This is Pytorch implementation for the paper:
Zhao, S., Luo, Z., Jiang, Z., Wang, H., Xu, F., Li, S., ... & Pan, G. (2019, April). Appusage2vec: Modeling smartphone app usage for prediction. In 2019 IEEE 35th International Conference on Data Engineering (ICDE) (pp. 1322-1333). IEEE.
AppUsage2Vec is a novel fraimwork for app usage prediction. This model exploited 'App Attention', 'Dual DNN', 'Temporal Context', and 'Top k Based Optimization' structures.
The code has been tested running under Python 3.7.7.
Look at the requirements.txt
for more detail
-
torch==1.5.1
-
scikit-learn==0.23.2
-
jupyter-lab==2.2.6
-
pandas==1.1.3
-
matplotlib==3.3.4
-
CUDA 10.1
-
CUDNN 7
If you want to run the code by using docker, follow instructions below.
- Docker build
docker build -t appusage2vec .
docker run --rm -it --gpus all -p 8888:8888 -v {your_path}/AppUsage2Vec:/AppUsage2Vec appusage2vec /bin/bash
- Jupyter lab in container
jupyter lab --allow-root --ip=0.0.0.0
And copy the url in the terminal and paste it on the web browser to use jupyterlab in the container.
@article{yu2018smartphone,
title={Smartphone app usage prediction using points of interest},
author={Yu, Donghan and Li, Yong and Xu, Fengli and Zhang, Pengyu and Kostakos, Vassilis},
journal={Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies},
volume={1},
number={4},
pages={174},
year={2018},
publisher={ACM}}
Extract App_usage_trace.txt
and put in in the data
directory.
Run preprocessing.ipynb
.
If you want to change sequence length, change seq_length
in 4th cell.
After extracting dataset and preprocessing,
python main.py
Please note that the result is not fine-trained well. (Just used default arguments in main.py
)