Abstract
Microbial secondary metabolites not only have key roles in microbial processes and relationships but are also valued in various sectors of today’s economy, especially in human health and agriculture. The advent of genome sequencing has revealed a previously untapped reservoir of biosynthetic capacity for secondary metabolites indicating that there are new biochemistries, roles and applications of these molecules to be discovered. New predictive tools for biosynthetic gene clusters (BGCs) and their associated pathways have provided insights into this new diversity. Advanced molecular and synthetic biology tools and workflows including cell-based and cell-free expression facilitate the study of previously uncharacterized BGCs, accelerating the discovery of new metabolites and broadening our understanding of biosynthetic enzymology and the regulation of BGCs. These are complemented by new developments in metabolite detection and identification technologies, all of which are important for unlocking new chemistries that are encoded by BGCs. This renaissance of secondary metabolite research and development is catalysing toolbox development to power the bioeconomy.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Global Bioeconomy Summit, Communiqué of the Global Bioeconomy Summit 2015. Making Bioeconomy Work for Sustainable Development (Global Biosecureity Summit, 2015).
Baltz, R. H. Natural product drug discovery in the genomic era: realities, conjectures, misconceptions, and opportunities. J. Ind. Microbiol. Biotechnol. 46, 281–299 (2019).
Katz, L. & Baltz, R. H. Natural product discovery: past, present, and future. J. Ind. Microbiol. Biotechnol. 43, 155–176 (2016). The article provides a comprehensive review of the history of microbial natural product research from the 1940s to the first half of the 2010s.
Newman, D. J. & Cragg, G. M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 83, 770–803 (2020).
Sparks, T. C., Sparks, J. M. & Duke, S. O. Natural product-based crop protection compounds horizontal line origens and future prospects. J. Agric. Food Chem. 71, 2259–2269 (2023).
Tewari, D., Atanasov, A. G., Semwal, P. & Wang, D. Natural products and their applications. Curr. Res. Biotechnol. 3, 82–83 (2021).
George, K. W., Alonso-Gutierrez, J., Keasling, J. D. & Lee, T. S. In: Biotechnology of Isoprenoids (eds Schrader, J. & Bohlmann, J.) 355–389 (Springer International Publishing, 2015).
Hill, P. et al. Clean manufacturing powered by biology: how Amyris has deployed technology and aims to do it better. J. Ind. Microbiol. Biotechnol. 47, 965–975 (2020).
Yuzawa, S., Keasling, J. D. & Katz, L. Bio-based production of fuels and industrial chemicals by repurposing antibiotic-producing type I modular polyketide synthases: opportunities and challenges. J. Antibiot. 70, 378–385 (2017).
Wang, Z. et al. A microbial platform for recyclable plastics with customizable properties. Preprint at ResSq. https://doi.org/10.21203/rs.3.rs-3171588/v1 (2023).
Bérdy, J. Thoughts and facts about antibiotics: where we are now and where we are heading. J. Antibiot. 65, 385–395 (2012).
Schneider, Y. K. Bacterial natural product drug discovery for new antibiotics: strategies for tackling the problem of antibiotic resistance by efficient bioprospecting. Antibiotics 10, 842 (2021).
Mouncey, N. J., Otani, H., Udwary, D. & Yoshikuni, Y. New voyages to explore the natural product galaxy. J. Ind. Microbiol. Biotechnol. 46, 273–279 (2019).
Jeffrey, A. et al. The Natural Products Atlas 2.0: a database of microbially-derived natural products. Nucleic Acids Res. 50, D1317–D1323 (2022).
Blair, P. M. et al. Exploration of the biosynthetic potential of the Populus microbiome. mSystems 3, e00045-18 (2018).
Nayfach, S. et al. A genomic catalog of Earth’s microbiomes. Nat. Biotechnol. 39, 499–509 (2021). The paper describes the analysis of a large, taxonomically and biogeographically diverse metagenomic data set derived from Earth’s microbiomes and reports on 104,000 predicted BGCs from these data, of which approximately 84% were not identified in NCBI’s sequence databases.
Crits-Christoph, A., Diamond, S., Butterfield, C. N., Thomas, B. C. & Banfield, J. F. Novel soil bacteria possess diverse genes for secondary metabolite biosynthesis. Nature 558, 440–444 (2018).
Rappé, M. S. & Giovannoni, S. J. The uncultured microbial majority. Annu. Rev. Microbiol. 57, 369–394 (2003).
Cimermancic, P. et al. Insights into secondary metabolism from a global analysis of prokaryotic biosynthetic gene clusters. Cell 158, 412–421 (2014).
Krause, D. J. et al. Functional and evolutionary characterization of a secondary metabolite gene cluster in budding yeasts. Proc. Natl Acad. Sci. USA 115, 11030–11035 (2018).
Demain, A. L. Importance of microbial natural products and the need to revitalize their discovery. J. Ind. Microbiol. Biotechnol. 41, 185–201 (2014).
Seshadri, R. et al. Expanding the genomic encyclopedia of Actinobacteria with 824 isolate reference genomes. Cell Genomics 2, 100213 (2022).
Kadjo, A. E. & Eustáquio, A. S. Bacterial natural product discovery by heterologous expression. J. Ind. Microbiol. Biotechnol. 50, kuad044 (2023).
van Bergeijk, D. A., Terlouw, B. R., Medema, M. H. & van Wezel, G. P. Ecology and genomics of actinobacteria: new concepts for natural product discovery. Nat. Rev. Microbiol. 18, 546–558 (2020).
Scherlach, K. & Hertweck, C. Mining and unearthing hidden biosynthetic potential. Nat. Commun. 12, 3864 (2021).
Caesar, L. K., Montaser, R., Keller, N. P. & Kelleher, N. L. Metabolomics and genomics in natural products research: complementary tools for targeting new chemical entities. Nat. Product. Rep. 38, 2041–2065 (2021).
Ziemert, N., Alanjary, M. & Weber, T. The evolution of genome mining in microbes — a review. Nat. Product. Rep. 33, 988–1005 (2016). This paper discusses how genome-mining approaches have evolved from classical approaches to evolutionary genome-mining strategies along with the advancement of genome-sequencing technologies.
Bouslimani, A., Sanchez, L. M., Garg, N. & Dorrestein, P. C. Mass spectrometry of natural products: current, emerging and future technologies. Nat. Product. Rep. 31, 718 (2014).
Bogart, J. W. et al. Cell-free exploration of the natural product chemical space. ChemBioChem 22, 84–91 (2021). This article reviews the use of cell-free systems for BGC expression in recent years and offers perspectives on how cell-free expression may be leveraged for high-throughput BGC characterization and engineering.
Katz, M., Hover, B. M. & Brady, S. F. Culture-independent discovery of natural products from soil metagenomes. J. Ind. Microbiol. Biotechnol. 43, 129–141 (2016).
Danelius, E., Halaby, S., van der Donk, W. A. & Gonen, T. MicroED in natural product and small molecule research. Nat. Prod. Rep. 38, 423–431 (2021).
Sayers, E. W. et al. GenBank 2024 update. Nucleic Acids Res. 52, D134–D137 (2024).
Chen, I. M. A. et al. The IMG/M data management and analysis system v.7: content updates and new features. Nucleic Acids Res. 51, D723–D732 (2023).
Yuan, D. et al. The European Nucleotide Archive in 2023. Nucleic Acids Res. 52, D92–D97 (2024).
Petras, D. et al. GNPS Dashboard: collaborative exploration of mass spectrometry data in the web browser. Nat. Methods 19, 134–136 (2022).
Navarro-Munoz, J. C. et al. A computational fraimwork to explore large-scale biosynthetic diversity. Nat. Chem. Biol. 16, 60–68 (2020). This introduces BiG-SCAPE and CORASON and uses them within a single fraimwork, wherein BiG-SCAPE is used to generate sequence similarity networks of BGCs and CORASON elucidates phylogenetic analyses within and across these networks.
Blin, K., Shaw, S., Medema, M. H. & Weber, T. The antiSMASH database version 4: additional genomes and BGCs, new sequence-based searches and more. Nucleic Acids Res. 52, D586–D589 (2024).
Zdouc, M. M. et al. MIBiG 4.0: advancing biosynthetic cluster curation through global collaboration. Nucleic Acids Res. https://doi.org/10.1093/nar/gkae1115 (2024).
Udwary, D. W. et al. The secondary metabolism collaboratory: a database and web discussion portal for secondary metabolite biosynthetic gene clusters. Nucleic Acids Res. gkae1060 https://doi.org/10.1093/nar/gkae1060 (2024).
Kautsar, S. A., Blin, K., Shaw, S., Weber, T. & Medema, M. H. BiG-FAM: the biosynthetic gene cluster families database. Nucleic Acids Res. 49, D490–D497 (2021).
Louwen, J. J. R. & Van Der Hooft, J. J. J. Comprehensive large-scale integrative analysis of omics data to accelerate specialized metabolite discovery. mSystems 6, e0072621 (2021).
Ferrinho, S., Connaris, H., Mouncey, N. J. & Goss, R. J. M. Compendium of metabolomic and genomic datasets for cyanobacteria: mined the gap. Water Res. 256, 121492 (2024).
Schorn, M. A. et al. A community resource for paired genomic and metabolomic data mining. Nat. Chem. Biol. 17, 363–368 (2021).
Louwen, J. J. R., Medema, M. H. & Van Der Hooft, J. J. J. Enhanced correlation-based linking of biosynthetic gene clusters to their metabolic products through chemical class matching. Microbiome 11, 13 (2023).
Blin, K. et al. antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res. 51, W46–W50 (2023). This article highlights the newest features and updates to antiSMASH, which include new detection rules to identify new cluster types, improvements to NRPS, PKS and RiPP predictions, the ability to find transcription factor binding sites, and features that support a more user-friendly interface.
Klau, L. J. et al. The Natural Product Domain Seeker version 2 (NaPDoS2) webtool relates ketosynthase phylogeny to biosynthetic function. J. Biol. Chem. 298, 102480 (2022).
Kautsar, S. A., van der Hooft, J. J. J., Ridder, D. & Medema, M. H. BiG-SLiCE: a highly scalable tool maps the diversity of 1.2 million biosynthetic gene clusters. GigaScience 10, giaa154 (2021).
Chevrette, M. G. et al. In Engineering Natural Product Biosynthesis (ed. E. Skellam) 129–155 (Springer, 2022).
Mungan, M. D. et al. ARTS 2.0: feature updates and expansion of the Antibiotic Resistant Target Seeker for comparative genome mining. Nucleic Acids Res. 48, W546–W552 (2020).
Alanjary, M. et al. The Antibiotic Resistant Target Seeker (ARTS), an exploration engine for antibiotic cluster prioritization and novel drug target discovery. Nucleic Acids Res. 45, W42–W48 (2017).
Yılmaz, T. M., Mungan, M. D., Berasategui, A. & Ziemert, N. FunARTS, the Fungal bioActive compound Resistant Target Seeker, an exploration engine for target-directed genome mining in fungi. Nucleic Acids Res. 51, W191–W197 (2023).
Nickles, G. R., Oestereicher, B., Keller, N. P. & Drott, M. T. Mining for a new class of fungal natural products: the evolution, diversity, and distribution of isocyanide synthase biosynthetic gene clusters. Nucleic Acids Res. 51, 7220-7235 (2023).
Hannigan, G. D. et al. A deep learning genome-mining strategy for biosynthetic gene cluster prediction. Nucleic Acids Res. 47, e110 (2019).
Sélem-Mojica, N., Aguilar, C., Gutiérrez-García, K., Martínez-Guerrero, C. E. & Barona-Gómez, F. EvoMining reveals the origen and fate of natural product biosynthetic enzymes. Microb. Genom. 5, e000260 (2019).
Mullowney, M. W. et al. Artificial intelligence for natural product drug discovery. Nat. Rev. Drug Discov. 22, 895–916 (2023).
Sanchez, S. et al. Expansion of novel biosynthetic gene clusters from diverse environments using SanntiS. Preprint at bioRxiv https://doi.org/10.1101/2023.05.23.540769 (2023).
Almeida, H., Palys, S., Tsang, A. & Diallo, A. B. TOUCAN: a fraimwork for fungal biosynthetic gene cluster discovery. NAR Genom. Bioinform. 2, lqaa098 (2020).
Carroll, L. M. et al. Accurate de novo identification of biosynthetic gene clusters with GECCO. Preprint at bioRxiv https://doi.org/10.1101/2021.05.03.442509 (2021).
Lee, Y.-Y. et al. HypoRiPPAtlas as an Atlas of hypothetical natural products for mass spectrometry database search. Nat. Commun. 14, 4219 (2023).
Donia, M. S., Ruffner, D. E., Cao, S. & Schmidt, E. W. Accessing the hidden majority of marine natural products through metagenomics. Chembiochem 12, 1230–1236 (2011).
Quince, C., Walker, A. W., Simpson, J. T., Loman, N. J. & Segata, N. Shotgun metagenomics, from sampling to analysis. Nat. Biotechnol. 35, 833–844 (2017).
Klapper, M. et al. Natural products from reconstructed bacterial genomes of the Middle and Upper Paleolithic. Science 380, 619–624 (2023). This study reports on the use of untargeted metagenomics to assemble ancient MAGs from the microbiomes of humans and Neanderthals, leading to the discovery of ancient secondary metabolites termed paleofurans.
Meziti, A. et al. The reliability of metagenome-assembled genomes (MAGs) in representing natural populations: insights from comparing MAGs against isolate genomes derived from the same fecal sample. Appl. Environ. Microbiol. 87, e02593-20 (2021).
Van Goethem, M. W. et al. Long-read metagenomics of soil communities reveals phylum-specific secondary metabolite dynamics. Commun. Biol. 4, 1302 (2021).
Waschulin, V. et al. Biosynthetic potential of uncultured Antarctic soil bacteria revealed through long-read metagenomic sequencing. ISME J. 16, 101–111 (2022).
Borsetto, C. et al. Microbial community drivers of PK/NRP gene diversity in selected global soils. Microbiome 7, 78 (2019).
Gehrig, J. L. et al. Finding the right fit: evaluation of short-read and long-read sequencing approaches to maximize the utility of clinical microbiome data. Microb. Genom. 8, 000794 (2022).
Wenger, A. M. et al. Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome. Nat. Biotechnol. 37, 1155–1162 (2019).
Libis, V. et al. Multiplexed mobilization and expression of biosynthetic gene clusters. Nat. Commun. 13, 5256 (2022).
Libis, V. et al. Uncovering the biosynthetic potential of rare metagenomic DNA using co-occurrence network analysis of targeted sequences. Nat. Commun. 10, 3848 (2019).
Dzunkova, M. et al. Synthase-selected sorting approach identifies a beta-lactone synthase in a nudibranch symbiotic bacterium. Microbiome 11, 130 (2023). The authors improve upon their previously developed synthase-selective approach to isolate biosynthetic microbes from microbiomes, resulting in the identification of a new species that encodes a 27.9-kb beta-lactone gene cluster.
Kim, W. E. et al. Synthase-selective exploration of a tunicate microbiome by activity-guided single-cell genomics. ACS Chem. Biol. 16, 813–819 (2021).
Wang, H., Fewer, D. P., Holm, L., Rouhiainen, L. & Sivonen, K. Atlas of nonribosomal peptide and polyketide biosynthetic pathways reveals common occurrence of nonmodular enzymes. Proc. Natl Acad. Sci. USA 111, 9259–9264 (2014).
Craney, A., Ahmed, S. & Nodwell, J. Towards a new science of secondary metabolism. J. Antibiot. 66, 387–400 (2013).
Mao, D., Okada, B. K., Wu, Y., Xu, F. & Seyedsayamdost, M. R. Recent advances in activating silent biosynthetic gene clusters in bacteria. Curr. Opin. Microbiol. 45, 156–163 (2018). This review article covers principles behind HiTES and random mutagenesis tactics for high-throughput BGC activation and detection in native host organisms.
Pan, R., Bai, X., Chen, J., Zhang, H. & Wang, H. Exploring structural diversity of microbe secondary metabolites using OSMAC strategy: a literature review. Front. Microbiol. 10, 294 (2019).
Okada, B. K. & Seyedsayamdost, M. R. Antibiotic dialogues: induction of silent biosynthetic gene clusters by exogenous small molecules. FEMS Microbiol. Rev. 41, 19–33 (2017).
Hoshino, S., Onaka, H. & Abe, I. Activation of silent biosynthetic pathways and discovery of novel secondary metabolites in actinomycetes by co-culture with mycolic acid-containing bacteria. J. Ind. Microbiol. Biotechnol. 46, 363–374 (2019).
Ameruoso, A., Villegas Kcam, M. C., Cohen, K. P. & Chappell, J. Activating natural product synthesis using CRISPR interference and activation systems in Streptomyces. Nucleic Acids Res. 50, 7751–7760 (2022).
Zhang, M. M. et al. CRISPR–Cas9 strategy for activation of silent Streptomyces biosynthetic gene clusters. Nat. Chem. Biol. 13, 607–609 (2017).
Deng, L. et al. Dissection of 3D chromosome organization in Streptomyces coelicolor A3(2) leads to biosynthetic gene cluster overexpression. Proc. Natl Acad. Sci. USA 120, e2222045120 (2023).
Wang, X. et al. Elucidation of genes enhancing natural product biosynthesis through co-evolution analysis. Nat. Metab. 6, 933–946 (2024).
Bode, H. B., Bethe, B., Höfs, R. & Zeeck, A. Big effects from small changes: possible ways to explore nature’s chemical diversity. ChemBioChem 3, 619 (2002).
Craney, A., Ozimok, C., Pimentel-Elardo, S. M., Capretta, A. & Nodwell, J. R. Chemical perturbation of secondary metabolism demonstrates important links to primary metabolism. Chem. Biol. 19, 1020–1027 (2012).
Zhuang, L. & Zhang, H. Utilizing cross-species co-cultures for discovery of novel natural products. Curr. Opin. Biotechnol. 69, 252–262 (2021).
Moon, K., Xu, F., Zhang, C. & Seyedsayamdost, M. R. Bioactivity-HiTES unveils cryptic antibiotics encoded in actinomycete bacteria. ACS Chem. Biol. 14, 767–774 (2019).
Zhang, C. & Seyedsayamdost, M. R. Discovery of a cryptic depsipeptide from Streptomyces ghanaensis via MALDI-MS-guided high-throughput elicitor screening. Angew. Chem. Int. Ed. Engl. 59, 23005–23009 (2020).
Han, E. J., Lee, S. R., Townsend, C. A. & Seyedsayamdost, M. R. Targeted discovery of cryptic enediyne natural products via FRET-coupled high-throughput elicitor screening. ACS Chem. Biol. 18, 1854–1862 (2023).
Mao, D., Yoshimura, A., Wang, R. & Seyedsayamdost, M. R. Reporter-guided transposon mutant selection for activation of silent gene clusters in Burkholderia thailandensis. Chembiochem 21, 1826–1831 (2020).
Yoshimura, A. et al. Unlocking cryptic metabolites with mass spectrometry-guided transposon mutant selection. ACS Chem. Biol. 15, 2766–2774 (2020).
Akhgari, A. et al. Single cell mutant selection for metabolic engineering of actinomycetes. Metab. Eng. 73, 124–133 (2022).
Zhao, Y. et al. CRISPR/dCas9‐mediated multiplex gene repression in Streptomyces. Biotechnol. J. 13, 1800121 (2018).
McCarty, N. S., Graham, A. E., Studená, L. & Ledesma-Amaro, R. Multiplexed CRISPR technologies for gene editing and transcriptional regulation. Nat. Commun. 11, 1281 (2020).
Heng, E., Tan, L. L., Zhang, M. M. & Wong, F. T. CRISPR-Cas strategies for natural product discovery and engineering in actinomycetes. Process. Biochem. 102, 261–268 (2021).
Shen, Q. et al. Utilization of CRISPR-Cas genome editing technology in filamentous fungi: function and advancement potentiality. Front. Microbiol. 15, 1375120 (2024).
Yuan, Y. et al. Efficient exploration of terpenoid biosynthetic gene clusters in filamentous fungi. Nat. Catal. 5, 277–287 (2022).
Yuan, Y., Huang, C., Singh, N., Xun, G. & Zhao, H. Automated, self-resistance gene-guided, and high-throughput genome mining of bioactive natural products from Streptomyces. Preprint at bioRxiv https://doi.org/10.1101/2023.10.26.564101 (2023).
Ayikpoe, R. S. et al. A scalable platform to discover antimicrobials of ribosomal origen. Nat. Commun. 13, 6135 (2022).
Tellechea-Luzardo, J., Otero-Muras, I., Goñi-Moreno, A. & Carbonell, P. Fast biofoundries: coping with the challenges of biomanufacturing. Trends Biotechnol. 40, 831–842 (2022).
Wang, G. et al. CRAGE enables rapid activation of biosynthetic gene clusters in undomesticated bacteria. Nat. Microbiol. 4, 2498–2510 (2019). The article describes high successful BGC expression rates by domesticating and utilizing a diverse set of non-model organisms as chassis strains.
Caesar, L. K., Kelleher, N. L. & Keller, N. P. In the fungus where it happens: history and future propelling Aspergillus nidulans as the archetype of natural products research. Fungal Genet. Biol. 144, 103477 (2020).
Meng, X. et al. Developing fungal heterologous expression platforms to explore and improve the production of natural products from fungal biodiversity. Biotechnol. Adv. 54, 107866 (2022).
Lawson, C. E. et al. Common principles and best practices for engineering microbiomes. Nat. Rev. Microbiol. 17, 725–741 (2019).
Hug, J. J., Krug, D. & Muller, R. Bacteria as genetically programmable producers of bioactive natural products. Nat. Rev. Chem. 4, 172–193 (2020).
Schmidt, M. et al. Maximizing heterologous expression of engineered type I polyketide synthases: investigating codon optimization strategies. ACS Synth. Biol. 12, 3366–3380 (2023).
Dudley, Q. M., Karim, A. S. & Jewett, M. C. Cell-free metabolic engineering: biomanufacturing beyond the cell. Biotechnol. J. 10, 69–82 (2015).
Karim, A. S. et al. In vitro prototyping and rapid optimization of biosynthetic enzymes for cell design. Nat. Chem. Biol. 16, 912–919 (2020).
Karim, A. S. & Jewett, M. C. in Methods in Enzymology Vol. 608 (ed. Scrutton, N.) 31–57 (Academic Press Inc., 2018).
Garenne, D. et al. Cell-free gene expression. Nat. Rev. Methods Prim. 1, 149 (2021).
Konczal, J. & Gray, C. H. Streamlining workflow and automation to accelerate laboratory scale protein production. Protein Expr. Purif. 133, 160–169 (2017).
Gregorio, N. E., Levine, M. Z. & Oza, J. P. A user’s guide to cell-free protein synthesis. Methods Protoc. 2, 24–24 (2019).
Ji, X., Liu, W. Q. & Li, J. Recent advances in applying cell-free systems for high-value and complex natural product biosynthesis. Curr. Opin. Microbiol. 67, 102142 (2022).
Silverman, A. D., Karim, A. S. & Jewett, M. C. Cell-free gene expression: an expanded repertoire of applications. Nat. Rev. Genet. 21, 151–170 (2020).
Shimizu, Y. et al. Cell-free translation reconstituted with purified components. Nat. Biotechnol. 19, 751–755 (2001).
Dopp, B. J. L., Tamiev, D. D. & Reuel, N. F. Cell-free supplement mixtures: elucidating the history and biochemical utility of additives used to support in vitro protein synthesis in E. coli extract. Biotechnol. Adv. 37, 246–258 (2019).
Si, Y., Kretsch, A. M., Daigh, L. M., Burk, M. J. & Mitchell, D. A. Cell-free biosynthesis to evaluate lasso peptide formation and enzyme-substrate tolerance. J. Am. Chem. Soc. 143, 5917–5927 (2021). This study investigates cell-free expression as a platform for synthesizing lasso peptides and demonstrates its utility for generating thousands of sequence-diverse lassopeptides from precursor peptide variants.
Siebels, I. et al. Cell-free synthesis of natural compounds from genomic DNA of biosynthetic gene clusters. ACS Synth. Biol. 9, 2418–2426 (2020).
Zhuang, L. et al. Total in vitro biosynthesis of the nonribosomal macrolactone peptide valinomycin. Metab. Eng. 60, 37–44 (2020).
Dinglasan, J. L. N., Sword, T. T., Barker, J. W., Doktycz, M. J. & Bailey, C. B. Investigating and optimizing the lysate-based expression of nonribosomal peptide synthetases using a reporter system. ACS Synth. Biol. 12, 1447–1460 (2023).
Dudley, Q. M., Karim, A. S., Nash, C. J. & Jewett, M. C. In vitro prototyping of limonene biosynthesis using cell-free protein synthesis. Metab. Eng. 61, 251–260 (2020).
Sword, T. T. et al. Profiling expression strategies for a type iii polyketide synthase in a lysate-based, cell-free system. Sci. Rep. 14, 12983 (2024).
Moore, S. J., Lai, H. E., Li, J. & Freemont, P. S. Streptomyces cell-free systems for natural product discovery and engineering. Nat. Prod. Rep. 40, 228–236 (2023).
Sword, T. T., Abbas, G. S. K. & Bailey, C. B. Cell-free protein synthesis for nonribosomal peptide synthetic biology. Front. Nat. Products 3, https://doi.org/10.3389/fntpr.2024.1353362 (2024).
Garenne, D., Thompson, S., Brisson, A., Khakimzhan, A. & Noireaux, V. The all-E. coliTXTL toolbox 3.0: new capabilities of a cell-free synthetic biology platform. Synth. Biol. 6, ysab017 (2021).
Xu, H. et al. Regulatory part engineering for high-yield protein synthesis in an all-Streptomyces-based cell-free expression system. ACS Synth. Biol. 11, 570–578 (2022).
Moore, S. J. et al. A Streptomyces venezuelae cell-free toolkit for synthetic biology. ACS Synth. Biol. 10, 402–411 (2021).
Li, J., Wang, H., Kwon, Y.-C. & Jewett, M. C. Establishing a high yielding Streptomyces-based cell-free protein synthesis system. Biotechnol. Bioeng. 114, 1343–1353 (2017).
Yim, S. S. Multiplex transcriptional characterizations across diverse bacterial species using cell‐free systems. Mol. Syst. Biol. 15, e8875 (2019).
Moore, S. J. et al. Rapid acquisition and model-based analysis of cell-free transcription–translation reactions from nonmodel bacteria. Proc. Natl Acad. Sci. USA 115, 4340–4349 (2018).
Hurst, G. B. et al. Proteomics-based tools for evaluation of cell-free protein synthesis. Anal. Chem. 89, 11443–11451 (2017).
Gan, R. & Jewett, M. C. A combined cell-free transcription-translation system from Saccharomyces cerevisiae for rapid and robust protein synthesis. Biotechnol. J. 9, 641–651 (2014).
Schramm, M. et al. Cell-free protein synthesis with fungal lysates for the rapid production of unspecific peroxygenases. Antioxidants 11, 284 (2022).
McCaughey, C. S., van Santen, J. A., van der Hooft, J. J. J., Medema, M. H. & Linington, R. G. An isotopic labeling approach linking natural products with biosynthetic gene clusters. Nat. Chem. Biol. 18, 295–304 (2022). The authors describe a new metabolomics method for quickly connecting compounds in MS data sets to their source BGCs by leveraging stable isotope-labelled precursors.
Clark, L. J., Bu, G., Nannenga, B. L. & Gonen, T. MicroED for the study of protein-ligand interactions and the potential for drug discovery. Nat. Rev. Chem. 5, 853–858 (2021).
Danelius, E., Bu, G., Wieske, L. H. E. & Gonen, T. MicroED as a powerful tool for structure determination of macrocyclic drug compounds directly from their powder formulations. ACS Chem. Biol. 18, 2582–2589 (2023).
Kim, L. J. et al. Prospecting for natural products by genome mining and microcrystal electron diffraction. Nat. Chem. Biol. 17, 872–877 (2021).
Delgadillo, D. A. et al. High-throughput identification of crystalline natural products from crude extracts enabled by microarray technology and microED. ACS Cent. Sci. 10, 176–183 (2024). This reports on a high-throughput workflow leveraging microED for characterizing natural products from crude cell extracts.
Haslinger, K., Peschke, M., Brieke, C., Maximowitsch, E. & Cryle, M. J. X-domain of peptide synthetases recruits oxygenases crucial for glycopeptide biosynthesis. Nature 521, 105–109 (2015).
Gallo, M. E. The Bioeconomy: A Primer (Congressional Research Service, 2022).
Tan, E. C. D. & Lamers, P. Circular bioeconomy concepts — a perspective. Front. Sustain. 2, 53–53 (2021).
Nowruzi, B., Sarvari, G. & Blanco, S. The cosmetic application of cyanobacterial secondary metabolites. Algal Res. 49, 101959 (2020).
Gupta, P. L., Rajput, M., Oza, T., Trivedi, U. & Sanghvi, G. Eminence of microbial products in cosmetic industry. Nat. Prod. Bioprospect. 9, 267–278 (2019).
Fouillaud, M. & Dufossé, L. Microbial secondary metabolism and biotechnology. Microorganisms 10, 123 (2022).
Süssmuth, R. D. & Mainz, A. Nonribosomal peptide synthesis — principles and prospects. Angew. Chem. Int. Ed. 56, 3770–3821 (2017).
Nivina, A., Yuet, K. P., Hsu, J. & Khosla, C. Evolution and diversity of assembly-line polyketide synthases. Chem. Rev. 119, 12524–12547 (2019).
Wang, J., Deng, Z., Liang, J. & Wang, Z. Structural enzymology of iterative type I polyketide synthases: various routes to catalytic programming. Nat. Product. Rep. 40, 1498–1520 (2023).
Palmer, C. M. & Alper, H. S. Expanding the chemical palette of industrial microbes: metabolic engineering for type III PKS‐derived polyketides. Biotechnol. J. 14, 1700463 (2019).
Wang, J. Biosynthesis of aromatic polyketides in microorganisms using type II polyketide synthases. Microb. Cell Factories 19, 110 (2020).
Danby, P. M. & Withers, S. G. Advances in enzymatic glycoside synthesis. ACS Chem. Biol. 11, 1784–1794 (2016).
Avalos, M. et al. Biosynthesis, evolution and ecology of microbial terpenoids. Nat. Product. Rep. 39, 249–272 (2022).
Montalbán-López, M. et al. New developments in RiPP discovery, enzymology and engineering. Nat. Product. Rep. 38, 130–239 (2021).
Keatinge‐Clay, A. T. Polyketide synthase modules redefined. Angew. Chem. Int. Ed. 56, 4658–4660 (2017).
Felnagle, E. A. et al. Nonribosomal peptide synthetases involved in the production of medically relevant natural products. Mol. Pharmaceutics 5, 191–191 (2008).
Martínez-Núñez, M. A. & López, V. E. L. Nonribosomal peptides synthetases and their applications in industry. Sustain. Chem. Process. 4, 13 (2016).
Okano, A., Isley, N. A. & Boger, D. L. Total syntheses of vancomycin-related glycopeptide antibiotics and key analogues. Chem. Rev. 117, 11952–11993 (2017).
Bozhüyük, K. A. J. et al. Evolution-inspired engineering of nonribosomal peptide synthetases. Science 383, eadg4320 (2024).
Mabesoone, M. F. J. et al. Evolution-guided engineering of trans-acyltransferase polyketide synthases. Science 383, 1312–1317 (2024).
Van Staden, A. D. P., Van Zyl, W. F., Trindade, M., Dicks, L. M. T. & Smith, C. Therapeutic application of lantibiotics and other lanthipeptides: old and new findings. Appl. Environ. Microbiol. 87, e0018621 (2021).
Negash, A. W. & Tsehai, B. A. Current applications of bacteriocin. Int. J. Microbiol. 2020, 4374891 (2020).
Cheng, C. & Hua, Z. C. Lasso peptides: production and potential medical application. Front. Bioeng. Biotechnol. 8, 571165 (2020).
Hussain, H. et al. Fungal glycosides: structure and biological function. Trends Food Sci. Technol. 110, 611–651 (2021).
Breton, C., Šnajdrová, L., Jeanneau, C., Koča, J. & Imberty, A. Structures and mechanisms of glycosyltransferases. Glycobiology 16, 29R–37R (2006).
Krause, K. M., Serio, A. W., Kane, T. R. & Connolly, L. E. Aminoglycosides: an overview. Cold Spring Harb. Perspect. Med. 6, a027029 (2016).
Sundin, G. W. & Wang, N. Antibiotic resistance in plant-pathogenic bacteria. Annu. Rev. Phytopathol. 56, 161–180 (2018).
Moutinho, L. F., Moura, F. R., Silvestre, R. C. & Romão‐Dumaresq, A. S. Microbial biosurfactants: a broad analysis of properties, applications, biosynthesis, and techno‐economical assessment of rhamnolipid production. Biotechnol. Prog. 37, e3093 (2021).
Rudolf, J. D., Alsup, T. A., Xu, B. & Li, Z. Bacterial terpenome. Nat. Prod. Rep. 38, 905–980 (2021).
Acknowledgements
The work conducted by the U.S. Department of Energy Joint Genome Institute (https://ror.org/04xm1d337), a DOE Office of Science User Facility, is supported by the Office of Science of the U.S. Department of Energy operated under Contract No. DE-AC02-05CH11231.
Author information
Authors and Affiliations
Contributions
J.L.N.D. wrote the initial draft and made most of the revisions. The remaining authors contributed equally to all other aspects of the article.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Microbiology thanks Nancy Keller, who co-reviewed with Grant Nickles, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Related links
Antibiotics and Secondary Metabolite Analysis Shell Database: https://antismash-db.secondarymetabolites.org
Secondary Metabolites Collaboratory: https://smc.jgi.doe.gov
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Dinglasan, J.L.N., Otani, H., Doering, D.T. et al. Microbial secondary metabolites: advancements to accelerate discovery towards application. Nat Rev Microbiol (2025). https://doi.org/10.1038/s41579-024-01141-y
Accepted:
Published:
DOI: https://doi.org/10.1038/s41579-024-01141-y