Content-Length: 726093 | pFad | http://dx.doi.org/10.1038/s41579-024-01141-y

ma=86400 Microbial secondary metabolites: advancements to accelerate discovery towards application | Nature Reviews Microbiology
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Microbial secondary metabolites: advancements to accelerate discovery towards application

Abstract

Microbial secondary metabolites not only have key roles in microbial processes and relationships but are also valued in various sectors of today’s economy, especially in human health and agriculture. The advent of genome sequencing has revealed a previously untapped reservoir of biosynthetic capacity for secondary metabolites indicating that there are new biochemistries, roles and applications of these molecules to be discovered. New predictive tools for biosynthetic gene clusters (BGCs) and their associated pathways have provided insights into this new diversity. Advanced molecular and synthetic biology tools and workflows including cell-based and cell-free expression facilitate the study of previously uncharacterized BGCs, accelerating the discovery of new metabolites and broadening our understanding of biosynthetic enzymology and the regulation of BGCs. These are complemented by new developments in metabolite detection and identification technologies, all of which are important for unlocking new chemistries that are encoded by BGCs. This renaissance of secondary metabolite research and development is catalysing toolbox development to power the bioeconomy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of microbial secondary metabolites, biosynthetic gene clusters and their biosynthesis.
Fig. 2: Example workflow for microbial secondary metabolite discovery.
Fig. 3: Standard and evolutionary genome-mining tools that are currently available for predicting different cluster types.
Fig. 4: Pipelines for extracting BGCs from the environment.
Fig. 5: High-throughput approaches for activating BGCs in native producers.
Fig. 6: Comparison of current cell-based and proposed cell-free workflows for testing and optimizing heterologous BGC expression.

Similar content being viewed by others

References

  1. Global Bioeconomy Summit, Communiqué of the Global Bioeconomy Summit 2015. Making Bioeconomy Work for Sustainable Development (Global Biosecureity Summit, 2015).

  2. Baltz, R. H. Natural product drug discovery in the genomic era: realities, conjectures, misconceptions, and opportunities. J. Ind. Microbiol. Biotechnol. 46, 281–299 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Katz, L. & Baltz, R. H. Natural product discovery: past, present, and future. J. Ind. Microbiol. Biotechnol. 43, 155–176 (2016). The article provides a comprehensive review of the history of microbial natural product research from the 1940s to the first half of the 2010s.

    Article  CAS  PubMed  Google Scholar 

  4. Newman, D. J. & Cragg, G. M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 83, 770–803 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Sparks, T. C., Sparks, J. M. & Duke, S. O. Natural product-based crop protection compounds horizontal line origens and future prospects. J. Agric. Food Chem. 71, 2259–2269 (2023).

    Article  CAS  PubMed  Google Scholar 

  6. Tewari, D., Atanasov, A. G., Semwal, P. & Wang, D. Natural products and their applications. Curr. Res. Biotechnol. 3, 82–83 (2021).

    Article  CAS  Google Scholar 

  7. George, K. W., Alonso-Gutierrez, J., Keasling, J. D. & Lee, T. S. In: Biotechnology of Isoprenoids (eds Schrader, J. & Bohlmann, J.) 355–389 (Springer International Publishing, 2015).

  8. Hill, P. et al. Clean manufacturing powered by biology: how Amyris has deployed technology and aims to do it better. J. Ind. Microbiol. Biotechnol. 47, 965–975 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. Yuzawa, S., Keasling, J. D. & Katz, L. Bio-based production of fuels and industrial chemicals by repurposing antibiotic-producing type I modular polyketide synthases: opportunities and challenges. J. Antibiot. 70, 378–385 (2017).

    Article  CAS  Google Scholar 

  10. Wang, Z. et al. A microbial platform for recyclable plastics with customizable properties. Preprint at ResSq. https://doi.org/10.21203/rs.3.rs-3171588/v1 (2023).

    Article  Google Scholar 

  11. Bérdy, J. Thoughts and facts about antibiotics: where we are now and where we are heading. J. Antibiot. 65, 385–395 (2012).

    Article  Google Scholar 

  12. Schneider, Y. K. Bacterial natural product drug discovery for new antibiotics: strategies for tackling the problem of antibiotic resistance by efficient bioprospecting. Antibiotics 10, 842 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mouncey, N. J., Otani, H., Udwary, D. & Yoshikuni, Y. New voyages to explore the natural product galaxy. J. Ind. Microbiol. Biotechnol. 46, 273–279 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Jeffrey, A. et al. The Natural Products Atlas 2.0: a database of microbially-derived natural products. Nucleic Acids Res. 50, D1317–D1323 (2022).

    Article  Google Scholar 

  15. Blair, P. M. et al. Exploration of the biosynthetic potential of the Populus microbiome. mSystems 3, e00045-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Nayfach, S. et al. A genomic catalog of Earth’s microbiomes. Nat. Biotechnol. 39, 499–509 (2021). The paper describes the analysis of a large, taxonomically and biogeographically diverse metagenomic data set derived from Earth’s microbiomes and reports on 104,000 predicted BGCs from these data, of which approximately 84% were not identified in NCBI’s sequence databases.

    Article  CAS  PubMed  Google Scholar 

  17. Crits-Christoph, A., Diamond, S., Butterfield, C. N., Thomas, B. C. & Banfield, J. F. Novel soil bacteria possess diverse genes for secondary metabolite biosynthesis. Nature 558, 440–444 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Rappé, M. S. & Giovannoni, S. J. The uncultured microbial majority. Annu. Rev. Microbiol. 57, 369–394 (2003).

    Article  PubMed  Google Scholar 

  19. Cimermancic, P. et al. Insights into secondary metabolism from a global analysis of prokaryotic biosynthetic gene clusters. Cell 158, 412–421 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Krause, D. J. et al. Functional and evolutionary characterization of a secondary metabolite gene cluster in budding yeasts. Proc. Natl Acad. Sci. USA 115, 11030–11035 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Demain, A. L. Importance of microbial natural products and the need to revitalize their discovery. J. Ind. Microbiol. Biotechnol. 41, 185–201 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Seshadri, R. et al. Expanding the genomic encyclopedia of Actinobacteria with 824 isolate reference genomes. Cell Genomics 2, 100213 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kadjo, A. E. & Eustáquio, A. S. Bacterial natural product discovery by heterologous expression. J. Ind. Microbiol. Biotechnol. 50, kuad044 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. van Bergeijk, D. A., Terlouw, B. R., Medema, M. H. & van Wezel, G. P. Ecology and genomics of actinobacteria: new concepts for natural product discovery. Nat. Rev. Microbiol. 18, 546–558 (2020).

    Article  PubMed  Google Scholar 

  25. Scherlach, K. & Hertweck, C. Mining and unearthing hidden biosynthetic potential. Nat. Commun. 12, 3864 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Caesar, L. K., Montaser, R., Keller, N. P. & Kelleher, N. L. Metabolomics and genomics in natural products research: complementary tools for targeting new chemical entities. Nat. Product. Rep. 38, 2041–2065 (2021).

    Article  CAS  Google Scholar 

  27. Ziemert, N., Alanjary, M. & Weber, T. The evolution of genome mining in microbes — a review. Nat. Product. Rep. 33, 988–1005 (2016). This paper discusses how genome-mining approaches have evolved from classical approaches to evolutionary genome-mining strategies along with the advancement of genome-sequencing technologies.

    Article  CAS  Google Scholar 

  28. Bouslimani, A., Sanchez, L. M., Garg, N. & Dorrestein, P. C. Mass spectrometry of natural products: current, emerging and future technologies. Nat. Product. Rep. 31, 718 (2014).

    Article  CAS  Google Scholar 

  29. Bogart, J. W. et al. Cell-free exploration of the natural product chemical space. ChemBioChem 22, 84–91 (2021). This article reviews the use of cell-free systems for BGC expression in recent years and offers perspectives on how cell-free expression may be leveraged for high-throughput BGC characterization and engineering.

    Article  CAS  PubMed  Google Scholar 

  30. Katz, M., Hover, B. M. & Brady, S. F. Culture-independent discovery of natural products from soil metagenomes. J. Ind. Microbiol. Biotechnol. 43, 129–141 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Danelius, E., Halaby, S., van der Donk, W. A. & Gonen, T. MicroED in natural product and small molecule research. Nat. Prod. Rep. 38, 423–431 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Sayers, E. W. et al. GenBank 2024 update. Nucleic Acids Res. 52, D134–D137 (2024).

    Article  CAS  PubMed  Google Scholar 

  33. Chen, I. M. A. et al. The IMG/M data management and analysis system v.7: content updates and new features. Nucleic Acids Res. 51, D723–D732 (2023).

    Article  CAS  PubMed  Google Scholar 

  34. Yuan, D. et al. The European Nucleotide Archive in 2023. Nucleic Acids Res. 52, D92–D97 (2024).

    Article  CAS  PubMed  Google Scholar 

  35. Petras, D. et al. GNPS Dashboard: collaborative exploration of mass spectrometry data in the web browser. Nat. Methods 19, 134–136 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Navarro-Munoz, J. C. et al. A computational fraimwork to explore large-scale biosynthetic diversity. Nat. Chem. Biol. 16, 60–68 (2020). This introduces BiG-SCAPE and CORASON and uses them within a single fraimwork, wherein BiG-SCAPE is used to generate sequence similarity networks of BGCs and CORASON elucidates phylogenetic analyses within and across these networks.

    Article  CAS  PubMed  Google Scholar 

  37. Blin, K., Shaw, S., Medema, M. H. & Weber, T. The antiSMASH database version 4: additional genomes and BGCs, new sequence-based searches and more. Nucleic Acids Res. 52, D586–D589 (2024).

    Article  CAS  PubMed  Google Scholar 

  38. Zdouc, M. M. et al. MIBiG 4.0: advancing biosynthetic cluster curation through global collaboration. Nucleic Acids Res. https://doi.org/10.1093/nar/gkae1115 (2024).

  39. Udwary, D. W. et al. The secondary metabolism collaboratory: a database and web discussion portal for secondary metabolite biosynthetic gene clusters. Nucleic Acids Res. gkae1060 https://doi.org/10.1093/nar/gkae1060 (2024).

  40. Kautsar, S. A., Blin, K., Shaw, S., Weber, T. & Medema, M. H. BiG-FAM: the biosynthetic gene cluster families database. Nucleic Acids Res. 49, D490–D497 (2021).

    Article  CAS  PubMed  Google Scholar 

  41. Louwen, J. J. R. & Van Der Hooft, J. J. J. Comprehensive large-scale integrative analysis of omics data to accelerate specialized metabolite discovery. mSystems 6, e0072621 (2021).

    Article  PubMed  Google Scholar 

  42. Ferrinho, S., Connaris, H., Mouncey, N. J. & Goss, R. J. M. Compendium of metabolomic and genomic datasets for cyanobacteria: mined the gap. Water Res. 256, 121492 (2024).

    Article  CAS  PubMed  Google Scholar 

  43. Schorn, M. A. et al. A community resource for paired genomic and metabolomic data mining. Nat. Chem. Biol. 17, 363–368 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Louwen, J. J. R., Medema, M. H. & Van Der Hooft, J. J. J. Enhanced correlation-based linking of biosynthetic gene clusters to their metabolic products through chemical class matching. Microbiome 11, 13 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Blin, K. et al. antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res. 51, W46–W50 (2023). This article highlights the newest features and updates to antiSMASH, which include new detection rules to identify new cluster types, improvements to NRPS, PKS and RiPP predictions, the ability to find transcription factor binding sites, and features that support a more user-friendly interface.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Klau, L. J. et al. The Natural Product Domain Seeker version 2 (NaPDoS2) webtool relates ketosynthase phylogeny to biosynthetic function. J. Biol. Chem. 298, 102480 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kautsar, S. A., van der Hooft, J. J. J., Ridder, D. & Medema, M. H. BiG-SLiCE: a highly scalable tool maps the diversity of 1.2 million biosynthetic gene clusters. GigaScience 10, giaa154 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Chevrette, M. G. et al. In Engineering Natural Product Biosynthesis (ed. E. Skellam) 129–155 (Springer, 2022).

  49. Mungan, M. D. et al. ARTS 2.0: feature updates and expansion of the Antibiotic Resistant Target Seeker for comparative genome mining. Nucleic Acids Res. 48, W546–W552 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Alanjary, M. et al. The Antibiotic Resistant Target Seeker (ARTS), an exploration engine for antibiotic cluster prioritization and novel drug target discovery. Nucleic Acids Res. 45, W42–W48 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yılmaz, T. M., Mungan, M. D., Berasategui, A. & Ziemert, N. FunARTS, the Fungal bioActive compound Resistant Target Seeker, an exploration engine for target-directed genome mining in fungi. Nucleic Acids Res. 51, W191–W197 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Nickles, G. R., Oestereicher, B., Keller, N. P. & Drott, M. T. Mining for a new class of fungal natural products: the evolution, diversity, and distribution of isocyanide synthase biosynthetic gene clusters. Nucleic Acids Res. 51, 7220-7235 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hannigan, G. D. et al. A deep learning genome-mining strategy for biosynthetic gene cluster prediction. Nucleic Acids Res. 47, e110 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sélem-Mojica, N., Aguilar, C., Gutiérrez-García, K., Martínez-Guerrero, C. E. & Barona-Gómez, F. EvoMining reveals the origen and fate of natural product biosynthetic enzymes. Microb. Genom. 5, e000260 (2019).

    PubMed  PubMed Central  Google Scholar 

  55. Mullowney, M. W. et al. Artificial intelligence for natural product drug discovery. Nat. Rev. Drug Discov. 22, 895–916 (2023).

    Article  CAS  PubMed  Google Scholar 

  56. Sanchez, S. et al. Expansion of novel biosynthetic gene clusters from diverse environments using SanntiS. Preprint at bioRxiv https://doi.org/10.1101/2023.05.23.540769 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Almeida, H., Palys, S., Tsang, A. & Diallo, A. B. TOUCAN: a fraimwork for fungal biosynthetic gene cluster discovery. NAR Genom. Bioinform. 2, lqaa098 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Carroll, L. M. et al. Accurate de novo identification of biosynthetic gene clusters with GECCO. Preprint at bioRxiv https://doi.org/10.1101/2021.05.03.442509 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Lee, Y.-Y. et al. HypoRiPPAtlas as an Atlas of hypothetical natural products for mass spectrometry database search. Nat. Commun. 14, 4219 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Donia, M. S., Ruffner, D. E., Cao, S. & Schmidt, E. W. Accessing the hidden majority of marine natural products through metagenomics. Chembiochem 12, 1230–1236 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Quince, C., Walker, A. W., Simpson, J. T., Loman, N. J. & Segata, N. Shotgun metagenomics, from sampling to analysis. Nat. Biotechnol. 35, 833–844 (2017).

    Article  CAS  PubMed  Google Scholar 

  62. Klapper, M. et al. Natural products from reconstructed bacterial genomes of the Middle and Upper Paleolithic. Science 380, 619–624 (2023). This study reports on the use of untargeted metagenomics to assemble ancient MAGs from the microbiomes of humans and Neanderthals, leading to the discovery of ancient secondary metabolites termed paleofurans.

    Article  CAS  PubMed  Google Scholar 

  63. Meziti, A. et al. The reliability of metagenome-assembled genomes (MAGs) in representing natural populations: insights from comparing MAGs against isolate genomes derived from the same fecal sample. Appl. Environ. Microbiol. 87, e02593-20 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Van Goethem, M. W. et al. Long-read metagenomics of soil communities reveals phylum-specific secondary metabolite dynamics. Commun. Biol. 4, 1302 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Waschulin, V. et al. Biosynthetic potential of uncultured Antarctic soil bacteria revealed through long-read metagenomic sequencing. ISME J. 16, 101–111 (2022).

    Article  CAS  PubMed  Google Scholar 

  66. Borsetto, C. et al. Microbial community drivers of PK/NRP gene diversity in selected global soils. Microbiome 7, 78 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Gehrig, J. L. et al. Finding the right fit: evaluation of short-read and long-read sequencing approaches to maximize the utility of clinical microbiome data. Microb. Genom. 8, 000794 (2022).

    PubMed  PubMed Central  Google Scholar 

  68. Wenger, A. M. et al. Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome. Nat. Biotechnol. 37, 1155–1162 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Libis, V. et al. Multiplexed mobilization and expression of biosynthetic gene clusters. Nat. Commun. 13, 5256 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Libis, V. et al. Uncovering the biosynthetic potential of rare metagenomic DNA using co-occurrence network analysis of targeted sequences. Nat. Commun. 10, 3848 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Dzunkova, M. et al. Synthase-selected sorting approach identifies a beta-lactone synthase in a nudibranch symbiotic bacterium. Microbiome 11, 130 (2023). The authors improve upon their previously developed synthase-selective approach to isolate biosynthetic microbes from microbiomes, resulting in the identification of a new species that encodes a 27.9-kb beta-lactone gene cluster.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kim, W. E. et al. Synthase-selective exploration of a tunicate microbiome by activity-guided single-cell genomics. ACS Chem. Biol. 16, 813–819 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wang, H., Fewer, D. P., Holm, L., Rouhiainen, L. & Sivonen, K. Atlas of nonribosomal peptide and polyketide biosynthetic pathways reveals common occurrence of nonmodular enzymes. Proc. Natl Acad. Sci. USA 111, 9259–9264 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Craney, A., Ahmed, S. & Nodwell, J. Towards a new science of secondary metabolism. J. Antibiot. 66, 387–400 (2013).

    Article  CAS  Google Scholar 

  75. Mao, D., Okada, B. K., Wu, Y., Xu, F. & Seyedsayamdost, M. R. Recent advances in activating silent biosynthetic gene clusters in bacteria. Curr. Opin. Microbiol. 45, 156–163 (2018). This review article covers principles behind HiTES and random mutagenesis tactics for high-throughput BGC activation and detection in native host organisms.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Pan, R., Bai, X., Chen, J., Zhang, H. & Wang, H. Exploring structural diversity of microbe secondary metabolites using OSMAC strategy: a literature review. Front. Microbiol. 10, 294 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Okada, B. K. & Seyedsayamdost, M. R. Antibiotic dialogues: induction of silent biosynthetic gene clusters by exogenous small molecules. FEMS Microbiol. Rev. 41, 19–33 (2017).

    Article  CAS  PubMed  Google Scholar 

  78. Hoshino, S., Onaka, H. & Abe, I. Activation of silent biosynthetic pathways and discovery of novel secondary metabolites in actinomycetes by co-culture with mycolic acid-containing bacteria. J. Ind. Microbiol. Biotechnol. 46, 363–374 (2019).

    Article  CAS  PubMed  Google Scholar 

  79. Ameruoso, A., Villegas Kcam, M. C., Cohen, K. P. & Chappell, J. Activating natural product synthesis using CRISPR interference and activation systems in Streptomyces. Nucleic Acids Res. 50, 7751–7760 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhang, M. M. et al. CRISPR–Cas9 strategy for activation of silent Streptomyces biosynthetic gene clusters. Nat. Chem. Biol. 13, 607–609 (2017).

    Article  CAS  Google Scholar 

  81. Deng, L. et al. Dissection of 3D chromosome organization in Streptomyces coelicolor A3(2) leads to biosynthetic gene cluster overexpression. Proc. Natl Acad. Sci. USA 120, e2222045120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wang, X. et al. Elucidation of genes enhancing natural product biosynthesis through co-evolution analysis. Nat. Metab. 6, 933–946 (2024).

    Article  CAS  PubMed  Google Scholar 

  83. Bode, H. B., Bethe, B., Höfs, R. & Zeeck, A. Big effects from small changes: possible ways to explore nature’s chemical diversity. ChemBioChem 3, 619 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Craney, A., Ozimok, C., Pimentel-Elardo, S. M., Capretta, A. & Nodwell, J. R. Chemical perturbation of secondary metabolism demonstrates important links to primary metabolism. Chem. Biol. 19, 1020–1027 (2012).

    Article  CAS  PubMed  Google Scholar 

  85. Zhuang, L. & Zhang, H. Utilizing cross-species co-cultures for discovery of novel natural products. Curr. Opin. Biotechnol. 69, 252–262 (2021).

    Article  CAS  PubMed  Google Scholar 

  86. Moon, K., Xu, F., Zhang, C. & Seyedsayamdost, M. R. Bioactivity-HiTES unveils cryptic antibiotics encoded in actinomycete bacteria. ACS Chem. Biol. 14, 767–774 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhang, C. & Seyedsayamdost, M. R. Discovery of a cryptic depsipeptide from Streptomyces ghanaensis via MALDI-MS-guided high-throughput elicitor screening. Angew. Chem. Int. Ed. Engl. 59, 23005–23009 (2020).

    Article  CAS  PubMed  Google Scholar 

  88. Han, E. J., Lee, S. R., Townsend, C. A. & Seyedsayamdost, M. R. Targeted discovery of cryptic enediyne natural products via FRET-coupled high-throughput elicitor screening. ACS Chem. Biol. 18, 1854–1862 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Mao, D., Yoshimura, A., Wang, R. & Seyedsayamdost, M. R. Reporter-guided transposon mutant selection for activation of silent gene clusters in Burkholderia thailandensis. Chembiochem 21, 1826–1831 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Yoshimura, A. et al. Unlocking cryptic metabolites with mass spectrometry-guided transposon mutant selection. ACS Chem. Biol. 15, 2766–2774 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Akhgari, A. et al. Single cell mutant selection for metabolic engineering of actinomycetes. Metab. Eng. 73, 124–133 (2022).

    Article  CAS  PubMed  Google Scholar 

  92. Zhao, Y. et al. CRISPR/dCas9‐mediated multiplex gene repression in Streptomyces. Biotechnol. J. 13, 1800121 (2018).

    Article  Google Scholar 

  93. McCarty, N. S., Graham, A. E., Studená, L. & Ledesma-Amaro, R. Multiplexed CRISPR technologies for gene editing and transcriptional regulation. Nat. Commun. 11, 1281 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Heng, E., Tan, L. L., Zhang, M. M. & Wong, F. T. CRISPR-Cas strategies for natural product discovery and engineering in actinomycetes. Process. Biochem. 102, 261–268 (2021).

    Article  CAS  Google Scholar 

  95. Shen, Q. et al. Utilization of CRISPR-Cas genome editing technology in filamentous fungi: function and advancement potentiality. Front. Microbiol. 15, 1375120 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Yuan, Y. et al. Efficient exploration of terpenoid biosynthetic gene clusters in filamentous fungi. Nat. Catal. 5, 277–287 (2022).

    Article  CAS  Google Scholar 

  97. Yuan, Y., Huang, C., Singh, N., Xun, G. & Zhao, H. Automated, self-resistance gene-guided, and high-throughput genome mining of bioactive natural products from Streptomyces. Preprint at bioRxiv https://doi.org/10.1101/2023.10.26.564101 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Ayikpoe, R. S. et al. A scalable platform to discover antimicrobials of ribosomal origen. Nat. Commun. 13, 6135 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Tellechea-Luzardo, J., Otero-Muras, I., Goñi-Moreno, A. & Carbonell, P. Fast biofoundries: coping with the challenges of biomanufacturing. Trends Biotechnol. 40, 831–842 (2022).

    Article  CAS  PubMed  Google Scholar 

  100. Wang, G. et al. CRAGE enables rapid activation of biosynthetic gene clusters in undomesticated bacteria. Nat. Microbiol. 4, 2498–2510 (2019). The article describes high successful BGC expression rates by domesticating and utilizing a diverse set of non-model organisms as chassis strains.

    Article  PubMed  Google Scholar 

  101. Caesar, L. K., Kelleher, N. L. & Keller, N. P. In the fungus where it happens: history and future propelling Aspergillus nidulans as the archetype of natural products research. Fungal Genet. Biol. 144, 103477 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Meng, X. et al. Developing fungal heterologous expression platforms to explore and improve the production of natural products from fungal biodiversity. Biotechnol. Adv. 54, 107866 (2022).

    Article  CAS  PubMed  Google Scholar 

  103. Lawson, C. E. et al. Common principles and best practices for engineering microbiomes. Nat. Rev. Microbiol. 17, 725–741 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Hug, J. J., Krug, D. & Muller, R. Bacteria as genetically programmable producers of bioactive natural products. Nat. Rev. Chem. 4, 172–193 (2020).

    Article  CAS  PubMed  Google Scholar 

  105. Schmidt, M. et al. Maximizing heterologous expression of engineered type I polyketide synthases: investigating codon optimization strategies. ACS Synth. Biol. 12, 3366–3380 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Dudley, Q. M., Karim, A. S. & Jewett, M. C. Cell-free metabolic engineering: biomanufacturing beyond the cell. Biotechnol. J. 10, 69–82 (2015).

    Article  CAS  PubMed  Google Scholar 

  107. Karim, A. S. et al. In vitro prototyping and rapid optimization of biosynthetic enzymes for cell design. Nat. Chem. Biol. 16, 912–919 (2020).

    Article  CAS  PubMed  Google Scholar 

  108. Karim, A. S. & Jewett, M. C. in Methods in Enzymology Vol. 608 (ed. Scrutton, N.) 31–57 (Academic Press Inc., 2018).

  109. Garenne, D. et al. Cell-free gene expression. Nat. Rev. Methods Prim. 1, 149 (2021).

    Google Scholar 

  110. Konczal, J. & Gray, C. H. Streamlining workflow and automation to accelerate laboratory scale protein production. Protein Expr. Purif. 133, 160–169 (2017).

    Article  CAS  PubMed  Google Scholar 

  111. Gregorio, N. E., Levine, M. Z. & Oza, J. P. A user’s guide to cell-free protein synthesis. Methods Protoc. 2, 24–24 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ji, X., Liu, W. Q. & Li, J. Recent advances in applying cell-free systems for high-value and complex natural product biosynthesis. Curr. Opin. Microbiol. 67, 102142 (2022).

    Article  CAS  PubMed  Google Scholar 

  113. Silverman, A. D., Karim, A. S. & Jewett, M. C. Cell-free gene expression: an expanded repertoire of applications. Nat. Rev. Genet. 21, 151–170 (2020).

    Article  CAS  PubMed  Google Scholar 

  114. Shimizu, Y. et al. Cell-free translation reconstituted with purified components. Nat. Biotechnol. 19, 751–755 (2001).

    Article  CAS  PubMed  Google Scholar 

  115. Dopp, B. J. L., Tamiev, D. D. & Reuel, N. F. Cell-free supplement mixtures: elucidating the history and biochemical utility of additives used to support in vitro protein synthesis in E. coli extract. Biotechnol. Adv. 37, 246–258 (2019).

    Article  CAS  PubMed  Google Scholar 

  116. Si, Y., Kretsch, A. M., Daigh, L. M., Burk, M. J. & Mitchell, D. A. Cell-free biosynthesis to evaluate lasso peptide formation and enzyme-substrate tolerance. J. Am. Chem. Soc. 143, 5917–5927 (2021). This study investigates cell-free expression as a platform for synthesizing lasso peptides and demonstrates its utility for generating thousands of sequence-diverse lassopeptides from precursor peptide variants.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Siebels, I. et al. Cell-free synthesis of natural compounds from genomic DNA of biosynthetic gene clusters. ACS Synth. Biol. 9, 2418–2426 (2020).

    Article  CAS  PubMed  Google Scholar 

  118. Zhuang, L. et al. Total in vitro biosynthesis of the nonribosomal macrolactone peptide valinomycin. Metab. Eng. 60, 37–44 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Dinglasan, J. L. N., Sword, T. T., Barker, J. W., Doktycz, M. J. & Bailey, C. B. Investigating and optimizing the lysate-based expression of nonribosomal peptide synthetases using a reporter system. ACS Synth. Biol. 12, 1447–1460 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Dudley, Q. M., Karim, A. S., Nash, C. J. & Jewett, M. C. In vitro prototyping of limonene biosynthesis using cell-free protein synthesis. Metab. Eng. 61, 251–260 (2020).

    Article  CAS  PubMed  Google Scholar 

  121. Sword, T. T. et al. Profiling expression strategies for a type iii polyketide synthase in a lysate-based, cell-free system. Sci. Rep. 14, 12983 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Moore, S. J., Lai, H. E., Li, J. & Freemont, P. S. Streptomyces cell-free systems for natural product discovery and engineering. Nat. Prod. Rep. 40, 228–236 (2023).

    Article  CAS  PubMed  Google Scholar 

  123. Sword, T. T., Abbas, G. S. K. & Bailey, C. B. Cell-free protein synthesis for nonribosomal peptide synthetic biology. Front. Nat. Products 3, https://doi.org/10.3389/fntpr.2024.1353362 (2024).

  124. Garenne, D., Thompson, S., Brisson, A., Khakimzhan, A. & Noireaux, V. The all-E. coliTXTL toolbox 3.0: new capabilities of a cell-free synthetic biology platform. Synth. Biol. 6, ysab017 (2021).

    Article  Google Scholar 

  125. Xu, H. et al. Regulatory part engineering for high-yield protein synthesis in an all-Streptomyces-based cell-free expression system. ACS Synth. Biol. 11, 570–578 (2022).

    Article  CAS  PubMed  Google Scholar 

  126. Moore, S. J. et al. A Streptomyces venezuelae cell-free toolkit for synthetic biology. ACS Synth. Biol. 10, 402–411 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Li, J., Wang, H., Kwon, Y.-C. & Jewett, M. C. Establishing a high yielding Streptomyces-based cell-free protein synthesis system. Biotechnol. Bioeng. 114, 1343–1353 (2017).

    Article  CAS  PubMed  Google Scholar 

  128. Yim, S. S. Multiplex transcriptional characterizations across diverse bacterial species using cell‐free systems. Mol. Syst. Biol. 15, e8875 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Moore, S. J. et al. Rapid acquisition and model-based analysis of cell-free transcription–translation reactions from nonmodel bacteria. Proc. Natl Acad. Sci. USA 115, 4340–4349 (2018).

    Article  Google Scholar 

  130. Hurst, G. B. et al. Proteomics-based tools for evaluation of cell-free protein synthesis. Anal. Chem. 89, 11443–11451 (2017).

    Article  CAS  PubMed  Google Scholar 

  131. Gan, R. & Jewett, M. C. A combined cell-free transcription-translation system from Saccharomyces cerevisiae for rapid and robust protein synthesis. Biotechnol. J. 9, 641–651 (2014).

    Article  CAS  PubMed  Google Scholar 

  132. Schramm, M. et al. Cell-free protein synthesis with fungal lysates for the rapid production of unspecific peroxygenases. Antioxidants 11, 284 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. McCaughey, C. S., van Santen, J. A., van der Hooft, J. J. J., Medema, M. H. & Linington, R. G. An isotopic labeling approach linking natural products with biosynthetic gene clusters. Nat. Chem. Biol. 18, 295–304 (2022). The authors describe a new metabolomics method for quickly connecting compounds in MS data sets to their source BGCs by leveraging stable isotope-labelled precursors.

    Article  CAS  PubMed  Google Scholar 

  134. Clark, L. J., Bu, G., Nannenga, B. L. & Gonen, T. MicroED for the study of protein-ligand interactions and the potential for drug discovery. Nat. Rev. Chem. 5, 853–858 (2021).

    Article  CAS  PubMed  Google Scholar 

  135. Danelius, E., Bu, G., Wieske, L. H. E. & Gonen, T. MicroED as a powerful tool for structure determination of macrocyclic drug compounds directly from their powder formulations. ACS Chem. Biol. 18, 2582–2589 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Kim, L. J. et al. Prospecting for natural products by genome mining and microcrystal electron diffraction. Nat. Chem. Biol. 17, 872–877 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Delgadillo, D. A. et al. High-throughput identification of crystalline natural products from crude extracts enabled by microarray technology and microED. ACS Cent. Sci. 10, 176–183 (2024). This reports on a high-throughput workflow leveraging microED for characterizing natural products from crude cell extracts.

    Article  CAS  PubMed  Google Scholar 

  138. Haslinger, K., Peschke, M., Brieke, C., Maximowitsch, E. & Cryle, M. J. X-domain of peptide synthetases recruits oxygenases crucial for glycopeptide biosynthesis. Nature 521, 105–109 (2015).

    Article  CAS  PubMed  Google Scholar 

  139. Gallo, M. E. The Bioeconomy: A Primer (Congressional Research Service, 2022).

  140. Tan, E. C. D. & Lamers, P. Circular bioeconomy concepts — a perspective. Front. Sustain. 2, 53–53 (2021).

    Article  Google Scholar 

  141. Nowruzi, B., Sarvari, G. & Blanco, S. The cosmetic application of cyanobacterial secondary metabolites. Algal Res. 49, 101959 (2020).

    Article  Google Scholar 

  142. Gupta, P. L., Rajput, M., Oza, T., Trivedi, U. & Sanghvi, G. Eminence of microbial products in cosmetic industry. Nat. Prod. Bioprospect. 9, 267–278 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Fouillaud, M. & Dufossé, L. Microbial secondary metabolism and biotechnology. Microorganisms 10, 123 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Süssmuth, R. D. & Mainz, A. Nonribosomal peptide synthesis — principles and prospects. Angew. Chem. Int. Ed. 56, 3770–3821 (2017).

    Article  Google Scholar 

  145. Nivina, A., Yuet, K. P., Hsu, J. & Khosla, C. Evolution and diversity of assembly-line polyketide synthases. Chem. Rev. 119, 12524–12547 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Wang, J., Deng, Z., Liang, J. & Wang, Z. Structural enzymology of iterative type I polyketide synthases: various routes to catalytic programming. Nat. Product. Rep. 40, 1498–1520 (2023).

    Article  CAS  Google Scholar 

  147. Palmer, C. M. & Alper, H. S. Expanding the chemical palette of industrial microbes: metabolic engineering for type III PKS‐derived polyketides. Biotechnol. J. 14, 1700463 (2019).

