-
Notifications
You must be signed in to change notification settings - Fork 57
/
Copy pathsummarize.py
187 lines (158 loc) · 6.74 KB
/
summarize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import collections
import json
from pprint import pprint
from typing import List, Optional
import numpy as np
from scipy.stats import hmean
from util.globals import *
def main(
dir_name,
runs: Optional[List],
first_n_cases=None,
get_uncompressed=False,
abs_path=False,
): # runs = None -> all runs
summaries = []
uncompressed = []
for run_dir in (RESULTS_DIR / dir_name if not abs_path else dir_name).iterdir():
# Skip if we're not interested
if runs is not None and all(run not in str(run_dir) for run in runs):
continue
# Iterate through all case files
cur_sum = collections.defaultdict(lambda: [])
files = list(run_dir.glob("*case_*.json"))
files.sort(key=lambda x: int(str(x).split("_")[-1].split(".")[0]))
for case_file in files:
try:
with open(case_file, "r") as f:
data = json.load(f)
except json.JSONDecodeError:
print(f"Could not decode {case_file} due to format error; skipping.")
case_id = data["case_id"]
if first_n_cases is not None and case_id >= first_n_cases:
break
if "time" in data:
cur_sum["time"].append(data["time"])
for prefix in ["pre", "post"]:
# Probability metrics for which new should be lower (better) than true
for key in ["rewrite_prompts_probs", "paraphrase_prompts_probs"]:
if prefix not in data or key not in data[prefix]:
continue
sum_key_discrete = f"{prefix}_{key.split('_')[0]}_success"
sum_key_cont = f"{prefix}_{key.split('_')[0]}_diff"
cur_sum[sum_key_discrete].append(
np.mean(
[
x["target_true"] > x["target_new"]
for x in data[prefix][key]
]
)
)
cur_sum[sum_key_cont].append(
np.mean(
[
np.exp(-x["target_new"]) - np.exp(-x["target_true"])
for x in data[prefix][key]
]
)
)
# Probability metrics for which true should be lower (better) than new
sum_key_discrete = f"{prefix}_neighborhood_success"
sum_key_cont = f"{prefix}_neighborhood_diff"
key = "neighborhood_prompts_probs"
if prefix in data and key in data[prefix]:
cur_sum[sum_key_discrete].append(
np.mean(
[
x["target_true"] < x["target_new"]
for x in data[prefix][key]
]
)
)
cur_sum[sum_key_cont].append(
np.mean(
[
np.exp(-x["target_true"]) - np.exp(-x["target_new"])
for x in data[prefix][key]
]
)
)
# Accuracy-based evaluation metrics
for key in ["rewrite", "paraphrase", "neighborhood"]:
sum_key = f"{prefix}_{key}_acc"
key = f"{key}_prompts_correct"
if prefix not in data or key not in data[prefix]:
continue
cur_sum[sum_key].append(np.mean(data[prefix][key]))
# Generation metrics that can be directly averaged
for key in ["ngram_entropy", "reference_score", "essence_score"]:
if prefix in data and key in data[prefix]:
cur_sum[f"{prefix}_{key}"].append(data[prefix][key])
if len(cur_sum) == 0:
continue
num_items = len(cur_sum[next(iter(cur_sum.keys()))])
metadata = {
"run_dir": str(run_dir),
"num_cases": num_items,
}
uncompressed.append(dict(cur_sum, **metadata))
cur_sum = {k: (np.mean(v), np.std(v)) for k, v in cur_sum.items()}
for k, v in cur_sum.items():
if all(exclude not in k for exclude in ["essence_score", "time"]):
# Constant multiplication scales linearly with mean and stddev
cur_sum[k] = tuple(np.around(z * 100, 2) for z in v)
for prefix in ["pre", "post"]:
for k_efficacy, k_generalization, k_specificity in [
(
f"{prefix}_rewrite_success",
f"{prefix}_paraphrase_success",
f"{prefix}_neighborhood_success",
),
# (
# f"{prefix}_rewrite_acc",
# f"{prefix}_paraphrase_acc",
# f"{prefix}_neighborhood_acc",
# ),
]:
if all(k in cur_sum for k in [k_efficacy, k_generalization, k_specificity]):
hmean_list = [
cur_sum[k_efficacy][0],
cur_sum[k_generalization][0],
cur_sum[k_specificity][0],
]
# if f"{prefix}_ngram_entropy" in cur_sum:
# hmean_list.append(2 ** (cur_sum[f"{prefix}_ngram_entropy"][0] / 100))
# if f"{prefix}_reference_score" in cur_sum:
# hmean_list.append(cur_sum[f"{prefix}_reference_score"][0])
cur_sum[f"{prefix}_score"] = (hmean(hmean_list), np.nan)
break
cur_sum.update(metadata)
pprint(cur_sum)
summaries.append(cur_sum)
return uncompressed if get_uncompressed else summaries
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument(
"--dir_name", type=str, help="Name of directory to scan for runs."
)
parser.add_argument(
"--runs",
type=str,
default=None,
help="By default, summarizes each run in <dir_name>. "
"If runs are specified, only evaluates those specific runs.",
)
parser.add_argument(
"--first_n_cases",
type=int,
default=None,
help="Restricts evaluation to first n cases in dataset. "
"Useful for comparing different in-progress runs on the same slice of data.",
)
args = parser.parse_args()
main(
args.dir_name,
None if args.runs is None else args.runs.split(","),
args.first_n_cases,
)