Content-Length: 294355 | pFad | http://github.com/pfizer-opensource/scikit-digital-health

52 GitHub - pfizer-opensource/scikit-digital-health: Python package for the processing and analysis of Inertial Measurement Unit Data
Skip to content

Python package for the processing and analysis of Inertial Measurement Unit Data

License

Notifications You must be signed in to change notification settings

pfizer-opensource/scikit-digital-health

Repository files navigation

skdh_badge

Scikit Digital Health (SKDH) is a Python package with methods for ingesting and analyzing wearable inertial sensor data.

SKDH provides the following:

  • Methods for ingesting data from binary file formats (ie Axivity, GeneActiv)
  • Preprocessing of accelerometer data
  • Common time-series signal features
  • Common time-series/inertial data analysis functions
  • Inertial data analysis algorithms (ie gait, sit-to-stand, sleep, activity)

Availability

SKDH is available on both conda-forge and PyPI.

conda install scikit-digital-health -c conda-forge

or

pip install scikit-digital-health

Warning

Windows pre-built wheels are provided as-is, with limited/no testing on changes made to compile extensions for Windows.

Note

Windows users may need to install an additional requirement: Microsoft Visual C++ redistributable >14.0. The 2015 version can be found here: https://www.microsoft.com/en-us/download/details.aspx?id=53587

Build Requirements

As of 0.9.15, Scikit Digital Health is built using Meson.

Citation

If you use SKDH in your research, please include the following citation:

[1] L. Adamowicz, Y. Christakis, M. D. Czech, and T. Adamusiak, “SciKit Digital Health: Python Package for Streamlined Wearable Inertial Sensor Data Processing,” JMIR mHealth and uHealth, vol. 10, no. 4, p. e36762, Apr. 2022, doi: 10.2196/36762.









ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: http://github.com/pfizer-opensource/scikit-digital-health

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy