forked from DavidEGrayson/minimu9-ahrs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathminimu9-ahrs-calibrator
executable file
·103 lines (76 loc) · 2.56 KB
/
minimu9-ahrs-calibrator
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
#!/usr/bin/env python2
from __future__ import print_function
import sys
import math
verbose = False
def average(list):
return sum(list)/len(list)
def percentile_to_value(list, *percentiles):
list = sorted(list)
return [list[int(p / 100.0 * (len(list)-1))] for p in percentiles]
def variance(list):
m = average(list)
return sum([(i-m)**2 for i in list]) / float(len(list))
def std_deviation(list):
return math.sqrt(variance(list))
class Vector(object):
def __init__(self, x, y, z):
self.x, self.y, self.z = x, y, z
def __str__(self):
return "(" + str(self.x) + ", " + str(self.y) + ", " + str(self.z) + ")"
def __getitem__(self, key):
if key == 0:
return self.x
elif key == 1:
return self.y
elif key == 2:
return self.z
else:
raise Exception("Invalid key")
def magnitude(self):
return math.sqrt(self.x**2 + self.y**2 + self.z**2)
Axes = range(3)
class Calibration:
def __init__(self, values, raw_readings=None):
self.values = values
self.raw_readings = raw_readings
def scale(self, raw_reading):
return Vector((raw_reading[0] - self.values[0])/float(self.values[1] - self.values[0]) * 2 - 1,
(raw_reading[1] - self.values[2])/float(self.values[3] - self.values[2]) * 2 - 1,
(raw_reading[2] - self.values[4])/float(self.values[5] - self.values[4]) * 2 - 1)
def __str__(self):
return "%d %d %d %d %d %d" % tuple(self.values)
def info_string(self):
return "%-32s avg=%7.4f stdev=%7.4f" % (
str(self),
average(self.scaled_magnitudes()),
std_deviation(self.scaled_magnitudes())
)
def scaled_magnitudes(self):
return [s.magnitude() for s in self.scaled_readings()]
def scaled_readings(self):
return [self.scale(r) for r in self.raw_readings]
def run(file=sys.stdin):
try:
raw_readings = read_vectors(file)
if len(raw_readings) < 300:
print("Warning: Only " + str(len(raw_readings)) + " readings were provided.",
file=sys.stderr)
cal = simple_minmax_calibration(raw_readings)
if verbose:
print("calibration info: " + cal.info_string(), file=sys.stderr)
print(cal)
except KeyboardInterrupt:
print("", file=sys.stderr) # newline to tidy things up
pass
def read_vectors(file):
vectors = [Vector(*[int(s) for s in line.split()[0:3]]) for line in file]
return vectors
def simple_minmax_calibration(readings):
guess = []
for axis in Axes:
values = [v[axis] for v in readings]
guess.extend([min(values), max(values)])
return Calibration(guess, readings)
if __name__=='__main__':
run()