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1 Introduction

Certain cumulative distribution functions were used during the first half of the nineteenth

century by Gompertz [6] and Verhulst [30, 31, 32] to compare known human mortality tables

and represent mortality growth. One of them is as follows

G(t) =
(

1− ρe−tλ
)α

; for t >
1

λ
ln ρ, (1)

here ρ, λ and α are all positive real numbers. In twentieth century, Ahuja and Nash [1] also

considered this model and made some further generalization. The generalized exponential

distribution or the exponentiated exponential distribution is defined as a particular case

of the Gompertz-Verhulst distribution function (1), when ρ = 1. Therefore, X is a two-

parameter generalized exponential random variable if it has the distribution function

F (x;α, λ) =
(

1− e−λx
)α

; x > 0, (2)

for α, λ > 0. Here α and λ play the role of the shape and scale parameters respectively.

The two-parameter generalized exponential distribution is a particular member of the

three-parameter exponentiated Weibull distribution, introduced by Mudholkar and Srivas-

tava [25]. Moreover, the exponentiated Weibull distribution is a special case of general class

of exponentiated distributions proposed by Gupta et al. [7] as F (t) = [G(t)]α, where G(t) is

the base line distribution function. It is observed by the authors [10] that the two-parameter

generalized exponential distribution can be used quite effectively to analyze positive lifetime

data, particularly, in place of the two-parameter gamma or two-parameter Weibull distri-

butions. Moreover, when the shape parameter α = 1, it coincides with the one-parameter

exponential distribution. Therefore, all the three distributions, namely generalized exponen-

tial, Weibull and gamma are all extensions/ generalizations of the one-parameter exponential

distribution in different ways.
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The generalized exponential distribution also has some nice physical interpretations. Con-

sider a parallel system, consisting of n components, i.e., the system works, only when at

least one of the n-components works. If the lifetime distributions of the components are

independent identically distributed (i.i.d.) exponential random variables, then the lifetime

distribution of the system becomes

F (x;n, λ) =
(

1− e−λx
)n

; x > 0, (3)

for λ > 0. Clearly, (3) represents the generalized exponential distribution function with

α = n. Therefore, contrary to the Weibull distribution function, which represents a series

system, the generalized exponential distribution function represents a parallel system.

In recent days, the generalization of pseudo random variable from any distribution func-

tion is very important for simulation purposes. Due to convenient form of the distribution

function, the generalized exponential random variable can be easily generated. For exam-

ple, if U represents a uniform random variable from [0, 1], then X = − 1
λ
ln
(

1− U
1
α

)

has

generalized exponential distribution with the distribution function given by (2). Now a days

all the scientific calculators or computers have standard uniform random number generator,

therefore, generalized exponential random deviates can be easily generated from a standard

uniform random number generator.

The main aim of this paper is to provide a gentle introduction of the generalized exponen-

tial distribution and discuss some of its recent developments. This particular distribution has

several advantages and it will give the practitioner one more option for analyzing skewed life-

time data. We believe, this article will help the practitioner to get the necessary background

and the relevant references about this distribution.

The rest of the paper is organized as follows. In section 2, we discuss different properties

of this distribution function. The different estimation procedures, testing of hypotheses and
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construction of confidence interval are discussed in section 3. Estimating the stress-strength

parameter for generalized exponential distribution is discussed in section 4. Closeness of the

generalized exponential distribution with some of the other well known distributions like,

Weibull, gamma and log-normal are discussed in section 5 and finally we conclude the paper

in section 6.

2 Properties

2.1 Density Function and its Moments Properties

If the random variable X has the distribution function (2), then it has the density function

f(x;α, λ) = αλ
(

1− e−λx
)α−1

e−λx; x > 0, (4)

for α, λ > 0. The authors provided the graphs of the generalized exponential density func-

tions in [9] for different values of α. The density functions of the generalized exponential

distribution can take different shapes. For α ≤ 1, it is a decreasing function and for α > 1,

it is a unimodal, skewed, right tailed similar to the Weibull or gamma density function. It is

observed that even for very large shape parameter, it is not symmetric. For λ = 1, the mode

is at logα for α > 1 and for α ≤ 1, the mode is at 0. It has the median at − ln(1− (0.5)
1
α ).

The mean, median and mode are non-linear functions of the shape parameter and as the

shape parameter goes to infinity all of them tend to infinity. For large values of α, the mean,

median and mode are approximately equal to logα but they converge at different rates.

The different moments of a generalized exponential distribution can be obtained using its

moment generating function. If X follows GE(α, λ), then the moment generating function

M(t) of X for t < λ, is

M(t) = EetX =
Γ(α + 1)Γ

(

1− t
λ

)

Γ
(

α− t
λ
+ 1

) . (5)
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Therefore, it immediately follows that

E(X) =
1

λ
[ψ(α+ 1)− ψ(1)] , V (X) =

1

λ2
[ψ′(1)− ψ′(α + 1)] , (6)

where ψ(.) and its derivatives are the digamma and polygamma functions. The mean of

a generalized exponential distribution is increasing to ∞ as α increases, for fixed λ. For

fixed λ, the variance also increases and it increases to π2

6λ
. This feature is quite different

compared to gamma or Weibull distribution. In case of gamma distribution, the variance

goes to infinity as the shape parameter increases, whereas for the Weibull distribution the

variance is approximately π2

6λα2 for large values of the shape parameter α.