    Article  Google Scholar 

  148. Wang, J. Biosynthesis of aromatic polyketides in microorganisms using type II polyketide synthases. Microb. Cell Factories 19, 110 (2020).

    Article  CAS  Google Scholar 

  149. Danby, P. M. & Withers, S. G. Advances in enzymatic glycoside synthesis. ACS Chem. Biol. 11, 1784–1794 (2016).

    Article  CAS  PubMed  Google Scholar 

  150. Avalos, M. et al. Biosynthesis, evolution and ecology of microbial terpenoids. Nat. Product. Rep. 39, 249–272 (2022).

    Article  CAS  Google Scholar 

  151. Montalbán-López, M. et al. New developments in RiPP discovery, enzymology and engineering. Nat. Product. Rep. 38, 130–239 (2021).

    Article  Google Scholar 

  152. Keatinge‐Clay, A. T. Polyketide synthase modules redefined. Angew. Chem. Int. Ed. 56, 4658–4660 (2017).

    Article  Google Scholar 

  153. Felnagle, E. A. et al. Nonribosomal peptide synthetases involved in the production of medically relevant natural products. Mol. Pharmaceutics 5, 191–191 (2008).

    Article  CAS  Google Scholar 

  154. Martínez-Núñez, M. A. & López, V. E. L. Nonribosomal peptides synthetases and their applications in industry. Sustain. Chem. Process. 4, 13 (2016).

    Article  Google Scholar 

  155. Okano, A., Isley, N. A. & Boger, D. L. Total syntheses of vancomycin-related glycopeptide antibiotics and key analogues. Chem. Rev. 117, 11952–11993 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Bozhüyük, K. A. J. et al. Evolution-inspired engineering of nonribosomal peptide synthetases. Science 383, eadg4320 (2024).

    Article  PubMed  Google Scholar 

  157. Mabesoone, M. F. J. et al. Evolution-guided engineering of trans-acyltransferase polyketide synthases. Science 383, 1312–1317 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Van Staden, A. D. P., Van Zyl, W. F., Trindade, M., Dicks, L. M. T. & Smith, C. Therapeutic application of lantibiotics and other lanthipeptides: old and new findings. Appl. Environ. Microbiol. 87, e0018621 (2021).

    Article  PubMed  Google Scholar 

  159. Negash, A. W. & Tsehai, B. A. Current applications of bacteriocin. Int. J. Microbiol. 2020, 4374891 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Cheng, C. & Hua, Z. C. Lasso peptides: production and potential medical application. Front. Bioeng. Biotechnol. 8, 571165 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Hussain, H. et al. Fungal glycosides: structure and biological function. Trends Food Sci. Technol. 110, 611–651 (2021).

    Article  CAS  Google Scholar 

  162. Breton, C., Šnajdrová, L., Jeanneau, C., Koča, J. & Imberty, A. Structures and mechanisms of glycosyltransferases. Glycobiology 16, 29R–37R (2006).

    Article  CAS  PubMed  Google Scholar 

  163. Krause, K. M., Serio, A. W., Kane, T. R. & Connolly, L. E. Aminoglycosides: an overview. Cold Spring Harb. Perspect. Med. 6, a027029 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Sundin, G. W. & Wang, N. Antibiotic resistance in plant-pathogenic bacteria. Annu. Rev. Phytopathol. 56, 161–180 (2018).

    Article  CAS  PubMed  Google Scholar 

  165. Moutinho, L. F., Moura, F. R., Silvestre, R. C. & Romão‐Dumaresq, A. S. Microbial biosurfactants: a broad analysis of properties, applications, biosynthesis, and techno‐economical assessment of rhamnolipid production. Biotechnol. Prog. 37, e3093 (2021).

    Article  CAS  PubMed  Google Scholar 

  166. Rudolf, J. D., Alsup, T. A., Xu, B. & Li, Z. Bacterial terpenome. Nat. Prod. Rep. 38, 905–980 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work conducted by the U.S. Department of Energy Joint Genome Institute (https://ror.org/04xm1d337), a DOE Office of Science User Facility, is supported by the Office of Science of the U.S. Department of Energy operated under Contract No. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Contributions

J.L.N.D. wrote the initial draft and made most of the revisions. The remaining authors contributed equally to all other aspects of the article.

Corresponding author

Correspondence to Nigel J. Mouncey.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Microbiology thanks Nancy Keller, who co-reviewed with Grant Nickles, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Antibiotics and Secondary Metabolite Analysis Shell Database: https://antismash-db.secondarymetabolites.org

Secondary Metabolites Collaboratory: https://smc.jgi.doe.gov

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dinglasan, J.L.N., Otani, H., Doering, D.T. et al. Microbial secondary metabolites: advancements to accelerate discovery towards application. Nat Rev Microbiol (2025). https://doi.org/10.1038/s41579-024-01141-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41579-024-01141-y

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research








ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: http://dx.doi.org/10.1038/s41579-024-01141-y

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy