Content-Length: 269646 | pFad | http://github.com/0xPr0xy/YOLO-v3-OpenImages-CoreML

40 GitHub - 0xPr0xy/YOLO-v3-OpenImages-CoreML: YOLO v3 on OpenImages dataset in CoreML with Vision implemented for iPhone iOS in Swift
Skip to content

YOLO v3 on OpenImages dataset in CoreML with Vision implemented for iPhone iOS in Swift

Notifications You must be signed in to change notification settings

0xPr0xy/YOLO-v3-OpenImages-CoreML

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 

Repository files navigation

YOLOv3 CoreML

Paper on YOLOv3

Darknet Github

Darknet Website

The converted CoreML model is included in this repository

YOLOv3 on Openimages dataset

Create keras model

  1. Download the openimages.cfg

  2. Download the openimages.weights

  3. Install keras-yolov3

  4. Run the following:

python3 convert.py yolov3-openimages.cfg yolov3-openimages.weights model_data/yolo-openimages.h5

Convert keras model to coreml

  1. Install coremltools:
pip install coremltools
  1. Create and run this file:
import coremltools

coreml_model = coremltools.converters.keras.convert(
    './model_data/yolo-openimages.h5',
    input_names='image',
    image_input_names='image',
    image_scale=1/255.,
    input_name_shape_dict = {'image': [None, 608, 608, 3]})

coreml_model.author = 'Original paper: Joseph Redmon, Ali Farhadi'
coreml_model.license = 'Public Domain'
coreml_model.short_description = "The YOLO network from the paper 'YOLOv3: An Incremental Improvement' (2018)"
coreml_model.input_description['image'] = 'Input image'

print(coreml_model)
coreml_model.save('yolo-openimages.mlmodel')

Now you have a CoreML model!

Implementation info

To implement something usefull with this you'll need the anchors, found in the yolov3 -openimages.cfg

[10.13, 16.30, 33.23, 30.61, 62.45, 59.119, 116.90, 156.198, 373.326]

And the labels for the openimages dataset categories

openimages.labels

TODO

Tasks for converting this code from YOLOv3 COCO dataset usage to OpenImages dataset use include:

  • Convert YOLO v3 OpenImages to CoreML ✅
  • Change anchors in code to reflect the OpenImages dataset anchors ✅
  • Update colors in code to not generate and create 80 for COCO but instead use 1 color instead of 601 colors for OpenImages ✅
  • fix crashes in computeBoundingBoxes 1 due to code not being compatible with the now smaller anchors array, another due to offset calculation

About

YOLO v3 on OpenImages dataset in CoreML with Vision implemented for iPhone iOS in Swift

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages









ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: http://github.com/0xPr0xy/YOLO-v3-OpenImages-CoreML

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy