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Studies on the Painlevé Equations IV.
Third Painlevé Equation P,

By

Kazuo OKAMOTO
(University of Tokyo, Japan)

The present article deals with the third Painlevé equation P,;;; we consider instead
the equation P;;,’, equivalent to the former. By defining the Painlevé system #,
we consider the group G« of birational canonical transformations of # ; G is isomorphic
to the affine Weyl group of the root system of the type B,. A sequence of solutions of #
is obtained from that of r-functions, satisfying the Toda equation and vice versa. We
consider also particular solutions of # written in terms of the cylinder function.
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Introduction

The present article concerns the third Painlevé equation:

d’q _ 1 dq>2_1dq 1 2 3, O
P a2 T g \dt 7—t_+7(aq +B8) + vq +7,

for which we make the assumption, y5 %0, throughout this paper. This equation
is well-known and investigated by many authors (for example, [3], [5], [6],
[7]1), while we consider in the following mainly the equation:

a2 1/dgV\ 1 d 2
Pur g =?<T(z1) gt d ek

K
4q°

instead. These.two equations are equivalent each other. In fact, by replacing
in Py, t by 2 and g by tq, we obtain P;;;. Therefore a result on P, can
be translated immediately to that of P;;;. We do not repeat results one by one.
We sum up in §1.1 known facts about the equation P;;;. or Py As for the
origin of the equation P;,., refer to [8], [10].

The Hamiltonian associated with P,,; is:

Hyr 270 {20.,16°+ (200 + g — 210t} p+ 1,00 +0.)1a]

where the constants #,, 8, (4=0, o) are connected to a, f, y, & of the equation
as follows:

0.1) o= —4n,0,, B=4ny(0+1), y=4n%, 6= —4n3.

By the assumption, we have #,x0; moreover we set n,=1 without loss of
generality. On the other hand, the Hamiltonian associated with Py, is:

Hypr % [qlp2 —{19%+ 009 —not}p+ % Moo (B0 + Bw)q] :

These two Hamiltonians are connected mutually through the canonical transfor-
mation ¢:

0.2) qg—tq, p—t1lp, t— 2,
Hyyp — L Hy+ L
IIr 2; III ;47

The Painlevé system 5#;;; (resp. 5#y) associated with the equation P, (resp.
P;,;p) is by definition the quartet:
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(g, p,H, 1)

such that H=H,,;(t; q, p) (resp. H=H ;(t; q, p)). We consider in this paper
mainly the Painlevé system #;,. All of results obtained for s, can be
translated to what concerns the other 5#;;; through the canonical transformation:

;5 Hur — Hnr

given by (0.2).
Let »# be the Painlevé system associated with P,;;. A solution (g, p) of
the system of differential equations:

dqg _ 0H dq 0H
©3) dt — dp ° Tdt oq

with H=H;;(t; q, p) is called simply a solution of #. The t-function related
to (g, p) is defined by:

_d
(0'4) H= "Jt— log T,

where H is the Hamiltonian function:

H = H(1) = H(z; 9(1), p(1).
In a similar manner to [9], we have the

Proposition 0.1. . The t-function of # is holomorphic on the universal cover-
ing surface B of C-{0}. All of zeros of 1(¢) is simple.

The proof of this proposition is given in §3.2.
Let V be the two dimensional complex vector space. We regard V as the
space of parameters of the Painlevé system through

(0.5) UI = 00, Uz = 000 .

The Painlevé system at v={(vy, v,) is written as s(v). The Painlevé system
H# is provided with the structure of a fiber space over the base space V such that
the fiber on a point v of V is the Painlevé system s#(v) at V. Let ¢ be a canonical
transformation of . The restriction o, of o to s#(v) is denoted also by ¢ in
the following of this paper. If there exists a transformation g of V such that

c: # (V) —> H#(g(V)

for any v, then we write c=g,. We say g, is associated with g. In Section 2,
we will consider the group G, isomorphic to the affine Weyl group of the root
system of the type B, and show that there exists for any g of G the canonical
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transformation g* associated with g. The homomorphism:
p: G— G* ’

thus obtained is called, for short, the nonlinear representation of G on the Painlevé
system, where G, is the group generated by g*’s.

Let H(v)=H(t; v) be a Hamiltonian function related to a solution (g, p)=
(q(v), p(v)) of #(v), We will define the auxiliary Hamiltonian functions:

(0.6) h=tH+%v%—~é—t

and show it satisfies the differential equation:

2 2 h 2
©.7) t%) +v1u2%—{4 %) —1}(h—t%¢—)—%(v%+v§)=0.

There is the one-to-one correspondence I' from a particular solution h=h(v) of
(0.7) to a solution (g, p) of s#(v): see Proposition 1.8. 1In particular, we have

dh

(0.8), ar P~ 1
d2
0.8), (S8 = = 2ap(—1) + v,p — L (0 40,).

We can compute the explicit forms of various birational canonical transformations
by means of the correspondence I'.
The differential equation (0.7) admits of a singular solution, which is charac-
terized by: ’
d?h dp

az ~dr = O

It follows from (0.8), that
p=0 or p=1,
corresponding to respectively
vy +0v,=0 or vy —v,=0.

These two lines of V are walls of the Weyl chamber of the Weyl group W of the
type B,, and connected each other through the transformation:

0.9) $2(v) = (v, —v,).

We will see in Proposition 1.6 the canonical transformation (s,), associated with
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(0.9) is given by the replacement:

q——q p—1—p,
H—1—-H, t—> —t.

Therefore we consider only the case v; +v,=0. By means of the Hamiltonian
system (0.3), g satisfies the Riccati equation:

(0.10) A4 = — g2~ 0hg + 1 (O=vy),

which can be linearized by:

- _1 a3
0.11) g = 2%+t77.
We obtain in fact:
dz lﬁ_ﬂL %y]_
(0.12) ety la t+(Z_ 3=0,

hence

3= Zv(2\/:7), v=~0,.

Here Z,(r) is the cylinder function, that is, a solution of the linear equation:

2 2
(0.13) 43+ LB (1= =0
the Bessel function J,(r), the Hankel functions H{(+) and so on.

A solution of the Painlevé system 5#, of the form (0.11)7(0.12), is called a
classical solution of #. A birational canonical transformation of s# can be
extended even in the case when the auxiliary function is reduced to a linear function
of ¢, namely, a singular solution of (0.7). We will show in Section 4 that the
Painlevé system .##(v) has a classical solution if

U1 * Uy = 2m5

m being integers. Consider the contiguity relations of the cylinder function:

az, + v 1Z,,

(0.14), Zy ()= — dr

dz, + v iZ,.

(0.14), Z, 4(r)= ar

It is known ([12]) that the functions:
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20 =rexw(%12) 20 €0,

satisfy the equation

d \ 7 — Zv—1(’")zv+1(”)
0.15) (r4) 102 2,00 = Lo ).
We gain thus the sequence of solutions of &7, of the form (0.10), connected to
the Toda equation (0.15).

A canonical transformation g, associated with g of the group G, yields in a
natural manner the correspondence between the two t-functions, 7(v) and (g(¥)).
We will write it also as ©(g(v))=g.t(v). Given a 7-function 7, we say that a
function 7; is equivalent to 7, if

d d
ar logz, — —d—t—log‘z:
is a rational function of ¢; 7 is called also a z-function. Let T=1(v) be a 7-function
of #(v). Starting from t, we obtain the sequence of r-functions:

(0.16) gy = {1, s meZ}.
such that:
To =17, T+t = g*rm'

Note (0.16) is determined uniquely by 74, up to multiplicative constants of 7,
We call (0.16) the t-sequence with respect to g. By replacing 7,, by the equivalent
one, 19, in the suitable manner, we will show, for the certain parallel transformation
¢ of V, the t-sequence

TO(6) = {tp; me 3}

is subject to the Toda equation:

0.17)  Slogtf = TmmiTmr
G

d
where 6=t ar-

In Section 1 we define at first the Painlevé system 5#;;, associated with the
differential equation P;;;.. 'We show that the auxiliary Hamiltonian function (0.6)
satisfies the nonlinear differential equation (0.7) and that there exists the one-
to-one correspondence from a particular solution of (0.7) to a solution of ;.
Moreover some birational canonical transformations are derived from the sym-
metry of the Hamiltonian 5#;;-.
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The transformation group of ;- is the subject of the second section. We
construct the nonlinear representation of the affine Weyl group of the type B, on
1, as birational canonical transformations (Theorem 1). We give the
explicit forms of the various canonical transformations.

In Section 3 we study the z-function of 5#;;,.. We show firstly the t-function
of sy is holomorphic on the universal covering surface of C~{0} (see
Proposition 0.1). The Painlevé transcendental function g, that is, a solution of
the equation P,;;., is written as the logarithmic derivative of the quotient of t-
functions (Proposition 3.2). Moreover we obtain the Toda equation (0.17) for
the t-sequence with respect to the parallel transformation: #(v)=v+(l, 1)
(Theorem 2).

The final section is devoted to the studies on classical solutions. We consider
the canonical transformations also in the degenerate case.

§1. Painlevé system

1.1. Painlevé equation Py, ;.

In this paragraph we give a summary of results on the differential equation
P,;; or P;;;, which we need later. First of all, it is easy to see:

Proposition 1.1. A4 transformation of the form:

(i) t——t,

(i) g——gq,

(i) q—tq
yields in Pyye only the change of constants:

(i) B-—-8,

(i) a-—a, f—>—p,

(lll) a— —ﬁ, ﬂ_’ -, Y —5a o— =
respectively.

Here we mean by zr>¢(z) that one puts z=¢(z') and then rewrites z’ as z.
Moreover we have the

Proposition 1.2. Py, remains invariant under the replacement:
q—Aq, tept,
except for the change of the parameters:
o—s Ao, B—— pi71B, y—— A%y, &— u2A72,
A, u being constants.

Therefore, assuming yd %0, we can put, for example,
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(L.1) y=4, §=—4,

without loss of generality. The Painlevé equations P, and P;,; depend
essentially on the two parameters a, f. As we have mentioned in the second
part of this series of papers, it is known that

Proposition 1.3 ([4], 10]). In the case y0x0, Py is equivalent to the
fifth equation P, with §=0.

When y6=0, we have:

Proposition 1.4 ([10]). The equation P, with y=38=0 is transformed into
the equation with a==0, y6x0.

Proposition 1.5. If f=0=0, then P, can be solved by quadratures.

Therefore, P,;;. is soluble also in the case =y =0, by means of the transformation
(iii) of Proposition 1.1. We give below a sketch of a proof of Proposition 1.5.
In fact, the equation P, with f=0=0:

dq _L<dq>2_i dg_ . q*>
(1.2) dtz g \dt ¢ dr T g )

possesses the integral:

2
(1.3) (; %.) —%q‘*——%qa‘:/lzqz

A denoting an integration constant. It follows that, if 10, then

3 2)2F
0 QTN (8P Py & s
F = put?, 8=%\/y—}{,

and if A=0, then
20

1.4y q= I—‘Tw’
Z—OCF —7
F=logt+ u,

where u is an arbitrary constant.

1.2. Painlevé system 57,
Let s#=(q, p, H, ) be the Painlevé system 5, associated with the
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equation P=P;;;.. Consider the canonical transformation of +#:

(1.5) v, : (q, p, H, ) — (A7q, Ap, pH, p~'t),

A, u being non zero constants. Remark that, if A=—1 (resp. Au=—1), then
W(4, p) yields the alternation of the sign of #,, (resp.ny). In the following of
this paper, we normalize as

Mo =1 =1,

since by the assumption #¢1,, 0. Namely the Hamiltonian of & is:

(1.6) H(t; q, p) = —H ?p*—{g*+bog—ti p+ %(90 +9w)q]-

The Hamiltonian system of the differential equation:

(17) 199 = 22p — g2 — 00q + 1,
dp _ 2 1
(L7, t% = —2qp*>+ (2qg+0,)p — 7(004“900)

is equivalent to P, with
1.8) o= —40,, f=400+1), y=4, 6= —4
Example 1.1. The Hamiltonian of (1.2) is written as:
H'(t; 4, p) = %[quz—qu + —;— Bwq]

For the solution (1.4), we have

__1_ i'ﬁeoo 1 — i
p=l GrogF+ 2= [ L F ey,

and for (1.4)’
p= —%F+—;‘—, F =logt + p.
In any case, the Hamiltonian system has the first integral:
tH"(t; q, p) = 71—12-

1.3. Symmetry of the Hamiltonian 5#;,,

The transformations (i), (ii), (iii) of Proposition 1.1 are extended to the
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canonical transformations of the Painlevé system o# =.2#,;. To verify this fact,
consider the following change of constants of the Hamiltonian:

(i) s§,:0,-—-0,,

(i') s:00—>—0,—-2,

Gii) x:0,—0,—1,80,-0,+1.
We prove:

Proposition 1.6. There exists the canonical transformation of #, repre-
senting each transformation of (i), (ii), (ii).

In fact, consider the canonical transformation

1.9 n.# —H# =(q,p,H, I
such that
(1.10) p=p-1, H=H-—1.

Also the system 2’ is associated with P and we have:
A= L[ 25— (- 2+ 80— 135 + 5 (—60+ 0.)q |.

Then the canonical transformation ¥(—1, —1)-7n’ keeps H invariant except for
the change s, of constants; we denote it by (s,): .

(1) Ge=y(-1, -7
Set in the Hamiltonian (1.6):

(1.11) p=p+Jotl

t
? ’
we obtain:

W12 =[5~ (@~ o+ Da+15 + 5 (~0-2+0.)q |.
It is easy to verify the transformation:
n.# — H# =(q,p, H, 1)

is canonical and H remains invariant under the transformation (1, —1)-=#
except for the change s. Consequently we have:

(i) se =91, -1)- 7.

The transformation associated with x is given by:

t 141
(1.13) 4= P=7 {7 (00)g;— q%pl} ;

H=H ~-Lqp +L02-63).
t 4t
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We obtain in fact,

P

H, =L aipi~ a1+ 0= Da1 =115 + 5 (G0 +0)a, |-
We write (1.13) also in the form:
(lll) X*: (‘1, D, Ha t)_’(QD D> Hl’ t);

g, = P = —H% (90+0w)q—q2p},

L
q 2

Hy = H— 1 {ap= 4 Oo+0)(00+2-6.)] .

Remark 1.1. We have for (i), (ii), (iii) the relation:
X5, =§-X,
and then the relation of the canonical transformations:
Xa(52)s = S4Xg

1.4. Auxiliary Hamiltonian function

315

Let H=H(f) be a Hamiltonian function related to a solution (g, p)=(q(?),

p(t) of # =5y . We define by:

(1.14) h=tH+ 5603 — 21,

the auxiliary Hamiltonian function h=h(f) of H. Since

dh 1

dr 27

by virtue of (1.6), we obtain from (1.7),

2 1 d*h _
2(—p +P)Q+90P-7(90+9w) “t'a‘t—f—o-
Hence, we have
2
-0+ do
1.15) = — ! 2
R T Ty T
dt 2/\ dt 2
(1.15), p=2+l.

On the other hand, from (1.6) and (1.15),, it results that:
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dh _ _ 1 z ( _1 )
h—t-ﬁ—<qp 7%) g{9p— 5 (o+0) ).
Therefore we arrive at the proposition:

Proposition 1.7. h satisfies the diflerential equation:
2 d dh \?
R ¢ [CE DR T IRD

Inversely, for a solution h=h(t) of E;;;., we define a pair (g, p) of functions by
(1.15). ‘Then (g, p) is actually a solution of the system (1.7), provided that

(1.16) LN

Consequently, we obtain the
Proposition 1.8. There exists the one-to-one correspondence:
(1.17) I'(h) =(q, p)
from a particular solution of E;pp- to a solution of 5.
The equation E;;;. admits of a singular solution of the form:
(1.18) h=AM+p,
0,07 — (432 — ) — %(ogwgo) = 0.

1.5. Painlevé system ¢,

In this paragraph we state the results on the Painlevé system 5#%,,. derived
immediately from Propositions 1.7 and 1.8 by the canonical transformation ¢
of the form (0.2). Let H=H({) be a Hamiltonian function of 5#,; related to a
solution (g, p)=(q(t), p(¥)) of #;;;. We have:

Proposition 1.9. The auxiliary Hamiltonian function:
h=tH + — (Q0+1)?

satisfies the equation:

Er [( dzh) (h %’)f} ~O96(00—0w+1)2<h—r%]t1—> —0,

e (48 1601 88) e(00+ 30 4)
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A particular solution of E;; is connected to a solution (g, p) as follows:

A+<0o + %)JZ

q=4 B ,
p=_B;
8/A4°
_ . dh
A=nh t—d?,
_ . d*h dh
B= -ty + -4

Moreover we can verify:

Proposition 1.10. The function h defined by:
h =tH + qp,

is a solution of the equation

d2h _ dh )2 —4{00‘1_7’ 2(00+0w)z}2

e T dr dt ,
+ —‘%(% —8t>(2t % —4E> —o.

Inversely (q, p) is given by
- _
t P 00+ 1) A 4 80,40,
dt dt
1=~ dh

an _g

dt

2

=1

_1d
P="¢ ar-

We do not enter into details of verification of these propositions.

§2. Transformation group of %,

2.1. Root system
Let e,, e, be the canonical basis of the two dimensional complex vector
space V; we write a vector of V as v=ve, +v,e,=(vy, v;). Recall v=(v,, v,)

is regarded as parameters of the Painlevé system by means of
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00-':1)1, 6(73 =Uz-

Consider in V the vectors:

Let R=Ry;; be the root system of the type B,. Then a; (i=1, 2) are the funda-
mental roots of R and a is the highest root ([1]). Denote by s; the reflection of
V with respect to the line:

(a;]v) =0,
and by s, the reflection with respect to
@w=-1

where (v| V') is the symmetric bilinear form in V such that (e;|e;)=(e;|e)=J;;.
We have:

511 Vi—> (v, v4),

Syt Vi (vy, —v,),

So: Vi— (—1—v,, —1—0y).
Let G be the group generated by sy, s, and s, and Wthe group generated by s, and

s,. Then G is isomorphic to the affine Weyl group W, (R) and W is the Weyl
group W(R). Now we state the theorem:

Theorem 1. There exists the nonlinear representation of G on the Painlevé
system #, as the group Gy of birational canonical transformations.

To establish this theorem, it suffices to determine the birational canonical
transformations (s;)4, (So)s. . We will do this in the rest of this section.

2.2. Weyl group W
We construct (s;), (i=1, 2). The differential equation E;;:

<t ‘szt’zl)z + uluz% -1 op+od- {4(%)2 —1}<h—tidfll> —0

is invariant under the change s; of parameters. Hence we obtain (s;)* from the
schema:

E(v) = E(s5,(v))
SN

(g(m), p(M) -+ (q(51(V)), P(s:(V)),
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where E(v) denotes the equation E;;. with the parameters v. In fact, if h; is a
solution of E(s;(v)), then (g,, p,) given by:

d*h; h 41
2.1 __ltap Tty T
(-)1 q: = — (dhl_L> +L>
dt 2 2
_dhy 1
2.1, = + 5

is a solution of the Painlevé system s#(s,(v))=(q, p1, Hy, 1) at s;(v) (see (1.15)).
By putting

h=h,,
we obtain from (1.15) and (2.1)
7 (vy—vy)
(22)1 q, =4 + p—1 s P1=D
(2.2)2 H1 H — A< (UZ U%) .

1t is clear (2.2);, (2.2), define a canonical transformation of the Painlevé system.
We have thus (s,),, while the transformation (s,), has been constructed already
in Proposition 1.6 (the case (i)).

Remark 2.1. Tt is not difficult to realize the transformation s, as the trans-
formation of the Painlevé equation Py. In fact, the change of the variable:

t
2.3 — =t
(2.3) q Z

keeps P, invariant except for the change of constants:
50:00—9—000_1, 000_—>—00“'1.
Therefore we will have (s,), by extending (2.3) to a canonical transformation of +#.

2.3. Involution of E

The differential equation E=E. is invariant under the involution of V:
yiv— — V.
By using this fact, we obtain the transformation:

Vy: H(V) — F(~V).
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In fact, since, by (1.15),

_ 1 ., 1
h=1tH+ 4 Vi 2t
_ 1o 1, _
—tH_+4( vy) 7t h_,
d2h dh 1
L R R
1- 2(4E_LY(dh, Ly
dt 2 dt 2
_dh |1 '
P-="g ty
it follows that:
1
BiP— (v1+v,)
1-=4 pp—1)
p-=p,
H_ =H.

Here we write s#(—v)=(q_, p_, H_, 1).

2.4. Auxiliary functions

Let h=h(v) be a solution of the equation E(v). We define the auxiliary
function g=g(t; v) by

(2.4) g=h++Qo+1) - X,
(2.5) X =q(p-1).
We prove the proposition:

Proposition 2.1. The function g satisfies the equation:

d?g
dt?

26 ( >2+ (vl+1)(vz+l)%—%(vl+l)2——i—(vz+l)2

(T 8 -0

Inversely, for a particular solution g of (2.6), the solution (q, p)=(q(v), p(¥)) of
H(v) is given as follows:
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48 @) % L)
(2.7, - X = dg ,
2(dl + )
(4 - 1)
@7, ¢=——4 2/
X - 7(”1—1’2)
Proof. We obtain from (1.7):
t‘il—)t(~—qX+ L (01—v)q + t(p—1),
and then
;a8 _ oy L, _ 1
(2.8) dt =qX 3 (v;—vy)q + 5 z.

On the other hand, since, by (2.4)

_ 98 _(xy_ L : _
(2.9) g—1t —<X 5 (v1+1)> +t(p—-1),
we have

d?g dg B dg | 1
(2.10) g (28 + L)@ +D% + L+,

by differentiating (2.9) with respect to t. From (2.10) and (2.8) it results (2.7),
and (2.7),. The differential equation (2.6) follows immediately from (2.7), (2.8).

Remark 2.2. The function X defined by (2.5) is written also in the following
form:

(dh _dh
dt? N

2(%’“) |

where h is the auxiliary Hamiltonian function (1.14).

(2.11) X=-—

Besides the function g, we define by:

(2.12) g=h+ —y,

1 1
2ty
(2.13) Y=gp

the other auxiliary function g=g(¢;v). Then we can verify in a manner similar
to Proposition 2.1 the
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Proposition 2.2. g is a solution of the differential equation

2.14) (+ 98 )2 + (0, +1) (0,—1) ing _ %((vl+1)2 + (0,—1)?)

di?
) ) )=

and is connected to a solution of #(v) as follows:

- _
s _raE e E - e
(- )1 - 2(@.__1_) ’
2
dg | 1
_ (E )
(2.15), g=—- """

Y— —;« (v,+0,)

We omit the proof.
Remark 2.3. We obtain from (1.15):

ﬂ_u _dﬂ-{.—iv
(2.16) y—_ _ d? Vidr T2

(A1)

compare it with (2.11) and (2.15).

2.5. Parallel transformation ¢
Set:

(2.17) C=y-55-5; : v—>(v;+1,v,+1).

If we denote by h(v) a particular solution of the differential equation E(v), the
auxiliary function g, defined by (2.4), is a solution of E(4(v)):

(2.18) g = h(4(v)).

Therefore we obtain the birational canonical transformation ¢, associated with £
by the use of the following diagram:

E(v) — E(4(v))

r| |r

by H (V) —> H(L(V)).
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In fact, we have from (2.11) and (2.18)

2
(28— +1) % 1 Ly

(%) |

where we write S#(4(V)=(q., py, Hy, 8), X +q.(py—1). It follows from
(2.7), that:

X+='—

(2.19), Xyt Xmog+ 1o —ofoeta
2(E+3)
dt
while we obtain:
dg 1 _
(2.19), a T =P

=4 x-L -0 |+ 1,

by means of (1.15), and (2.8). The explicit forms of £, and ¢3! are given by
(2.19)y,,. In particular, (2.18) implies the relation:

(2.20) H,=H-L1x

Remark 2.4. We have, besides (2.17), the relations:
b =8,-8{:X8; = $,:51-§X,

with respect to the transformations s, x, considered in §1.3. (2.19), , follow also
from the expressions:

Ly = (52)4(5 )5 X(52)x = (52)4(S )54 X -
Consider the parallel transformation:
d=s;-x:v—sv+(, —1).

The canonical transformation 7, associated with 7 is given by Z,=(s,)4 - X4 Or
by Proposition 2.2. In fact, by setting #(7(v)=Z.#(v)=(§, p, H, t) and
Y =G, we obtain from Proposition 2.2:

2.21) g = h(4(V)),

and then, by (2.15), , and (2.16),
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Y+ 7_vl+1—%1i§_”2+12 ,
dr 2
ag _ 1 _ 5 _
dt 2~ 7? 1

Moreover we have
(2.22) H,=H--1y
by means of (2.21) and (2.12).

2.6. Realization of s, as the the canonical transformation

We compute the birational canonical transformation (sy), by using the
relation

SO =X‘S'S2.

In fact, for s#(s¢(v))=(q¢, o, Ho, t), we have

t
(2.23), qo = — ?,

(223, Po=L|X =L w—0, D)+ 1,

NI»Q

and moreover
XO + X = %(01—02%-2),

where X =q(p—1), Xy=q(po—1); refer to (2.3). (sq)4 is given by (2.23) together
with:

HO = H_ % + %(Ul—vz)(vl‘l‘vz"‘z).

The proof of Theorem 1 is completed.
§3. Toda equation and 7-functions

3.1. z-function

Let H(v) be a Hamiltonian function of the Painlevé system s#(v) at v. The
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7-function 7=1(v) related to H(v) is by definition:

_ d
(3.1) H = Wlog T.

The canonical transformation

gt H) — H(9(V))
extends to the mapping from the t-functions 7(v) to 1(g(v)), uniquely up to multi-
plicative constants. We will write it also as:
gx7(vV) = 1(g(v)).

For example, the auxiliary function h(v) is invariant with respect to s,, so that
we have

Us:(M) = (s0x7(¥) = 17 7(¥),

a=L@i-p;

1
4
see §2.2.

Example 3.1. Consider the Hamiltonian H"(¢; g, p) given in Example 1.1.
Since a Hamiltonian function is written in the form:

52
H="_
4t
the t-function related to it is:
T = const. t1/44%,

3.2. Proof of Proposition 0.1

We verify now the result stated in Proposition 0.1; we obtain the

Proposition 3.1. If a Hamiltonian function H(t) has a pole at t=t, (t,%0
), it can be written as

B

(3.2) H() = 7 [1+0(D)],
in a neighbourhood of t=t,, where T'is the local parameter, T=t—t,, the Landau
notation O(T*) denoting a convergent series in T of powers higher than k.

In fact, we gain the following table of local expansions of (q(2), p(¢)):
(i) qH)= T(1~ O 1, 0(T2)>.
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p(?): holomorphic,

H(?): holomorphic,

0o+2
2t

(ii)

T+ O(T2)>,
p(H) = — t,T"(1+0(T?),
H(t): of the form (3.2),
i) q()=1,T- <1+ O +1

p(t)= ﬁgi‘)i T(1 +0<T)>

H(t): holomorphlc,
) a0=-11"(1-s=L rr0(Ty)

pH=1- 002 b= 110(T2),

H(®): holomorphlc
We do not enter into details of computation.

T+ 0(T2)>

3.3. Painlevé transcendental function and z-function
Consider the parallel transformations of V:
b:v—sv+(1, 1),
J:v—s v+ (1, =1).

Let 7(v) be the t-function related to a solution (g, p)=(q(v), p(v)) of # (v).
We obtain from (2.20) and (3.1):

- d T( ) = q(p—

while from (2.22)

d log 7(v) Y=gqp.

34 Y= B

From (3.3) and (3.4) it results that:
Proposition 3.2. The Painlevé transcendental function q(v) is written as

(L) _ w(t;v,+1, v,+1)
G35 9= t“ 87w " dt log oL o=l *

3.4. Toda equation

For an arbitrary fixed v of V and for me Z, set:

Yo=YV, V,= ém(v),
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Vo=V, V,= 2™V,
that is,
Vo= (0 +m, v,4+m), ¥,=@,+m, v,—m).
Moreover we write as:
Ho=Ho=H()
Hom = L5306 = (qms P> Hps 1),
K= B2H o= (G P oo 7).

Let 7, (resp. %,) be the t-function of &#,, (resp. #,,) such that .1, =1, (resp.
3% m=Tn+1) and define the 7-sequence

(3.6) IO ={;, me Z},
(resp. TU4)={%; me Z}),
by

d 0o ;. d 1 2
3.7 twlogtm—t 77 logrm-{-jm’

(resp~t%logf?,,=t~:li—t10gfm+ —é—mz— t).

We prove:

Theorem 2. I°(¢) and TO(7) satisfy the Toda equation
2 0 Tom—1To+s
(3.8) 02logtl = (coys

d

where 6=t7i?'

3.5. Proof of Theorem 2
Setting:
Xm = qm(pm_l)’ Ym = 4uPm >
we obtain from (3.3), (3.4):

(3.9) X,=t 4 log T ¥, =1 % jog tn

dt Tmt1 dt Tmtr

On the other hand, if we define the auxiliary functions by:



328

K. OkAMOTO

- 1 2_ L
by = tHy + 5 (0 +m+ 12— 21,

i = tHy, + 4 0y +m+1)2—

2"
it follows from (2.7),, (2.11) that
2
t Pl hmy @ L, 4
di dt 2
2@+ ]
dt 2
2
t d*hy, + (v, +m) dhy, ~L(v2+m)
_ de? dt 2
(310)2 Xm-l - dh )
(]
dt 2
and from (2.15),, (2.16)
gy ~
(3.11), Y,= —

o 7 +%(u2——m)
(%]

2
t dt 2
(3.11), X1 = dh 1
2( dr 7>

2

Therefore, since by (3.10)

dh,, 1 )
s (gt ),
we obtain from (3.9)

dh, | 1

Tm— Tm
5 =elm) Tnsifme
and then by the definition of the z-function,

d d
(3.12) artar

log 7,, = c(m) M
Moreover since by (3.11)

m

dh
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it follows from the definition that

d . d

(3.13) artar

log%, — 1= c(m)—'lfﬂ.

m

Here ¢(m) and &(m) denote nonzero constants. Theorem 2 is an immediate
consequence of (3.12) and (3.13).

§4. Cylinder function and Painlevé transcendental function

4.1. Classical solution

A solution of the Painlevé system is said classical if it is written in terms
of the classical transcendental functions. As we have mentioned in Introduction,
;- has a solution written by the use of the cylinder function:

d 1 d3 vEN,
4.1) G+l (1o % )s=o.

In fact, if v, +v,=0, then s#(v) possesses a solution of the form

(42) 199 = — g2~ g +1, p=0,

for which we have:
(v) = 1.

It follows from (3.3) that
_, d
q=1--logry,

7y = 1(4(V)),

and 7, is a solution of the equation:

(4.3) ‘file +(146,) ‘“1 — 1, =0

Since the auxiliary function h(4(v)) is not a singular solution of E(4(v)), we can
apply the birational canonical transformation £, sucecssively to (4.2) and then
obtain the semi-sequence of t-functions:

T4(0) = {t; m20}.

If we determine 73 by (3.7), then 1§=1, 1§=,/t7, and
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T, ot ,..., om g

4.4) 19 = det| Jr, 6%t,..., o™
5""11-, 5”‘1,:::, 52."‘"‘21

with 6 =t —6% , 7=19 (Darboux’s formula: see [2], [11]).

4.2. Transformation /! in the degenerate case

First we compute transformation ¢3! on the solution (4.2); note the auxiliary
function h related to it is linear in . By setting #°(4~'(v)=(q_, p_, H_, 1),
we obtain from (2.19):

X+X—:vla

q—(X——vl) = t(p_l)a

where X=q(p—1), X_=q_(p_—1). Taking the limit: p—0 we arrive at the
expression:

(4.5) q_=—%, X_=gq+uv,.

It coincides exactly with the canonical transformation (sq), (see (2.23)). In fact,
in the case v; +v,=0, we have

5o(¥) = £73(v).

The pair of functions (¢_, p_) defined by (4.5) is actually a solution of #(£~1(v)).
The t-function t-related to it is given by:

d
q +'U1 = twlogl’_,

by means of (3.3) and (4.5). Thus we obtain the
Proposition 4.1. There exists the semi-sequence
T2(2) = {zp; m=0}

such that 1§=1, 1%=/tt_ and 12, (m22) are given by the Darboux’s formula
(4.4).

4.3. Sequence of the cylinder functions

Consider the transformation 7 (see §3.3). If v is on the line:

(4.6) vy + 0, =0,
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then so is the point 7(v). Therefore the Painlevé system o, = 7*# 4= > P>
H,, ©) has a solution of the form:

@) (4= — g — @ Ama+1 p=0.

For a solution g of the Riccati equation (4.7), set:

~r t s
(4.8) 7= rorm PO

It is easy to verify (§’, p’) defines a solution of #,,_,. Hence the restriction of
the canonical transformation 7, to (4.7) is given by (4.8).
The t-function of 47, related to (§,,, P,,) of the form (4.7) is:

~

To=1.
If we write as
fm = W40 = (£ (V)

then it follows from (3.5) that f,, satisfies

(4.9) df +(1+u1+m) L_i=o.

On the other hand, we can verify the

Proposition 4.2. For the set of solutions of (4.9): {{,,; me 3}, we have the
contiguity relations:

(4.10), s = Ll
(4.10), e = 0 Ao (0,

The relations (4.10), , imply the birational canonical transformation 7,
of the Painlevé system. In fact, substituting

. . d _, d
q = d[ log fms =1 Yh—IOg fm—l s

into (4.8), we have the relation:

( ey +(v1+m)fm) di;'t“ = Tufm-1-

Moreover if we define {,, by:
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?m = (— t)e(m)e—tfm ’

e(m) = - (v, +m),

then {f,; me Z} satisfies the Toda equation:

@.11) 52 log, = Im=tlmr

in

Comparing this with (0.15), we have

fm(t) = t‘e'(m)Zv+m(2\/:7)4—e(m),
F) = 2,2 —1)dmem,

where e'(m)— —; (v+m).
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