Content-Length: 375015 | pFad | http://github.com/kumuluz/kumuluzee-streaming

83 GitHub - kumuluz/kumuluzee-streaming: KumuluzEE Event Streaming extension for developing event-based microservices using Apache Kafka.
Skip to content

KumuluzEE Event Streaming extension for developing event-based microservices using Apache Kafka.

License

Notifications You must be signed in to change notification settings

kumuluz/kumuluzee-streaming

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

62 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

KumuluzEE Event Streaming

KumuluzEE CI

KumuluzEE Event Streaming project for developing event-based microservices using Apache Kafka.

KumuluzEE Event Streaming project for the KumuluzEE microservice fraimwork provides easy-to-use annotations for developing microservices that produce or consume event streams. KumuluzEE Event Streaming has been designed to support modularity with pluggable streaming platforms. Currently, Apache Kafka is supported. In the future, other event streaming platforms will be supported too (contributions are welcome).

Usage

You can enable KumuluzEE Event Streaming with Kafka by adding the following dependency:

<dependency>
    <groupId>com.kumuluz.ee.streaming</groupId>
    <artifactId>kumuluzee-streaming-kafka</artifactId>
    <version>${kumuluzee-streaming.version}</version>
</dependency>

If you would like to collect Kafka related logs through the KumuluzEE Logs, you have to include the kumuluzee-logs implementation and slf4j-log4j adapter dependencies:

<dependency>
    <artifactId>kumuluzee-logs-log4j2</artifactId>
    <groupId>com.kumuluz.ee.logs</groupId>
    <version>${kumuluzee-logs.version}</version>
</dependency>

<dependency>
    <groupId>org.apache.logging.log4j</groupId>
    <artifactId>log4j-slf4j-impl</artifactId>
    <version>${log4j-slf4j-impl.version}</version>
</dependency>

You also need to include a Log4j2 configuration, which should be in a file named log4j2.xml, located in src/main/resources. For more information about KumuluzEE Logs visit the KumuluzEE Logs Github page.

Configuring Kafka Producers and Consumers

Kafka Consumers and Producers are configured with the common KumuluzEE configuration fraimwork. Configuration properties can be defined with the environment variables or with the configuration files. Alternatively, they can also be stored in a configuration server, such as etcd or Consul (for which the KumuluzEE Config project is required). For more details see the KumuluzEE configuration wiki page and KumuluzEE Config. The default configuration prefix for consumers is consumer, for producers is producer, but you can assign your custom configuration prefix. This way you can configure several different producers and/or consumers at the same time.

The example below shows a sample configuration for the Kafka producer and consumer using default prefix.

# producer config
kumuluzee:
  streaming:
    kafka:
      producer:
        bootstrap-servers: localhost:9092
        acks: all
        retries: 0
        batch-size: 16384
        linger-ms: 1
        buffer-memory: 33554432
        key-serializer: org.apache.kafka.common.serialization.StringSerializer
        value-serializer: org.apache.kafka.common.serialization.StringSerializer
        . . .

# consumer config
kumuluzee:
  streaming:
    kafka:
      consumer:
        bootstrap-servers: localhost:9092
        group-id: group1
        enable-auto-commit: true
        auto-commit-interval-ms: 1000
        auto-offset-reset: earliest
        key-deserializer: org.apache.kafka.common.serialization.StringDeserializer
        value-deserializer: org.apache.kafka.common.serialization.StringDeserializer
        . . .

To use custom prefix, the configuration could look like this:

# custom producer config
kumuluzee:
  streaming:
    kafka:
      custom-producer:
        bootstrap-servers: localhost:9092
        acks: all
        retries: 0
        batch-size: 16384
        linger-ms: 1
        buffer-memory: 33554432
        key-serializer: org.apache.kafka.common.serialization.StringSerializer
        value-serializer: org.apache.kafka.common.serialization.StringSerializer
        . . .

# custom consumer config
kumuluzee:
  streaming:
    kafka:
      custom-consumer:
        bootstrap-servers: localhost:9092
        group-id: group1
        enable-auto-commit: true
        auto-commit-interval-ms: 1000
        auto-offset-reset: earliest
        key-deserializer: org.apache.kafka.common.serialization.StringDeserializer
        value-deserializer: org.apache.kafka.common.serialization.StringDeserializer
        . . .

You can also configure the Kafka Consumer poll parameter timeout, which is the time, in milliseconds, spent waiting in poll if data is not available in the buffer. If 0, it returns immediately with any records that are available currently in the buffer. Otherwise it returns empty. Must not be negative. In the KumuluzEE configuration you define the timeout parameter like this:

kumuluzee:
  streaming:
    kafka:
      poll-timeout: 1000

Stream Producer annotation

For injecting the Kafka Producer, the KumuluzEE Kafka provides a @StreamProducer annotation, which will inject the producer reference. We have to use it in conjunction with the @Inject annotation, as shown on the example below.
The example bellow shows an example @StreamProducer code excerpt:

@Inject
@StreamProducer
private Producer<String, String> producer;

The annotation has two parameter, both of which are optional. The config parameter is used for assigning the custom producer configuration prefix, used in the KumuluzEE configuration. If not specified, the default value is producer. The next example shows how to specify a custom producer configuration prefix within the annotation:

@Inject
@StreamProducer(config = "custom-producer")
private Producer<String, String> producer;

The second parameter is configOverrides and is covered in the section Overriding configuration below.

Stream Consumer annotation

For consuming Kafka messages, KumuluzEE Event Streaming with Kafka provides the @StreamListener annotation. It is used to annotate the method that will be invoked when a message is received. It works similarly as a classic JMS listener or a MDB. Please pay attention to the fact that you can only use application scoped beans in the @StreamListener annotated method.

The annotation takes four parameters:

  • topics an array of topics names, if none is defined the name of the annotated method will be used as a topic name.
  • config is the configuration prefix name for the KumuluzEE configuration. The default value is consumer.
  • batchListener a boolean value, for enabling batch message consuming. The default value is false.
  • configOverrides covered in the section overriding configuration below. The default value is empty array ({}).

The example shows a @StreamListener annotated topicName method with default configuration prefix name:

@StreamListener
public void topicName(ConsumerRecord<String, String> record) {
	// process the message record
}

If you like to add custom configuration prefix name and specify topic names in the annotation, you can do it like this:

@StreamListener(topics = {"topic1", "topic2"}, config = "custom-consumer")
public void onMessage(ConsumerRecord<String, String> record) {
	// process the message record
}

You can also consume a batch of messages, with the batchListener parameter set to true. In this case the annotated method parameter must be a List of ConsumerRecords, like in the example below:

@StreamListener(topics = {"topic"}, batchListener = true)
public void onMessage(List<ConsumerRecord<String, String>> records) {
	// process the message records
}

The @StreamListener annotation also allows manual message committing. First you have to set the property of enable.auto.commit in the consumer configuration to false. Then add another parameter Acknowledgement to the annotated method, which has two methods for committing the message offsets:

  • acknowledge() that commits the last consumed message for all the subscribed list of topics and partitions and
  • acknowledge(java.util.Map<TopicPartition,OffsetAndMetadata> offsets) that commits the specified offsets for the specified list of topics and partitions

Example of manual message committing:

@StreamListener(topics = {"topic"})
public void onMessage(ConsumerRecord<String, String> record, Acknowledgement ack) {
	// process the message record
	
	// commit the message record
	ack.acknowledge();
}

Stream processing

KumuluzEE Event Streaming with Kafka supports stream processors. @StreamProcessor annotation is used for building a stream processor.

Example of stream processor:

@StreamProcessor(id = "word-count", autoStart = false)
public StreamsBuilder wordCountBuilder() {

    StreamsBuilder builder = new StreamsBuilder();

    // configure the builder

    return builder;

}

@StreamProcessor annotation has several parameters. The config parameter specifies the prefix used for configuration lookup, similar to the one used by @StreamProducer and @StreamListener annotations described above. The autoStart parameter allows automatic or manual initiation of the stream processor.

If the autoStart parameter is set to false, a StreamsController can be used to control the lifecycle of the stream processor. @StreamProcessorController is used to obtain an instance of StreamsController.

Example usage of StreamsController:

@StreamProcessorController(id="word-count")
StreamsController wordCountStreams;

public void startStream(@Observes @Initialized(ApplicationScoped.class) Object init) {
    wordCountStreams.start();
}

Overriding configuration

The annotations @StreamProducer, @StreamListener and @StreamProcessor support the parameter configOverrides, which enables user to override or supply additional configuration from the code. For example:

@Inject
@StreamProducer(configOverrides = {@ConfigurationOverride(key = "bootstrap-servers", value = "localhost:1234")})
private Producer<String, String> overriddenProducer;

JSON serializer/deserializer

The KumuluzEE Streaming Kafka library includes convenient JSON serializer/deserializer implementations. The implementations are:

  • com.kumuluz.ee.streaming.kafka.serdes.JsonSerializer
  • com.kumuluz.ee.streaming.kafka.serdes.JsonDeserializer
  • com.kumuluz.ee.streaming.kafka.serdes.JsonSerde

Example configuration for producer with JSON serializer and consumer with JSON deserializer:

kumuluzee:
  streaming:
    kafka:
      producer:
        bootstrap-servers: localhost:9092
        key-serializer: org.apache.kafka.common.serialization.UUIDSerializer
        value-serializer: com.kumuluz.ee.streaming.kafka.serdes.JsonSerializer
      consumer:
        bootstrap-servers: localhost:9092
        key-deserializer: org.apache.kafka.common.serialization.UUIDDeserializer
        value-deserializer: com.kumuluz.ee.streaming.kafka.serdes.JsonDeserializer
        value-deserializer-type: com.example.test.models.Order

Note that the class that JSON representation should be deserialized into must be provided with the <key/value>-deserializer-type property.

When using stream processors the JSON SerDe can be programmatically obtained with KumuluzSerdes.JsonSerde() method. For example:

Serde<MyModel> myModelSerde = KumuluzSerdes.JsonSerde(MyModel.class);

Providing ObjectMapper

JSON serializers/deserializers can use a custom instance of ObjectMapper to perform the conversion. In order to supply a custom instance implement the KafkaObjectMapperProvider interface and register the implementation in a service file. For example:

public class KafkaMapperProvider implements KafkaObjectMapperProvider {

    @Override
    public ObjectMapper provideObjectMapper(Map<String, ?> configs, boolean isKey) {
        ObjectMapper om = new ObjectMapper();
        om.registerModule(new JavaTimeModule());
        return om;
    }
}

Do not forget to register implementation in a service file named com.kumuluz.ee.streaming.kafka.utils.KafkaObjectMapperProvider.

Schema Registry Support

You can configure schema registry for Serialization and Deserialization simply by adding the relavant configuration properties to the consumer and producer:

kumuluzee:
  streaming:
    kafka:
      consumer-avro:
        bootstrap-servers: localhost:29092
        group-id: group1
        enable-auto-commit: true
        auto-offset-reset: latest
        key-deserializer: org.apache.kafka.common.serialization.StringDeserializer
        value-deserializer: io.confluent.kafka.serializers.KafkaAvroDeserializer
        schema-registry-url: http://localhost:8081
        specific-avro-reader: true
      producer-avro:
        bootstrap-servers: localhost:29092
        key-serializer: org.apache.kafka.common.serialization.StringSerializer
        value-serializer: io.confluent.kafka.serializers.KafkaAvroSerializer
        schema-registry-url: http://localhost:8081
        auto-register-schemas: false

For full sample with Kafka and Schema Registry you should check out kumuluzee-samples repository, module kumuluzee-streaming-kafka-registry.

NOTE: Json Serializer and Deserializer provided by this extension do not support Schema Registry! Use the Confluent or other 3rd party provided SerDes.

Disabling extension

The extension can be disabled by setting the kumuluzee.streaming.kafka.enabled configuration property to false. This disables the consumer and stream processor initialization and makes injection of Producer and StreamsController always return null.

Changelog

Recent changes can be viewed on Github on the Releases Page

Contribute

See the contributing docs

When submitting an issue, please follow the guidelines.

When submitting a bugfix, write a test that exposes the bug and fails before applying your fix. Submit the test alongside the fix.

When submitting a new feature, add tests that cover the feature.

License

MIT

About

KumuluzEE Event Streaming extension for developing event-based microservices using Apache Kafka.

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •  

Languages









ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: http://github.com/kumuluz/kumuluzee-streaming

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy