-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathloss.py
63 lines (45 loc) · 1.92 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import torch
import torch.nn as nn
from torch.nn import functional as F
class FocalLoss(nn.Module):
def __init__(self, gamma=2, alpha=None, reduction='mean'):
super(FocalLoss, self).__init__()
self.gamma = gamma
self.alpha = alpha
self.reduction = reduction
def forward(self, inputs, targets):
ce_loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction='none')
pt = torch.exp(-ce_loss)
focal_loss = (1 - pt) ** self.gamma * ce_loss
if self.alpha is not None:
if isinstance(self.alpha, (float, int)):
alpha_tensor = torch.full_like(inputs, self.alpha)
else:
alpha_tensor = torch.zeros_like(inputs)
alpha_tensor.scatter_(1, targets.view(-1, 1), self.alpha)
focal_loss = alpha_tensor * focal_loss
if self.reduction == 'mean':
return focal_loss.mean()
elif self.reduction == 'sum':
return focal_loss.sum()
else:
return focal_loss
class DiceLoss(nn.Module):
def __init__(self, smooth=1e-6, reduction='mean'):
super(DiceLoss, self).__init__()
self.smooth = smooth
self.reduction = reduction
def forward(self, outputs, targets):
outputs = torch.sigmoid(outputs)
outputs_flat = outputs.view(outputs.size(0), -1)
targets_flat = targets.view(targets.size(0), -1)
intersection = torch.sum(outputs_flat * targets_flat, dim=1)
union = torch.sum(outputs_flat, dim=1) + torch.sum(targets_flat, dim=1)
dice = (2. * intersection + self.smooth) / (union + self.smooth)
loss = 1 - dice
if self.reduction == 'mean':
return loss.mean()
elif self.reduction == 'sum':
return loss.sum()
else:
return loss