Content-Length: 282390 | pFad | http://github.com/Lingkai-Kong/SDE-Net

05 GitHub - Lingkai-Kong/SDE-Net: Code for paper: SDE-Net: Equipping Deep Neural network with Uncertainty Estimates
Skip to content

Code for paper: SDE-Net: Equipping Deep Neural network with Uncertainty Estimates

License

Notifications You must be signed in to change notification settings

Lingkai-Kong/SDE-Net

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

39 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SDE-Net

This repo contains our code for paper:

Lingkai Kong, Jimeng Sun and Chao Zhang, SDE-Net: Equipping Deep Neural Network with Uncertainty Estimates, ICML2020.

[paper] [video]

SDE-Net

Training & Evaluation

MNIST

cd MNIST

Training vanilla ResNet:

python resnet_mnist.py 

Evaluation:

python test_detection.py --pre_trained_net save_resnet_mnist/final_model --network resnet --dataset mnist --out_dataset svhn

Training MC-dropout:

python resnet_droput_mnist.py 

Evaluation:

python test_detection.py --pre_trained_net save_resnet_dropout_mnist/final_model --network mc_dropout --dataset mnist --out_dataset svhn

Training SDE-Net:

python sdenet_mnist.py 

Evaluation:

python test_detection.py --pre_trained_net save_sdenet_mnist/final_model --network sdenet --dataset mnist --out_dataset svhn

SVHN

cd SVHN

Training vanilla ResNet:

python resnet_svhn.py 

Evaluation:

python test_detection.py --pre_trained_net save_resnet_svhn/final_model --network resnet --dataset svhn --out_dataset cifar10

Training MC-dropout:

python resnet_droput_svhn.py 

Evaluation:

python test_detection.py --pre_trained_net save_resnet_dropout_svhn/final_model --network mc_dropout --dataset svhn --out_dataset cifar10

Training SDE-Net:

python sdenet_mnist.py 

Evaluation:

python test_detection.py --pre_trained_net save_sdenet_svhn/final_model --network sdenet --dataset svhn --out_dataset cifar10

YearMSD

cd YearMSD

Download and unzip the dataset from https://archive.ics.uci.edu/ml/machine-learning-databases/00203/

Training MC-dropout:

python DNN_mc.py

Evaluation:

python test_detection_mc.py --pre_trained_net save_mc_msd/final_model

Training SDE-Net:

python SDE_regression.py

Evaluation:

python test_detection_sde.py --pre_trained_net save_sdenet_msd/final_model

TODO: Active Learning

Citation

Please cite the following paper if you find this repo helpful. Thanks!

@inproceedings{kong2020sde,
  title={SDE-Net: Equipping Deep Neural Networks with Uncertainty Estimates},
  author={Kong, Lingkai and Sun, Jimeng and Zhang, Chao},
  booktitle={International Conference on Machine Learning},
  year={2020}
}

About

Code for paper: SDE-Net: Equipping Deep Neural network with Uncertainty Estimates

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages









ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: http://github.com/Lingkai-Kong/SDE-Net

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy