Content-Length: 266271 | pFad | http://github.com/apple32112311/LAB1

A3 GitHub - apple32112311/LAB1: Detect Pneumonia from chest X-ray images
Skip to content

apple32112311/LAB1

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 

Repository files navigation

LAB1

Detect Pneumonia from chest X-ray images import numpy as np import torch import torch.nn as nn from torch.utils.data import DataLoader import torchvision from torchvision import datasets import torchvision.transforms as transforms import os import matplotlib.pyplot as plt from torchvision import models import time from tqdm import tqdm import warnings import copy warnings.simplefilter("ignore") warnings.filterwarnings("ignore", category=DeprecationWarning) warnings.filterwarnings("ignore", category=UserWarning) warnings.filterwarnings("ignore", category=FutureWarning) from torchsummary import summary from sklearn.metrics import accuracy_score,classification_report, f1_score,roc_auc_score, confusion_matrix, ConfusionMatrixDisplay import seaborn as sns

def images_transforms(phase): if phase == 'training': data_transformation =transforms.Compose([ transforms.Resize(IMAGE_SIZE), transforms.RandomEqualize(10), transforms.RandomRotation(degrees=(-15,15)), #transforms.CenterCrop(64), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406],[0.229, 0.224, 0.225]) ]) else: data_transformation=transforms.Compose([ transforms.Resize(IMAGE_SIZE), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406],[0.229, 0.224, 0.225]) ])

return data_transformation

class ResNet152(nn.Module): def init(self,num_class,pretrained_option=True): super(ResNet152,self).init() self.model=models.resnet152(pretrained=pretrained_option)

    #for param in self.model.parameters():
    #    param.requires_grad=False

    num_neurons=self.model.fc.in_features
    self.model.fc=nn.Linear(num_neurons,num_class)

def forward(self,X): out=self.model(X) return out

class ResNet50(nn.Module): def init(self,num_class,pretrained_option=True): super(ResNet50,self).init() self.model=models.resnet50(pretrained=pretrained_option)

    if pretrained_option==True:
        for param in self.model.parameters():
            param.requires_grad=False

    num_neurons=self.model.fc.in_features
    self.model.fc=nn.Linear(num_neurons,num_class)

def forward(self,X): out=self.model(X) return out

def training(model, train_loader, test_loader, Loss, optimizer, epochs, device, num_class, name): model.to(device) best_model_wts = None best_evaluated_acc = 0 train_acc = [] test_acc = [] test_Recall = [] test_Precision = [] test_F1_score = [] epoch_count = [] scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer , gamma = 0.96) for epoch in range(1, epochs+1): with torch.set_grad_enabled(True): model.train() total_loss=0 correct=0 for idx,(data, label) in enumerate(tqdm(train_loader)): optimizer.zero_grad()

            data = data.to(device,dtype=torch.float)
            label = label.to(device,dtype=torch.long)

            predict = model(data)

            loss = Loss(predict, label.squeeze())

            total_loss += loss.item()
            pred = torch.max(predict,1).indices
            correct += pred.eq(label).cpu().sum().item()

            loss.backward()
            optimizer.step()

        total_loss /= len(train_loader.dataset)
        correct = (correct/len(train_loader.dataset))*100.
        print ("Epoch : " , epoch)
        print ("Loss : " , total_loss)
        print ("Correct : " , correct)

    scheduler.step()
    accuracy  , Recall , Precision , F1_score = evaluate(model, device, test_loader,epoch)
    train_acc.append(correct)
    test_acc.append(accuracy)
    test_Recall.append(Recall)
    test_Precision.append(Precision)
    test_F1_score.append(F1_score)
    epoch_count.append(epoch)



    if accuracy > best_evaluated_acc:
        best_evaluated_acc = accuracy
        best_model_wts = copy.deepcopy(model.state_dict())
plt.clf()
plt.title("Train Accuracy")
plt.plot(epoch_count, train_acc)
plt.show()
plt.savefig("Train_Accuracy.png")

plt.clf()
plt.title("Test Accuracy")
plt.plot(epoch_count, test_acc,'r')
plt.show()
plt.savefig("Test_Accuracy.png")

plt.clf()
plt.title("F1 Score")
plt.plot(epoch_count, test_F1_score,'g')
plt.show()
plt.savefig("F1_Score.png")
#save model
torch.save(best_model_wts, name+".pt")
model.load_state_dict(best_model_wts)

return train_acc , test_acc , test_Recall , test_Precision , test_F1_score

def evaluate(model, device, test_loader,epoch): correct=0 TP=0 TN=0 FP=0 FN=0 y_pred = [] y_label = [] with torch.set_grad_enabled(False): model.eval() for idx,(data,label) in enumerate(test_loader): data = data.to(device,dtype=torch.float) label = label.to(device,dtype=torch.long) predict = model(data) pred = torch.max(predict,1).indices #correct += pred.eq(label).cpu().sum().item()

        for j in range(data.size()[0]):
            #print ("{} pred label: {} ,true label:{}" .format(len(pred),pred[j],int(label[j])))
            y_pred.append(int (pred[j]))
            y_label.append(int (label[j]))
            if (int (pred[j]) == int (label[j])):
                correct +=1
            if (int (pred[j]) == 1 and int (label[j]) ==  1):
                TP += 1
            if (int (pred[j]) == 0 and int (label[j]) ==  0):
                TN += 1
            if (int (pred[j]) == 1 and int (label[j]) ==  0):
                FP += 1
            if (int (pred[j]) == 0 and int (label[j]) ==  1):
                FN += 1

    matrix = confusion_matrix(y_label,y_pred)
    disp = ConfusionMatrixDisplay(confusion_matrix=matrix,display_labels=["Normal","Pneumonia"])
    disp.plot()
    plt.xlabel("Predicted")
    plt.ylabel("True")
    plt.show()
    save = ("confusion_",str(epoch),".png")
    plt.savefig("".join(save))
    
    print ("TP : " , TP)
    print ("TN : " , TN)
    print ("FP : " , FP)
    print ("FN : " , FN)

    print ("num_correct :",correct ," / " , len(test_loader.dataset))
    Recall = TP/(TP+FN)
    print ("Recall : " ,  Recall )

    Precision = TP/(TP+FP)
    print ("Preecision : " ,  Precision )

    F1_score = 2 * Precision * Recall / (Precision + Recall)
    print ("F1 - score : " , F1_score)

    correct = (correct/len(test_loader.dataset))*100.
    print ("Accuracy : " , correct ,"%")

return correct , Recall , Precision , F1_score

if name=="main": IMAGE_SIZE=(128,128) batch_size=128 learning_rate = 0.0005 epochs=10 num_classes=2

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print (device)

train_path='archive/chest_xray/train'
test_path='archive/chest_xray/test'
val_path='archive/chest_xray/val'

trainset=datasets.ImageFolder(train_path,transform=images_transforms('train'))
testset=datasets.ImageFolder(test_path,transform=images_transforms('test'))
valset=datasets.ImageFolder(val_path,transform=images_transforms('val'))

train_loader = DataLoader(trainset,batch_size=batch_size,shuffle=True)
test_loader = DataLoader(testset,batch_size=batch_size,shuffle=False)
val_loader = DataLoader(valset,batch_size=batch_size,shuffle=True)

model = ResNet152(2, True)
#model = ResNet50(2, True)
criterion = nn.CrossEntropyLoss()
#optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate,  momentum=0.9)
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
Loss = nn.CrossEntropyLoss()

train_acc , test_acc , test_Recall , test_Precision , test_F1_score  = training(model, train_loader, test_loader, Loss, optimizer,epochs, device, num_classes, 'CNN_chest')

About

Detect Pneumonia from chest X-ray images

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages









ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: http://github.com/apple32112311/LAB1

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy