-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathapp.py
39 lines (34 loc) · 1.28 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import uvicorn
from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import FileResponse
import numpy as np
import pickle
origens = ["*"]
img_path='static/churn.jpg'
file_path='templates/index.html'
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origens=origens,
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
pickle_in = open("churn_model.pkl","rb")
model=pickle.load(pickle_in)
@app.get("/")
async def root():
return FileResponse(file_path)
@app.get("/image")
async def image():
return FileResponse(img_path)
@app.get("/predict")
async def predict(gender_M:float, year:float, membership_category:float,complaint_status:float, feedback:float,age:float,days_since_last_login:float,avg_time_spent:float, avg_transaction_value:float,avg_frequency_login_days:float, points_in_wallet:float):
data=np.array([gender_M, year, membership_category,complaint_status,feedback,age,days_since_last_login,avg_time_spent, avg_transaction_value,avg_frequency_login_days, points_in_wallet]).reshape(1, -1)
prediction = model.predict(data)
return {
'p': int(prediction[0])
}
if __name__ == '__main__':
uvicorn.run(app, host='0.0.0.0', port=8000)