Content-Length: 251468 | pFad | http://dx.doi.org/10.1007/s10910-008-9457-5

a=86400 On the derivative of the associated Legendre function of the first kind of integer degree with respect to its order (with applications to the construction of the associated Legendre function of the second kind of integer degree and order) | Journal of Mathematical Chemistry
Skip to main content

On the derivative of the associated Legendre function of the first kind of integer degree with respect to its order (with applications to the construction of the associated Legendre function of the second kind of integer degree and order)

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

The derivative of the associated Legendre function of the first kind of integer degree with respect to its order, \({\partial {P_{n}^{\mu}(z)}/\partial\mu}\), is studied. After deriving and investigating general formulas for μ arbitrary complex, a detailed discussion of \({[\partial P_{n}^{\mu}(z)/\partial\mu]_{\mu=\pm m}}\), where m is a non-negative integer, is carried out. The results are applied to obtain several explicit expressions for the associated Legendre function of the second kind of integer degree and order, \({Q_{n}^{\pm m}(z)}\). In particular, we arrive at formulas which generalize to the case of \({Q_{n}^{\pm m}(z)}\) (0 ≤ mn) the well-known Christoffel’s representation of the Legendre function of the second kind, Q n (z). The derivatives \({{[\partial^{2} P_{n}^{\mu}(z)/\partial\mu^{2}]_{\mu=m}},{[\partial Q_{n}^{\mu}(z)/\partial\mu]_{\mu=m}}}\) and \({[\partial Q_{-n-1}^{\mu}(z)/\partial\mu]_{\mu=m}}\), all with m > n, are also evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Todhunter I.: An Elementary Treatise on Laplace’s Functions, Lamé’s Functions and Bessel’s Functions. Macmillan, London (1975)

    Google Scholar 

  2. Ferrers N.M.: An Elementary Treatise on Spherical Harmonics. Macmillan, London (1877)

    Google Scholar 

  3. Neumann F.: Beiträge zur Theorie der Kugelfunctionen. Teubner, Leipzig (1878)

    Google Scholar 

  4. Heine E.: Handbuch der Kugelfunctionen, vol. 1, 2nd edn. Reimer, Berlin (1878)

    Google Scholar 

  5. Heine E.: Handbuch der Kugelfunctionen, vol. 2, 2nd edn. Reimer, Berlin (1881)

    Google Scholar 

  6. Olbricht R.: Nova Acta Leop. Carol. Akad. 52, 1 (1887)

    Google Scholar 

  7. W.E. Byerly, An Elementary Treatise on Fourier’s Series and Spherical, Cylindrical, and Ellipsoidal Harmonics, with Applications to Problems in Mathematical Physics (Ginn, Boston, 1893) [reprinted: (Dover, Mineola, NY, 2003)]

  8. Hobson E.W.: Philos. Trans. R. Soc. Lond. A 187, 443 (1896)

    Article  Google Scholar 

  9. A. Wangerin, Theorie der Kugelfunktionen und der verwandten Funktionen, insbesondere der Lamé’schen und Bessel’schen, in Encyklopädie der mathematischen Wissenschaften, vol. 2.1 (Teubner, Leipzig, 1904), p. 695

  10. Barnes E.W.: Q. J. Pure Appl Math. 39, 97 (1907)

    Google Scholar 

  11. Wangerin A.: Theorie des Potentials und der Kugelfunktionen, vol. 2. de Gruyter, Berlin (1921)

    Google Scholar 

  12. Hobson E.W.: The Theory of Spherical and Ellipsoidal Harmonics. Cambridge University Press, Cambridge (1931) [reprinted: (Chelsea, New York, 1955)]

    Google Scholar 

  13. Ch. Snow, Hypergeometric and Legendre Functions with Applications to Integral Equations of Potential Theory, 2nd edn. (National Bureau of Standards, Washington, DC, 1952)

  14. A. Erdélyi (ed.), Higher Transcendental Functions, vol. 1 (McGraw-Hill, New York, 1953), Chap. III

  15. Morse P.M., Feshbach H.: Methods of Theoretical Physics. McGraw-Hill, New York (1953)

    Google Scholar 

  16. Lense J.: Kugelfunktionen, 2nd edn. Geest & Portig, Leipzig (1954)

    Google Scholar 

  17. L. Robin, Fonctions Sphériques de Legendre et Fonctions Sphéroïdales, vol. 1 (Gauthier-Villars, Paris, 1957)

  18. L. Robin, Fonctions Sphériques de Legendre et Fonctions Sphéroïdales, vol. 2 (Gauthier-Villars, Paris, 1958)

  19. L. Robin, Fonctions Sphériques de Legendre et Fonctions Sphéroïdales, vol. 3 (Gauthier-Villars, Paris, 1959)

  20. E. Jahnke, F. Emde, F. Lösch, Tafeln höherer Funktionen, 6th edn. (Teubner, Stuttgart, 1960)

  21. A. Kratzer, W. Franz, Transzendente Funktionen (Akademische Verlagsgesellschaft, Leipzig, 1960), Chap. 5

  22. I.A. Stegun, in Legendre functions, ed. by M. Abramowitz, I.A. Stegun. Handbook of Mathematical Functions (Dover, New York, 1965), p. 331

  23. Magnus W., Oberhettinger F., Soni R.P.: Formulas and Theorems for the Special Functions of Mathematical Physics, 3rd edn. Springer, Berlin (1966)

    Google Scholar 

  24. MacRobert T.M.: Spherical Harmonics, 3rd edn. Pergamon, Oxford (1967)

    Google Scholar 

  25. Gradshteyn I.S., Ryzhik I.M.: Table of Integrals, Series, and Products, 5th edn. Academic, San Diego (1994)

    Google Scholar 

  26. N.M. Temme, Special Functions. An Introduction to the Classical Functions of Mathematical Physics (Wiley, New York, 1996), Chap. 8

  27. A.P. Prudnikov, Yu.A. Brychkov, O.I. Marichev, Integrals and Series. Special Functions (Nauka, Moscow, 1983) (in Russian)

  28. A.P. Prudnikov, Yu.A. Brychkov, O.I. Marichev, Integrals and Series. Special Functions. Supplementary Chapters, 2nd edn. (Fizmatlit, Moscow, 2003) (in Russian)

  29. Yu.A. Brychkov, Special Functions. Derivatives, Integrals, Series, and Other Formulas (Fizmatlit, Moscow, 2006) (in Russian)

  30. F.E. Neumann, J. Reine Angew. Math. (Crelle J.) 37, 21 (1848) [reprinted in: Franz Neumanns gesammelte Werke, vol. 3 (Teubner, Leipzig, 1912), p. 439]

  31. Sugiura Y.: Z. Phys. 45, 484 (1927)

    Article  CAS  Google Scholar 

  32. Kemble E.C., Zener C.: Phys. Rev. 33, 512 (1929)

    Article  CAS  Google Scholar 

  33. J.C. Slater, Quantum Theory of Molecules and Solids, vol. 1. Electronic Structure of Molecules (McGraw-Hill, New York, 1963), Appendix 6

  34. Yasui J., Saika A.: J. Chem. Phys. 76, 468 (1982)

    Article  CAS  Google Scholar 

  35. J. Hinze, F. Biegler-König, in Self-consistent field. Theory and Applications, ed. by R. Carbó, M. Klobukowski (Elsevier, Amsterdam, 1990), p. 405

  36. Harris F.E.: Int. J. Quant. Chem. 88, 701 (2002)

    Article  CAS  Google Scholar 

  37. Vanne Y.V., Saenz A.: J. Phys. B 37, 4101 (2004)

    Article  CAS  Google Scholar 

  38. Takagi H., Nakamura H.: J. Phys. B 13, 2619 (1980)

    Article  CAS  Google Scholar 

  39. El-Aasser M.A., Abdel-Raouf M.A.: J. Phys. B 40, 1801 (2007)

    Article  CAS  Google Scholar 

  40. P.J. Davis, in Gamma function and related functions, ed. by M. Abramowitz, I.A. Stegun. Handbook of Mathematical Functions (Dover, New York, 1965), p. 253

  41. Brown G.J.N.: J. Phys. A 28, 2297 (1995)

    Article  Google Scholar 

  42. Watson G.N.: Proc. Lond. Math. Soc. 17, 241 (1918)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radosław Szmytkowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szmytkowski, R. On the derivative of the associated Legendre function of the first kind of integer degree with respect to its order (with applications to the construction of the associated Legendre function of the second kind of integer degree and order). J Math Chem 46, 231–260 (2009). https://doi.org/10.1007/s10910-008-9457-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-008-9457-5

Keywords









ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: http://dx.doi.org/10.1007/s10910-008-9457-5

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy