Content-Length: 283150 | pFad | http://github.com/noambassat/Gemstones_Project

22 GitHub - noambassat/Gemstones_Project: Data Science final project
Skip to content

noambassat/Gemstones_Project

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

image

Contact: NoamBassat92@gmail.com

ML Gemstones Project


Find genstones by a given location
View Demo · Report Bug · Request Feature

Data Science project about crystals and gemstones

PROJECT PRESENTION: Gemstones_project_Presention.pdf

Step 1: Obtaining data: Gemstons_Obtaining_Data Data crawling. Main tools: Selenium Webdriver and BeautifulSoup

Step 2: Cleaning and formating the data: Step_2_Scrubbing_Data.ipynb

Step 3: Visualization: Step_3_Exploring_Data.ipynb. Main tools: pyplot, seaborn.

Step 4: Modeling: Step 4 - Clustering and Modeling Data.ipynb Clustering the data into 8 groups, by Kmeans algorithm (Unsupervised). Machine learning model: Comparison of the performance of 3 supervised algorithms: RandomForestClassifier, DecisionTreeClassifier, and KNN, using Sklearn.

Step 5: Understanding the results + Final machine learning model (based on DecisionTreeClassifier): Step 5 - interpreting Data.ipynb

Accuracy on train data 0.99 Accuracy on test data 0.97









ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: http://github.com/noambassat/Gemstones_Project

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy