Content-Length: 312752 | pFad | http://github.com/ondrejbiza/aamas_19

DF GitHub - ondrejbiza/aamas_19: Source code for the paper "Online Abstraction with MDP Homomorphisms for Deep Learning".
Skip to content

Source code for the paper "Online Abstraction with MDP Homomorphisms for Deep Learning".

License

Notifications You must be signed in to change notification settings

ondrejbiza/aamas_19

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Online Abstraction with MDP Homomorphisms for Deep Learning—source code

This repository contains the source code to our AAMAS'19 paper. The aim of the paper is to find abstractions in the form of MDP homomorphisms based on experience collected by a Deep Reinforcement Learning agent. We use a fully-convolutional deep Q-network to collect the experience.

Setup

  • Install Python >= 3.5.
  • Install all packages listed in requirements.txt: pip install -r requirements.txt.
  • I use tensorflow-gpu 1.7 with CUDA 9.1 and cuDNN 7.1; any other setup might produce different results.

Usage

Train a deep Q-network

Discrete environments

Train a deep Q-network to stack 2 pucks in a grid world environment:

python -m abstract.scripts.solve.puck_stack_n.dqn_branch 2 4 
    --max-time-steps 2500 --max-episodes 200 --learning-rate 0.0001 --batch-size 30

Stacking three pucks:

python -m abstract.scripts.solve.puck_stack_n.dqn_branch 3 4 
    --max-episodes 1000 --max-time-steps 20000 --exploration-fraction 0.25 
    --learning-rate 0.0001 --batch-size 30

Fully convolutional network for pseudo-continuous environments

Train a deep Q-network on the continuous component task:

# 2, 3 or 4 pucks should work
num_pucks=2

python -m abstract.scripts.solve.continuous_component.dqn_fc 4 112 ${num_pucks} \
        --max-time-steps 400000 --max-episodes 15000 \
        --learning-rate 0.0001 --exploration-fraction 0.025 \
        --num-filters 32 64 64 32 --filter-sizes 8 8 3 1 --strides 4 2 1 1 \
        --upsample upsample_after

Building stairs:

# 3 or 6 pucks; the latter would require a lot more time steps (perhaps in the millions)
num_pucks=3

python -m abstract.scripts.solve.continuous_stairs.dqn_fc 4 112 ${num_pucks} \
        --max-time-steps 400000 --max-episodes 15000 \
        --learning-rate 0.0001 --exploration-fraction 0.025 \
        --num-filters 32 64 64 32 --filter-sizes 8 8 3 1 --strides 4 2 1 1 \
        --upsample upsample_after

Stacking pucks:

# 2 or 3 pucks; stacking 4 pucks would require a lot of time steps
num_pucks=2

python -m abstract.scripts.solve.continuous_puck_stack_n.dqn_fc 4 112 ${num_pucks} \
        --max-time-steps 400000 --max-episodes 15000 \
        --learning-rate 0.0001 --exploration-fraction 0.025 \
        --num-filters 32 64 64 32 --filter-sizes 8 8 3 1 --strides 4 2 1 1 \
        --upsample upsample_after

Collect data for the abstraction algorithm

Discrete environment

The transfer script for the discrete environment collects the initial experience during each run.

Pseudo-continuous environments

You need to collect the data for abstraction using the following shell scripts:

./abstract/shell_scripts/abstraction/continuous_component/collect_data_dqn.sh
./abstract/shell_scripts/abstraction/continuous_puck_stack_n/collect_data_dqn.sh
./abstract/shell_scripts/abstraction/continuous_stairs/collect_data_dqn.sh

Transfer options between environments using MDP homomorphisms

Discrete environments

Transfer from 2 to 3 pucks stacking in a grid world environment:

# transfer options
python -m abstract.scripts.abstract.puck_stack_n.dqn_exp_goal_transfer 4 1 --num-pucks-list 2 3 \
        --num-start-episodes 1000 --num-episodes 0 --max-buffer-size 10000 \
        --min-radius 7 --max-radius 12 --reuse --max-blocks 10 \
        --reward-threshold 0.98 --early-stop 1000 --softmax-selection --no-sharing \
        --dqn-final-epsilon 0.1 --dqn-num-exp-steps 5000 --state-action-threshold 400

# transfer weights
python -m abstract.scripts.abstract.puck_stack_n.dqn_exp_goal_transfer 4 1 --num-pucks-list 2 3 \
        --num-start-episodes 1000 --num-episodes 0 --max-buffer-size 10000 \
        --min-radius 7 --max-radius 12 --reuse --no-sharing \
        --dqn-final-epsilon 0.1 --dqn-num-exp-steps 5000 --no-option \
        --share-dqn --share-dqn-reset-buffer

Transfer from 3 pucks stacking to 2 and 2 puck stacking in a grid world environment:

# transfer options
python -m scripts.abstract.puck_stack_subgoal.dqn_exp_option_transfer 4 1 \
        --num-start-episodes 1500 --num-episodes 0 --max-buffer-size 10000 \
        --min-radius 7 --max-radius 12 --reuse --max-blocks 10 \
        --reward-threshold 0.98 --early-stop 1000 --softmax-selection --no-sharing \
        --dqn-final-epsilon 0.1 --dqn-num-exp-steps 10000 \
        --state-action-threshold 600 --option-learning-rate 0.1

# transfer weights
python -m scripts.abstract.puck_stack_subgoal.dqn_exp_option_transfer 4 1 \
        --num-start-episodes 1500 --num-episodes 0 --max-buffer-size 10000 \
        --min-radius 7 --max-radius 12 --reuse --max-blocks 10 \
        --reward-threshold 0.98 --early-stop 1000 --softmax-selection --no-sharing \
        --dqn-final-epsilon 0.1 --dqn-num-exp-steps 10000 --share-dqn \
        --no-option --share-dqn-reset-buffer

Pseudo-continuous environments

We ran many transfer experiments in the pseudo-continuous environments. The following is one example:

# transfer from 2 puck stacking to 3 component

# transfer options
python -m scripts.abstract.continuous_component.transfer_drn "dataset/dqn/continuous_puck_stack_2_112x112.pickle" \
        3 1000 10 --deduplicate --max-time-steps 400000 \
        --max-episodes 15000 --learning-rate 0.0001 --exploration-fraction 0.025 \
        --num-filters 32 64 64 32 --filter-sizes 8 8 3 1 --strides 4 2 1 1 \
        --upsample upsample_after --proportional-selection

# transfer weights
python -m scripts.solve.continuous_component.dqn_fc 3 112 3 \
        --max-time-steps 400000 --max-episodes 15000 \
        --learning-rate 0.0001 --exploration-fraction 0.025 \
        --num-filters 32 64 64 32 --filter-sizes 8 8 3 1 --strides 4 2 1 1 \
        --upsample upsample_after --load-weights "dataset/dqn/continuous_puck_stack_2_112x112"

Environments

  • envs/puck_stack: stack N pucks in a discrete grid world
  • envs/puck_stack_subgoal: make two stacks of N pucks in a continuous grid world
  • envs/continuous_puck_stack: stack N pucks in a psedo-continuous environment
  • envs/continuous_two_stack: make two stacks of N pucks in a pseudo-continuous environment
  • envs/continuous_component: arrange N pucks so that they form a connected component
  • envs/continuous_stairs: build stairs from 3 or 6 pucks

Authors

Ondrej Biza, supervised by Robert Platt.

Releases

No releases published

Packages

No packages published








ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: http://github.com/ondrejbiza/aamas_19

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy