Content-Length: 249805 | pFad | http://github.com/xupin262/complementarity

53 GitHub - xupin262/complementarity
Skip to content

xupin262/complementarity

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Leveraging Sample Complementarity: A Novel Ensemble Strategy

DFUC2022.

IJCNN2024.

本文代码基于mmsegmentation(https://github.com/open-mmlab/mmsegmentation)实现。

1.根据官方文档使用mmsegmentation并配置环境conda环境。

2.修改DFUC2022数据集的mask标签,使其值仅为0(背景)或1(溃疡).

3.将本项目给定的DFUC2022数据集配置文件dfuc.py放在mmseg/datasets/文件中,并在mmseg/datasets/init.py中添加相关信息:

from .dfuc import DFUCDataset

all = [……此处添加,'DFUCDataset']

4.训练各个模型

5.测试模型效果。

若要该模型参与集成,则需要在集成前保存各个候选模型的测试数据,方法如下: 在miniconda3/envs/该项目的conda环境名/lib/python3.8/site-packages/mmengine/runner/loops.py文件中修改run()函数信息(主要是加上保存模型预测的图片结果权重到文件out_save_path中的代码)

# 修改这里
def run(self) -> dict:
    """Launch test."""
    self.runner.call_hook('before_test')
    self.runner.call_hook('before_test_epoch')
    self.runner.model.eval()
    # 保存模型预测的图片结果权重到文件out_save_path中
    out_save_path = self._runner._test_evaluator["output_dir"]+'_predict.pt' # 'work_dirs/mask2former_swin-l-in22k-384x384-pre_8xb2-160k_dfuc-512x512_nq100/mask2former_swin-l_nq100_112k_predict.pt'  #####################################################################
    tensor_dict = {}   
    for idx, data_batch in enumerate(self.dataloader):
        outputs = self.run_iter(idx, data_batch)
        # import pdb; pdb.set_trace()
        img_name = outputs[0].img_path.split('/')[-1].split('.')[0]
        tensor_dict[img_name] = outputs[0].seg_logits.data
    # 保存模型参数到文件
    # torch.save(tensor_dict, out_save_path)   #####################################################################
    
    # compute metrics
    metrics = self.evaluator.evaluate(len(self.dataloader.dataset))
    self.runner.call_hook('after_test_epoch', metrics=metrics)
    self.runner.call_hook('after_test')
    return metrics

6.模型集成 使用tools文件夹中的model_ensemble_wAverage.py进行加权平均集成,使用model_ensemble_HB.py进行互补集成(需先自行计算权重)。 运行代码在model_ensemble_wAverage.py和model_ensemble_HB.py结尾声明。

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages









ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: http://github.com/xupin262/complementarity

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy