

Report on SDGs Related Activities

Presented by: Chu Ishida, JAXA

WGGI Mexico City, Mexico March9-11, 2020

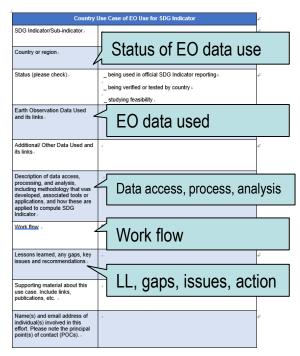
1

Contents

1. Follow-up Survey on EO data use for SDGs by GEO Member countries

2. Demonstration in computation of selected SDG Indicators using existing global/national datasets and tools (QGIS, Trends.Earth)

1. Follow-up Survey on EO data use for SDG Indicators by GEO Member countries



- GEO survey on EO data use for SDGs by Member countries made in 2019 found 25 existing EO data use cases and 21 planned uses.
- A simple template to share country use cases were sent to the survey respondents who kindly indicated willing to share them.
- So far received inputs from New Zealand, Germany, Canada and Colombia. Other interested countries are requested to provide inputs.
- Collected information will be shared through GEO SDG toolkit for SDGs.

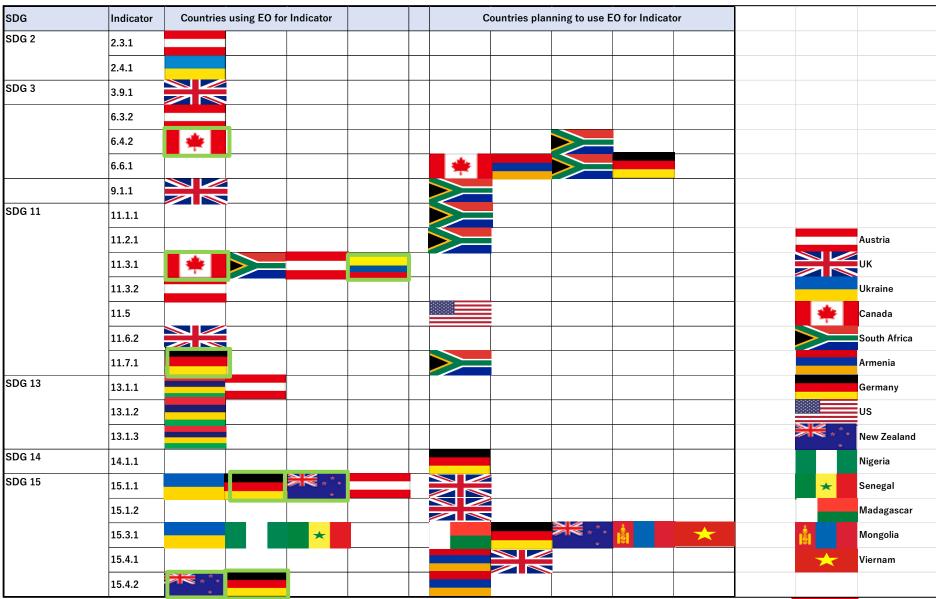
 Template to follow-up

Template to follow-up GEO survey on EO data use for SDG Indicators Report "Responses to the Questionnaire on Uses of Earth Observation Data for SDG analysis and reporting by GEO Member Countries, February 2019"

Overview of the Use of EO for SDG Indicator Reporting (2019 Survey)

Existing and planned country use cases of EO data for SDG Indicator

Left


25 cases of existing country use cases of EO data for SDG Indicators

Right

21 cases of planned country use cases

Follow-up inforeceived

2. SDG Indicator Computation Using Existing Global Datasets and Tools

Objectives

Compute selected SDG Indicators on experimental-basis using existing global datasets and tools (QGIS, Trends.Earth) to identify usable datasets and develop a workflow for assessing applicability of datasets and tools and identify any gaps.

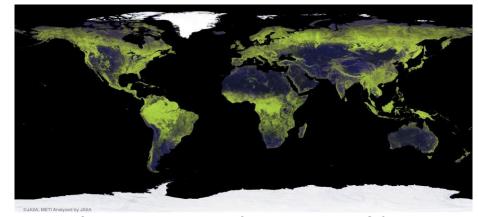
Target SDG Indicators:

The following indicators were computed. Results of 6.6.1, 9.1.1 and 15.4.2 are reported here.

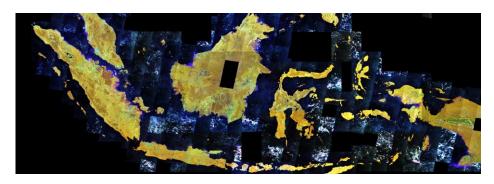
- 6.6.1 Spatial extent of water-related ecosystems*
- 9.1.1 Rural population within 2km distance from all-season roads*
- 11.3.1 Land consumption per population growth*
- 11.7.1 Share of built-up area of cities that is open space for public uses
- 15.1.1 Forest areas as a proportion of total land area
- 15.3.1 Proportion of degraded land per total land*
- 15.4.2 Mountain Green Cover Index

WGGI Task Stream 2 indicators

SDG 6.6.1 Change in Extent of Water-related Ecosystems over Time - Mangroves -


The Global Mangrove Watch – a consistent global dataset (partially) filling the mangrove information gap.

The GMW dataset


- The Global Mangrove Watch* dataset shows the global extent of mangroves for 7 annual epochs in the period 1996 – 2016.
- 2010 baseline map generated from ALOS PALSAR and Landsat imagery
- Other 6 epochs generated from JERS-1, ALOS and ALOS-2 SAR mosaics
- Consistent methodology applied globally

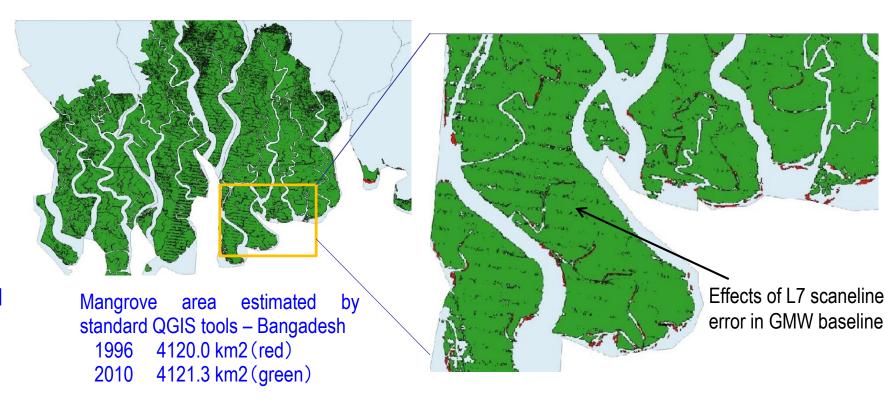
Constraints and limitations

- 25 m pixel spacing a limitation in small or fragmented mangroves
- SAR mosaic generation time lag
- 2010 baseline artefacts due to cloud cover and

GMW input source: L-band SAR global mosaics @ 25 m 1996 (JERS-1), 2007-2010 (ALOS PALSAR), 2015-2016 ALOS-2 PALSAR-)

GMW input source: Optical global mosaic @ 30 m ~2010 (Lansdat 5 & Landsat 7)

^{*} The Global Mangrove Watch (GMW) is an international initiative led by JAXA, Aberystwyth University (U.K.) and soloEO (Japan) in collaboration with NGOs (WI, IWMI, TNC, WCMC, WRI), NASA GSFC and academic institutions. GMW contributes to GEO-Wetlands


SDG 6.6.1 Change in Extent of Water-related Ecosystems over Time — Mangroves

The GMW dataset was designated 2019 by UNEP (SDG6.6.1 co-custodian) as official mangrove dataset for country reporting on Indicator 6.6.1.

GMW data to be released on UNEP SDG www (<u>www.sdg661.app</u>) late March 2020 . The site provides free and open access tools for calculation SDG6.6.1 components at national or sub-national basis.

GMW data can also be downloaded directly and areas calculated by common GIS software.

SDG 6.6.1 Change in Extent of Water-related Ecosystems over Time — Mangroves

Global Mangrove Watch www:

www.globalmangrovewatch.org
www.eorc.jaxa.jp/ALOS/en/kyoto/mangrovewatch.htm

Data access:

UNEP-WCMC: data.unep-wcmc.org/datasets/45 (.shp)

UNEP SDG6.6.1 www: www.sdg661.app

JAXA EORC www: 2020/Q2 (GeoTiff)

Online viewing:

Global Forest Watch www (select "Mangrove forest" layer under "Land Cover" tab)

https://www.globalforestwatch.org/

Tarijung Selor | Station | Cooper Families | Packet Frees | Packe

GMW on GFW www

For technical details see:

Bunting P., Rosenqvist A., Lucas R., Rebelo L-M., Hilarides L., Thomas N., Hardy A., Itoh T., Shimada M. and Finlayson C.M. (2018). The Global Mangrove Watch – a New 2010 Global Baseline of Mangrove Extent. Remote Sensing 10(10): 1669. doi: 10.3390/rs1010669

SDG 6.6.1 Change in Extent of Water-related Ecosystems over Time — Mangroves

Next steps

2020/Q2: Revision of GMW v2.0 to include known missing areas

2021: Add mangrove biomass (AGB) derived from SRTM height (collaboration w. NASA GSFC)

2021: Generation of 2017, 2018 & 2019 GMW maps

2021+: Integration of wider range of EO datasets (L-band SAR, C-band SAR, optical data

@10m) to improve classification accuracy

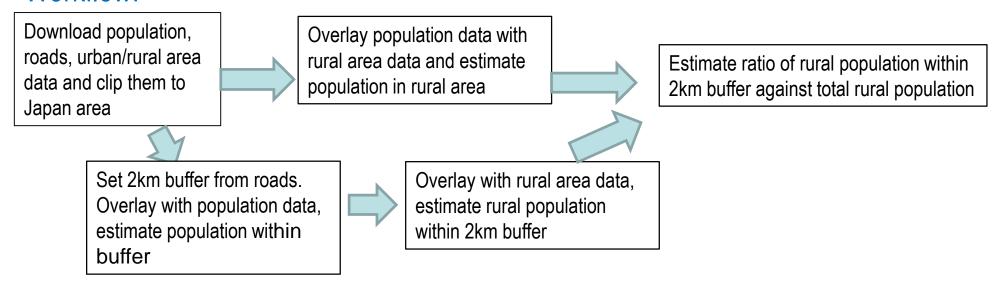
Mangrove area [1000*ha]			1996		2007	2008	2009	201	1.0	2015	201	6	let change .996-2016
Indone	sia		2,842		,716	2,708	2,702	2,68	39	2,667	2,66	58	-6.1%
المردو	P.Nas.	_	1 127		105	<u> 1 105</u>	1 106	1 1	77	1_002	1_0	<u> </u>	2.10/
	-8.1%	Mex	ico		1,05	7 1,02	23 1,0	33	1,022	9.	54	990	971
	2.8%	Aust	tralia	11 2 0 - 12 <u>- 1</u>	1.01	2_ 1.00)3 1.0	04	1.004	1.0	006	983	984
693	3	693	-1	.4%	Nigeria	1	702	70	0	700	70	0	696
495	5	498	-8	.0%	Myann	nar/Burma	542	503	3	510	510	0	501
513	3	513	2	.3%	Malavs	ia	525	51	4	515	51	5	520
74	476		470		471	-1.2%	Papua New	Guinea	477		474	474	4
15	416	i	412	i	411	-1.3%	Bangladesh		416		416	416	4
52	2 352 349			351	-2.7%	India		361		352	352	3.	

GMW estimates for the world's Top-10 mangrove countries

SDG 9.1.1 Rural Population within 2km Distance from All-season Roads

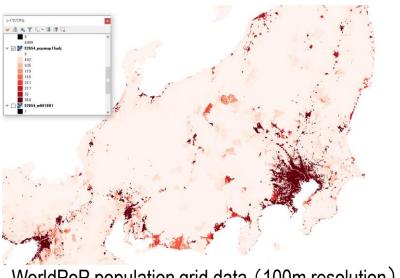
Data:

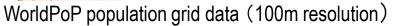
Population: WorldPoP, 100m grid Japan (2015) https://www.worldpop.org/project/categories?id=3

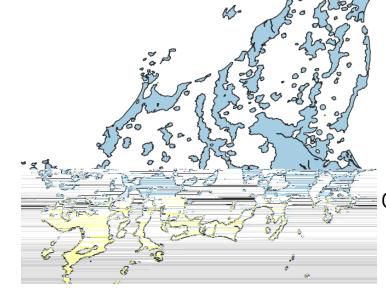

Roads: GRIP (Global Roads Inventory Project) data(2018)

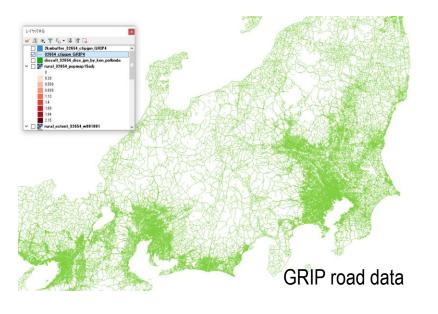
https://datacatalog.worldbank.org/dataset/grip-global-roads-inventory-project-2018

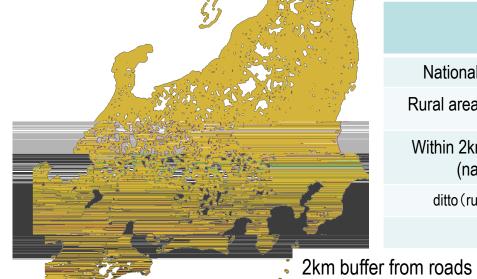
Rural/urban areas: Global Rural-Urban Mapping Project (GRUMP), v1 (2014)


https://sedac.ciesin.columbia.edu/data/collection/grump-v1

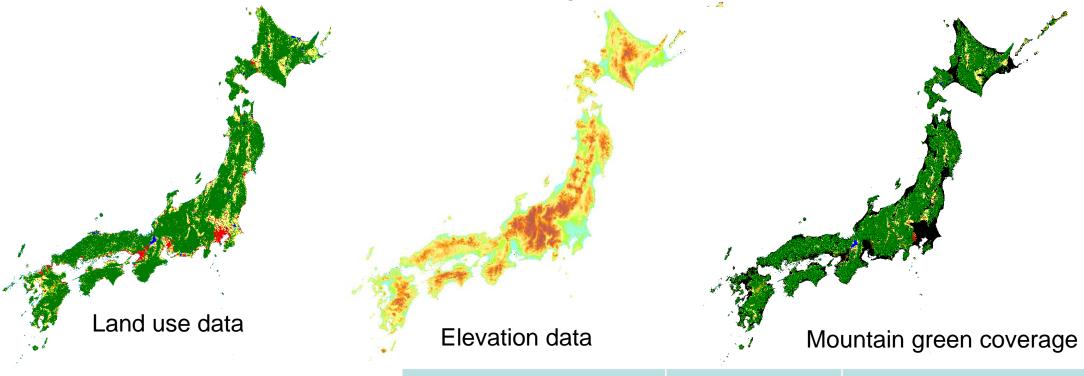

Workflow:




SDG 9.1.1 Rural Population within 2km Distance from All-season Roads



GRUMP urban area (1km)



	Population	Density (per ha)
National population	134,853,493	2.41
Rural area population-A	10,963,884	0.29
Within 2km from roads (national)	134,821,984	2.87
ditto (rural area) -B	10,488,073	0.35
B/A	95.6%	

15.4.2 Mountain Vegetation Cover Index

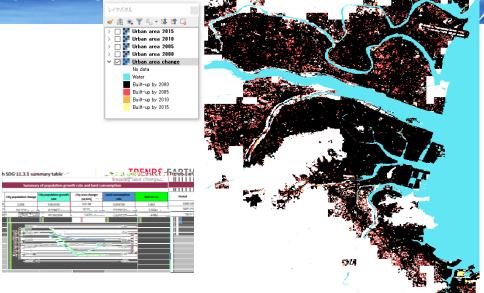
- GSI/Global Map data (1km, land use, elevation and administrative boundary) and ALOS land use map (250m, 2014-2016) and AW3D(300m) were used.
- Mountain area was delineated considering elevation and slope *

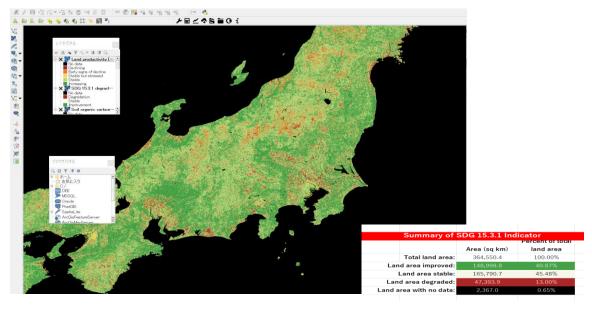
	Mountain area	Mountain Green Coverage
Computation using Global Map	72.2%	96.71%
Computation using ALOS data	45.9%	91.2%
Analysis by FAO	44.9%	97%

^{*300}m elevation range within 700 m radius for 300-1500 m elevation was not considered.

11.3.1 Land Consumption and 15.3.1 Land Degradation

Indicatiors 11.3.1 and 15.3.1 were computed using Trends.Earth tool developed by Conservation Int'l and NASA.


Google Earth Engine is tasked to compute these indicators using Landsat and Sentinel data.



http://trends.earth/docs/en/

13.1.1 Ratio of land consumption against population growth (Tokushima city)

Summary

- SDG Indicators were computed on experimental basis using global/national datasets and tools (QGIS and Trends.Earth).
- Once datasets are selected and a workflow is established, it is rather straight forward to compute the Indicators using existing datasets and tools.
- Datasets need to be selected to fit for the purpose.
- Satellite data is large and complex. It is often challenging to preprocess
 data before analysis. But, it provides great means to make a time-series
 change analysis at different scales in a consistent manner.
- It needs further analysis and consultation with NSOs and line ministries to assess applicability of datasets and tools for SDG Indicator reporting.