-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathExternalValidation.py
87 lines (77 loc) · 3.28 KB
/
ExternalValidation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import argparse
from pathlib import Path
import pandas as pd
import torch
from sklearn.metrics import average_precision_score, roc_auc_score
from sklearn.model_selection import train_test_split
import pytorch_lightning as pl
from pytorch_lightning.callbacks import ModelCheckpoint
from model import CNN
from utils.training_utils import get_data, DNADataModule, all_datasets
def parse_arguments():
parser = argparse.ArgumentParser(description="1D CNN External Validation")
parser.add_argument("--filename", type=str, required=True)
parser.add_argument("--threshold", type=str, required=True)
return parser.parse_args()
def load_best_model_params(source, threshold):
metrics_path = Path(f'CNN/results/internal/{source}/{threshold}/1DCNN_PE.csv')
metrics = pd.read_csv(metrics_path)
best_model_id = metrics.groupby('model id')['val_auprc'].mean().idxmax()
return metrics.loc[metrics['model id'] == best_model_id].iloc[0].to_dict()
def train_model(source, threshold, best_model_params, X_train, y_train, X_val, y_val):
model = CNN(hparams=best_model_params)
data_module = DNADataModule(
X_train=X_train,
y_train=y_train,
X_val=X_val,
y_val=y_val,
batch_size=best_model_params["batch_size"],
)
checkpoint_callback = ModelCheckpoint(
monitor="val_auprc",
mode="max",
save_top_k=1,
dirpath=f"CNN/model/external/{source}/{threshold}/",
filename=f"best_model",
)
trainer = pl.Trainer(
max_epochs=100,
gpus=-1 if torch.cuda.is_available() else 0,
callbacks=[checkpoint_callback],
progress_bar_refresh_rate=20,
)
trainer.fit(model, data_module)
return checkpoint_callback.best_model_path
def evaluate_model_on_targets(model, source, threshold):
metrics_summary = []
for target in all_datasets:
if source != target:
X_tar, y_tar = get_data(target, threshold)
with torch.no_grad():
pred_tar = torch.sigmoid(model(X_tar.float()))[:, 1]
tar_auprc = average_precision_score(y_tar.numpy(), pred_tar.numpy())
tar_auroc = roc_auc_score(y_tar.numpy(), pred_tar.numpy())
metrics_summary.append(
{
"target": target,
"test_auprc": tar_auprc,
"test_auroc": tar_auroc,
}
)
return pd.DataFrame(metrics_summary)
def save_metrics(metrics_df, source, threshold):
result_path = Path(f'CNN/results/external/{source}/{threshold}/')
result_path.mkdir(parents=True, exist_ok=True)
metrics_df.to_csv(result_path / '1DCNN_PE.csv')
def main():
args = parse_arguments()
torch.manual_seed(1)
X_src, y_src = get_data(args.filename, args.threshold)
best_model_params = load_best_model_params(args.filename, args.threshold)
X_train, X_val, y_train, y_val = train_test_split(X_src, y_src, test_size=0.2, stratify=y_src)
best_model_path = train_model(args.filename, args.threshold, best_model_params, X_train, y_train, X_val, y_val)
best_model = CNN.load_from_checkpoint(best_model_path)
metrics_df = evaluate_model_on_targets(best_model, args.filename, args.threshold)
save_metrics(metrics_df, args.filename, args.threshold)
if __name__ == "__main__":
main()