-
bator. Unincorporated dye was removed by washing once with
DPBS + FBS and two times with PBS, and cells were lysed with a
buffer containing 25 mM Hepes pH 7.5, 1.5 mM MgCl2, 0.2 mM
EDTA, 0.1% Triton X-100 and protease inhibitors. Homogenates
were transferred in duplicate into a 96-well clear bottom black
plate and DCF fluorescence was assayed with an excitation wave-
length of 488 nm and an emission wavelength of 520 nm in a
Microplate Fluorescence Reader Fluostar Optima. Results were ex-
pressed as fold change of their respective controls after correction
with protein content.

Clonogenic survival assay

Twenty-four hours after siRNA transfection, 1 � 102 U87MG
cells were plated in triplicate in 6-well plates. Plates were irradi-
ated 48 h after transfection as described above. 14 days after irra-
diation, cells were fixed in 1% crystal violet (containing 30%
ethanol) and visualized under an inverted phase-contrast micro-
scope. Cells were then washed with distilled water and colonies
consisting of P50 cells were counted as a single colony. The
nd apoptosis regulator (TIGAR) knockdown results in radiosensitization of
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relative percentage of surviving cells was calculated by dividing
the number of treated cell colonies by that of the control cells [26].
Apoptosis analysis

Apoptotic or necrotic cells were determined by the annexin V
binding assay [27]. The affinity of annexin V for phosphatidylserine
residues allows the percentage of cells undergoing apoptosis to be
quantified by flow cytometry. Apoptotic and necrotic cells were
distinguished on the basis of double-labeling for annexin V-FITC
(Bender) and propidium iodide (PI), a membrane-impermeable
DNA stain. Floating and freshly trypsinized cells were pooled,
washed twice in binding buffer and processed following the man-
ufacturer’s instructions. Cell fluorescence was analyzed by flow
cytometry (FACS Calibur, Becton Dickinson) using the Cell Quest
Pro software.
Senescence Associated-b-Galactosidase (SA-b-Gal) staining

A senescence detection kit from Biovision was used. Briefly,
cells were washed in PBS and fixed with fixative solution 10–
15 min at room temperature. Cells were washed twice with PBS
and incubated in fixative solution containing X-Gal at 37 �C in a
dark humidified chamber. Staining was evident in 12–14 h [28].
Percentage of SA-b-Gal-positive cells was counted at 400� magni-
fication by examining 10 random fields under the microscope.
Immunofluorescent c-H2AX staining

Cells were fixed with 2% paraformaldehyde in PBS 30 min, 1, 4
and 24 h post-irradiation and then were immunostained for c-
H2AX with an Alexa-488-conjugated anti-rabbit IgG (Molecular
Probes) for visualization of foci. Images of c-H2AX foci and nuclei
were acquired with a Spectral Confocal Microscope (TCS-SL, Leica
Microsystems, Wetzlar, Germany) using a Plan-Apochromat 63�/
1.4 N.A. immersion oil objective (Leica Microsystems). We used
excitation laser beam at 633 nm (Lasos Inc) and pinhole of
114.54 lm for To-pro-3 nuclear stainning, and Argon Laser at
488 nm and pinhole of 114.54 lm for Alexa fluor 488 foci staining.
Images were captured using the accompanying image processing
software from Cytovision. Images of c-H2AX foci and nuclei were
exported separately as tif files and processed using Image J soft-
ware (U.S. National Institutes of Health, http://rsb.info.nih.gov/ij/
download.html). For U87MG and T98G cells a minimum particle
size of 11.6 pixels (0.108 lm2) and 12.59 (0.117 lm2), respectively
and threshold gray value of 20 were chosen. For each treatment
condition, c-H2AX foci were determined and the average number
of c-H2AX foci per cell nucleus from three independent experi-
ments was plotted.
Statistical analysis

Results are expressed as means ± standard error of the mean
(S.E.M.) of values obtained in independent experiments. Differ-
ences between samples were analyzed with the Student’s t test.
Significant differences at p < 0.05, 0.01, and 0.001 versus negative
control are indicated by ⁄, ⁄⁄, and ⁄⁄⁄, respectively. All calculations
were performed using the 14.0 SPSS software package (SPSS Inc.).

Results

TIGAR expression knockdown affects glioblastoma cells metabolism
and growth rate

The aim of this study was to investigate the biological conse-
quences of the specific knockdown of TIGAR in U87MG and T98G
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glioblastoma-derived cell lines. Three different siRNA molecules
were designed to silence TIGAR.

Preliminary studies on protein levels showed between 60 and
80% of silencing using specific T1, T2 or T3 siRNAs and no signifi-
cant differences were observed. A mix of them (T1, T2 and T3 siR-
NAs) was prepared to perform most of the experiments, and some
experiments were performed with T1 siRNA alone. U87MG cells
were transfected, 24 h post-plating, with either negative siRNA
(Neg-siRNA) or TIGAR mix siRNA (TIGAR-siRNA) at 75 nM final
concentration. U87MG samples were collected 24, 48 and 72 h
post-transfection and TIGAR protein expression was assessed by
Western blot and normalized by a-tubulin. Supplementary
Fig. 1A shows a representative time-course of TIGAR knockdown
that reveals decreased levels of TIGAR 24 h after transfection,
which were sustained at least for 72 h. Metabolic parameters re-
lated with TIGAR function were determined and Fru-2,6-P2 and
lactate levels were significantly increased in TIGAR-silenced
U87MG cells 24 h after transfection (Supplementary Fig. 1B). Re-
dox state was evaluated by assaying GSH and total ROS levels.
The presence of ROS coincided with a decrease in GSH levels as a
consequence of TIGAR knockdown. GSH basal levels decreased dur-
ing the time-course, but TIGAR knockdown made that decrease
more pronounced (Supplementary Fig. 1C and D). Subsequently,
we evaluated the effect of TIGAR silencing on the growth rate of
transfected U87MG cells harvested between 1 and 5 days after
plating. Growth rate of Neg or TIGAR-silenced cells was monitored
by crystal violet staining in a 5-day time-course. U87MG cells trea-
ted with TIGAR-siRNA (T1 or Tmix) exhibited a 25% reduction in
the slope of the growth rate in comparison with control cells
(Sup Fig. 2A). U87MG TIGAR-silenced cells show a clear reduction
on cell confluence compared to negative control transfected cells.
Similar results were obtained with T98G cells (Supplementary
Fig. 2B).
TIGAR knockdown induces senescence in glioblastoma cells

In order to determine the mechanisms involved in the decreased
growth rate, programed cell death type I (apoptosis) and type II
(autophagy) were evaluated. Supplementary Fig. 2C and 2D show
that no significant differences were observed in apoptosis levels
measured by annexin/PI staining in U87MG cells. Similar results
were obtained in T98G cells when apoptosis was measured 48 h
after TIGAR knockdown (Supplementary Fig. D). The process of
autophagy was evaluated by the study of autophagy markers pro-
tein expression and no differences were observed in LC3-II levels,
whereas p62 levels slightly increased, indicating that autophagy
is not activated in TIGAR-silenced U87MG cells (Supplementary
Fig. 2E). On the other hand, Senescence Associated-b-Galactosidase
(SA-b-Gal) staining of TIGAR-knockdown U87MG and T98G cells re-
vealed a clear increase of senescent cells. This increase in SA-b-Gal
positive cells was obtained both with the TIGAR siRNA mixture and
with the T1 siRNA 1 (Fig. 1A).
TIGAR knockdown induces DNA damage

In order to estimate whether the increased ROS levels due to TI-
GAR silencing could be acting as a genotoxic insult, DNA damage
was measured by the immunostaining of phosphorylated H2AX
protein (c-H2AX), which is recruited to nuclear structures termed
foci. 36 h after siRNA transfection, the presence of some c-H2AX
foci in U87MG and T98G TIGAR-silenced cells was observed in con-
trast with their respective control cells. c-H2AX foci were pre-
vented by pre-incubation with butylated hydroxyanisole (BHA)
(0.1 lg/mL, 24 h), a potent ROS scavenger (Fig. 1B and C).
nd apoptosis regulator (TIGAR) knockdown results in radiosensitization of
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Fig. 1. Induced senescence and DNA damage after TIGAR knockdown on U87MG and T98G cells. (A) Representative of at least three experiments showing SA-b-Gal activity in
U87-MG and T98G cells 120 h post-transfection. (B and C) Representative immunofluorescence staining showing the focal distribution of phosphorylated H2AX in U87MG
and T98G cells, respectively, 36 h post-transfection with negative (Neg) or TIGAR mix (Tmix) siRNAs. Green: phosphorylated H2AX, blue: To-pro-3 (nucleus). Some cells were
pre-incubated with BHA (0,1 lg/ml) for 24 h before staining. Bars plotted in the upper panel represent the average number of foci/cell from three experiments as determined
by the use of ImageJ software; at least 300 cells were counted from 10 randomly chosen fields of view. Values are means ± S.E.M. Student’s t test versus TIGAR-silenced cells
values: ⁄p < 0.05.

4 TIGAR knockdown as a radiosensitizer
Induction of TIGAR by radiotherapy

Radiotherapy is a conventional treatment against gliomas that
generate stress and modulate gene expression. In order to deter-
mine whether TIGAR was upregulated in response to radiotherapy,
U87MG cells were plated and 24 h later were irradiated with 2 or
4 Gy. To analyze protein expression, samples were collected 0.5, 4,
8 and 24 h and 0.5, 1, 2, 4, 8 and 24 h post-irradiation, respectively
for 4 and 2 Gy. After 30 min of 4 Gy irradiation, a significant in-
crease in TIGAR protein levels is observed, with levels returning
to those of controls after 8 h. In 2 Gy irradiated cells, TIGAR induc-
tion was delayed and a clear increase can be observed 1 h after
irradiation. Induction was still sustained 24 h after irradiation
(Supplementary Fig. 3).
Clonogenic survival assay, DNA damage and SA-b-Gal after TIGAR
knockdown and radiotherapy

To determine the effects of TIGAR knockdown on U87MG cell
radiosensitivity, clonogenic survival analysis was performed. In
these studies, cells were transfected either with Neg-siRNA or TI-
GAR-siRNA 48 h prior to irradiation with 2, 4, 6, 8 and 10 Gy, and
the surviving fraction was determined 14 days later. As shown in
Fig. 2A, TIGAR knockdown decreased the clonogenic survival of
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U87MG cells, reaching 50% cell death between 2 and 4 Gy, whereas
control cells required doses between 4 and 6 Gy to achieve the
same effect. TIGAR knockdown increased U87MG radiosensitivity
with a dose enhancement factor at surviving fraction of 0.10 of
1.32.

U87MG cells were reseeded at low confluence 48 h after trans-
fection (Neg and Tmix) and 14 days later SA-b-Gal positive cells
were quantified. A significant increase in senescence was observed
in TIGAR-knockdown cells at basal condition and at low doses of
radiation. Likewise, the combination of TIGAR-siRNA with 4 Gy of
radiation caused the same levels of senescence obtained when
treating negative control cells with as much as 8 Gy (Fig. 2B).
Forty-eight hours after TIGAR knockdown, T98G cells were irradi-
ated with 4 Gy, SA-b-Gal positive cells were also quantified and a
significant increase on senescent cells was observed in TIGAR-
silenced cells versus control cells (Fig. 2C).

To further investigate the cellular processes through which TI-
GAR knockdown enhances radiosensitivity, we evaluated the
induction of phosphorylated H2AX (c-H2AX) nuclear foci, estab-
lished as sensitive indicators of DNA double-strand breaks. The res-
olution of foci corresponded to double-strand breaks repair [29].
U87MG and T98G cells were transfected and then irradiated
(4 Gy), and c-H2AX foci were determined 30 min, 1, 4 and 24 h
post-irradiation. As shown in Fig. 3A and B, TIGAR knockdown
nd apoptosis regulator (TIGAR) knockdown results in radiosensitization of
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alone resulted in a significant increase in c-H2AX foci when com-
pared to the control (Negative siRNA). Radiation induced signifi-
cant increases in the number of c-H2AX foci at 30 min and 1 h,
which progressively declined at 24 h. TIGAR silencing followed
by 4 Gy resulted in an increase in the number of c-H2AX foci
significantly higher than that observed with radiation alone, thus
suggesting the impact of TIGAR knockdown in the immediate
DNA damage after irradiation. Of notice, 24 h after irradiation,
the number of cells exhibiting c-H2AX foci was higher with the
combination treatment than with irradiation alone.
Discussion

Glioblastoma is a highly lethal neoplasm with a median survival
of 14.6 months [30]. Treatment is based on a multidisciplinary ap-
proach including surgery and adjuvant radiochemotherapy, and re-
treatment options have modest efficacy, improvements on current
treatments are needed [31]. Despite efforts to understand the
molecular pathogenesis of glioma, and the development of new
therapies targeting signaling pathways with multitargeted kinase
inhibitors or monoclonal antibodies aimed at increasing specificity
and minimizing toxicity, the prognosis of patients with malignant
glioma remains dismal. Therefore, new targets need to be uncov-
ered. Cancer cells are usually under high oxidative stress compared
with normal cells. Some authors have pointed out that introducing
additional ROS insults by oxidative stress-generating agents or
suppressing antioxidant capacity may selectively enhance cancer
cell killing through stress overload or stress sensitization, whereas
normal cells may be able to maintain redox homeostasis under
exogenous ROS by adaptive response [32].
Please cite this article in press as: Peña-Rico MA et al. TP53 induced glycolysis a
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The aim of the present work was to determine the implication
of TIGAR in glioma cell therapies. For this purpose, TIGAR was si-
lenced in U87MG and T98G glioma cells and several metabolic
parameters were analyzed. Significant increases in Fru-2,6-P2 and
lactate levels were observed in TIGAR-silenced U87MG cells 24 h
post-transfection.

TIGAR has been described as a gene that is induced after mod-
erate levels of stress, allowing the cells to repair gene damage and
survive. Cellular metabolism releases low concentrations of ROS
that can be compensated by cellular antioxidant mechanisms,
one of them being TIGAR. Our results show that silencing TIGAR
in basal conditions slightly increases (10%) ROS levels. A decrease
in GSH levels was observed 24 h post-transfection that may be re-
lated with the slight increase in ROS levels observed at the same
time point. Since oxidized glutathione (GSSG) was undetectable
prior to and following siRNA transfection, only data for GSH con-
centration were plotted. Previously other authors have reported
difficulty in measuring GSSG in several glioma cell lines [33]. We
sought to investigate how TIGAR knockdown could affect cell
growth. For this purpose, growth of U87MG and T98G cells was
studied in a 7-day time-course by crystal violet staining. Cells
transfected with TIGAR-siRNA showed a slope of growth signifi-
cantly less steep than the control cells. As a consequence, cell num-
ber was noticeably lower versus control condition in both cell
lines. On the whole, these results are in accordance with previous
data regarding TIGAR as a novel p53 target gene that encodes a
protein with similarity to the bisphosphatase domain of the
bifunctional enzyme PFK-2/FBPase-2, one of the principal regula-
tors of glycolysis [3]. Expression of TIGAR enhances the pentose
phosphate pathway, hence conferring resistance to oxidative stress
by enhancing NADPH production, which provides the necessary
nd apoptosis regulator (TIGAR) knockdown results in radiosensitization of
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reducing equivalents to restore GSH levels. Therefore, expression
of TIGAR protects cells from both ROS and cell death, and TIGAR
appears to belong to a group of p53-inducible genes that contrib-
ute to the survival of cells undergoing oxidative stress [1].

In order to find out whether the diminished cell number after
TIGAR knockdown was due to cell death, different mechanisms
were evaluated. We analyzed apoptosis in U87MG and T98G cells
by annexin/PI staining and no significant differences were
observed 48 h post-transfection. Recently, interest in autophagy
(type II programed cell death), has been renewed among oncolo-
gists, because different types of cancer cells undergo autophagy
in response to anticancer therapies. Whether autophagy in cancer
kills or protects cells is controversial [34]. In order to study autoph-
agy, different proteins such as LC3 and p62 were analyzed by Wes-
tern blot. No changes were observed in LC3 levels whereas p62 was
slightly increased, indicating autophagy is not upregulated in
U87MG cells. However, cell context is a key factor in determining
the response of TIGAR to different stimuli, and Bensaad et al. have
reported the ability of TIGAR to modulate the autophagic response
in U2OS cells [5]. Senescence is a non-apoptotic mechanism often
triggered in cancer cells and tissues in response to anti-cancer
drugs [35]. In this sense, U87MG cells are known to show acceler-
ated senescence after temozolomide [24,36] or camptothecin
treatment [37]. Also a similar response has been described for
T98G cells in response to temozolomide and etoposide [38]. TI-
GAR-silenced U87MG and T98G cells showed a significant increase
Please cite this article in press as: Peña-Rico MA et al. TP53 induced glycolysis a
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in SA-b-Gal activity, although in other models, such as T-cell leuke-
mia cells, overexpression of TIGAR has been related with a de-
crease in apoptosis and increase in senescence [6]. Premature
senescence has been described as an emerging anticancer response
elicited by different stresses, ROS among them [39]. This could be
one of the mechanisms involved in the senescence induction
caused by TIGAR knockdown and might explain the effect of TIGAR
knockdown on cell growth. In addition, as ROS are known to induce
DNA damage, c-H2AX foci formation, an indicator of DNA double-
strand breaks (DSBs) [40], was used to determine whether TIGAR
silencing caused DNA damage through the action of ROS. The re-
sults showed that the number of foci per cell was significantly
higher in TIGAR-silenced cells than in control cells 36 h after trans-
fection, and BHA, a ROS scavenger, was able to decrease c-H2AX
foci to control levels in both U87MG and T98G cells.

Radiotherapy is a standard treatment for glioblastoma and new
efforts aimed to increase effectivity, modulating radiation intensity
and reducing adverse effects [41]. The results herein presented
show that TIGAR knockdown increases lactate levels in U87MG
cells while lowering GSH levels. The role of lactate in radiosensiti-
zation is unclear, but some authors point out that the increase in
extracellular lactate might render cells more susceptible to irradi-
ation [42], unlike those who claim that lactate contributes to radio-
resistance [43], emphasizing how interference with tumor cell
metabolism may complement anticancer treatments [44]. Other
studies have reported that decreases in GSH levels in response to
nd apoptosis regulator (TIGAR) knockdown results in radiosensitization of
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modifications of the glycolytic flux could enhance radiosensitivity
of U87MG cells [45], supporting the results obtained in our study.

Recently a new anti-tumor molecule has been associated with
the downregulation of TIGAR [19]. We have demonstrated that TI-
GAR is upregulated in U87MG glioblastoma cells after radiotherapy
treatment. The increase in TIGAR protein levels could be observed
very early after irradiation. In light of these data and taking into
account that the expression of proteins like TIGAR might contrib-
ute to cancer cells’ survival [17], this work proposes silencing
TIGAR as a new target to enhance radiosensitivity in U87MG cells,
a glioma cell model. Since tumoral cells are submitted to a high
oxidative stress in comparison to normal tissue, which are able
to maintain a steady-state balance of ROS levels [46], low side
effects could be expected in non-tumoral cells, although more
studies are needed in order to determine the effects of silencing TI-
GAR in normal tissue.

The response of cancer cells to radiation is determined by mul-
tiple molecular and cellular features. Glioma cells are highly resis-
tant to the acute cytotoxic effects of radiation. Neither the U87MG
nor the T98G cell lines demonstrated apoptosis in response to irra-
diation, but recently this effect could be obtained when irradiation
was combined with Rapamycin [47]. In U87MG cells a 50% inhibi-
tion of colony formation required doses of 4–6 Gy, whereas only
2–4 Gy were required to achieve the same result in cells that had
previously been silenced for TIGAR. Another anti-proliferative re-
sponse in tumor cells is premature senescence, which is a pheno-
type that distinguishes tumor cells that survive drug exposure
while losing the ability to form colonies from those that recover
and proliferate after treatment [48]. Differences between senes-
cence levels in irradiated U87MG cells and cells with the combined
treatment were clear at low radiotherapy doses, while from 6 Gy
onwards almost all the cells showed typical b-Gal positive activity
and the characteristic enlarged and flattened morphology of senes-
cent cells. Elucidation of the factors that regulate different aspects
of treatment-induced senescence should help to improve the effi-
cacy of cancer therapy [49]. An accelerated senescence response
to fractionated radiation has been reported in U87MG cells; this ef-
fect is not so clear in p53 -mutant T98G cells [48]. Our results show
that this senescent phenotype could be induced when the radiation
was combined with TIGAR knockdown, and both cell lines, U87MG
and T98G, had the same response, independent of their p53 status
(Fig. 3A and B).

Finally, we evaluated DNA damage and repair in U87MG and
T98G cells. Indeed, a critical event in determining radiosensitivity
is the capacity to repair DSBs. In recent years, c-H2AX expression
has been established as a sensitive indicator of DSBs induced by
clinically relevant doses of ionizing radiation [50,29]. At sites of
radiation-induced DNA DSBs, the histone H2AX becomes rapidly
phosphorylated (c-H2AX) forming readily visible nuclear foci
[51]. Basal number of foci vary between cell lines [52,53], as we
noted for U87MG and T98G cells. Despite the different basal num-
ber of foci, our results showed a significant c-H2AX foci increase in
TIGAR-silenced cells, and this effect was enhanced when silencing
was combined with radiation. Furthermore, the foci stayed longer,
indicating this sensitization correlated with the delayed dispersion
of phosphorylated histone H2AX foci (Fig. 3A and B). The mainte-
nance of c-H2AX foci levels, up to 24 h post-irradiation, suggests
that TIGAR knockdown mediated radiosensitization involves the
inhibition of DNA damage repair. This ability is essential for cell
proliferation because maintaining DNA breaks can induce pro-
cesses such as senescence.

In conclusion, this work aims to establish the ‘‘proof of princi-
ple’’ for novel targets in the treatment of glioma, taking advantage
of TIGAR knockdown as a radiosensitizer. The present findings in
glioma cells demonstrate that TIGAR knockdown inhibits cell pro-
liferation and colony formation and suggests the implication of
Please cite this article in press as: Peña-Rico MA et al. TP53 induced glycolysis a
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ROS in the DNA repair impairment and senescence observed. Fur-
thermore, TIGAR inhibition yields promising perspectives for fur-
ther improvement of the radiotherapy of glioma and emphasizes
the need for extended mechanistic studies.
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