Now we provide, see [9] for details, a stochastic representation of GE(α, 1) which also

can be used to compute different moments of a generalized exponential distribution. If α is

a positive integer say n, then the distribution of X is same as the distribution of
∑n

j=1 Yj/j,

where Yj’s are i.i.d. exponential random variables with mean 1. If α is not an integer, then

the distribution of X is same as

[α]
∑

j=1

Yj
j+ < α >

+ Z.

Here < α > represents the fractional part and [α] denotes the integer part of α. The random

variable Z follows GE(< α >, 1), which is independent of Yj’s.

Next we discuss about the skewness and kurtosis of the generalized exponential distribu-

tion. The skewness and kurtosis can be computed as

√

β1 =
µ3

µ
3/2
2

, β2 =
µ4

µ2
2

, (7)

where µ2, µ3 and µ4 are the second, third and fourth moments respectively and they can be

represented in terms of the digamma and polygamma functions.

µ2 =
1

λ2

[

ψ′(1)− ψ′(α + 1) + (ψ(α+ 1)− ψ(1))2
]
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Figure 1: MacGillivray skewness functions of the generalized exponential distribution

µ3 =
1

λ3

[

ψ′′(α + 1)− ψ′′(1) + 3(ψ(α + 1)− ψ(1))(ψ′(1)− ψ′(α + 1)) + (ψ(α+ 1)− ψ(1))3
]

µ4 =
1

λ4

[

ψ′′′(1)− ψ′′′(α + 1) + 3(ψ′(1)− ψ′(α + 1))2 + 4(ψ(α+ 1)− ψ(1))(ψ′′(α + 1)− ψ′′(1)

+6(ψ(α+ 1)− ψ(1))2(ψ′(1)− ψ′(α + 1)) + (ψ′′′(1)− ψ′′′(α + 1))4
]

.

The skewness and kurtosis are both independent of the scale parameter. It is numerically ob-

served that both skewness and kurtosis are decreasing functions of α, moreover, the limiting

value of the skewness is approximately 1.139547. The generalized exponential distribution

has the MacGillivray [24] skewness function as

γX(u;α) =
ln(1− u1/α) + ln(1− (1− u1/α))− 2 ln(1−

(

1
2

)1/α
)

ln(1− u1/α)− ln(1− (1− u1/α))
. (8)

The plots of the skewness functions (8) of the generalized exponential distribution for dif-

ferent values of α are presented in Figure 1. From the Figure 1 it is clear that the skewness

does not change significantly for large values of α. It is observed numerically that the Galton

[5]’s measure of skewness, namely γX(3/4, α), converges to 0.119 as α increases to ∞.
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2.2 Hazard Function and Reversed Hazard Function

The hazard function of the generalized exponential distribution is

h(x;α, λ) =
f(x;α, λ)

1− F (x;α, λ)
=
αλe−λx

(

1− e−λx
)α−1

1− (1− e−λx)α
. (9)

Since λ is the scale parameter, the shape of the hazard function does not depend on λ,

it depends only on α. For any fixed λ, the generalized exponential distribution has an

increasing hazard function for α > 1 and it has a decreasing hazard function for α < 1.

For α = 1, it has constant hazard function. These results are not very difficult to prove, it

simply follows from the fact that the generalized exponential distribution has a log-concave

density for α > 1 and it is log-convex for α ≤ 1. The plots of the hazard functions for

different values of α can be obtained as in Gupta and Kundu [9]. The hazard function of the

generalized exponential distribution behaves exactly the same way as the hazard functions

of the gamma distribution, which is quite different from the hazard function of the Weibull

distribution, see Gupta and Kundu [9] for details.

The reversed hazard function becomes quite popular in the recent time. The reversed

hazard function for the generalized exponential distribution is

r(x;α, λ) =
f(x;α, λ)

F (x;α, λ)
=

αλe−λx

1− e−λx
. (10)

It is observed that for all values of α, the reversed hazard function is a decreasing function

of x. Several other properties of the reversed hazard function of the generalized exponential

distribution are obtained in Nanda and Gupta [26]. Note that λe−λx

1−e−λx
is the reversed hazard

function of the exponential distribution, therefore, from (10) it is clear that the reversed

hazard function of the generalized exponential distribution is proportional to the reversed

hazard function of the exponential distribution. The hazard function and the reversed hazard

function can be used to compute the Fisher information matrix of the unknown parameters,
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see for example Efron and Johnstone [4] and Gupta, Gupta and Sankaran [8]. For the

generalized exponential distribution, r(x;α, λ) is in a convenient form and it can easily be

used to compute Fisher information matrix, see [16].

2.3 Order Statistics and Records

Let X1, . . . , Xn be i.i.d. generalized exponential random variables, with the shape parameter

α and scale parameter 1. Further, let X(1) < . . . < X(n) be the order statistics from these n

random variables. Then the density function of the largest order statistics X(n) is

fX(n)
(x;α) = nαe−x

(

1− e−x
)nα−1

. (11)

Therefore, X(n) also has the generalized exponential distribution with shape and scale pa-

rameters as nα and 1 respectively. Note that the general class of exponentiated distributions

as introduced by Gupta et al. [7] is also closed under maximum. The result can be stated

as follows: If X1, . . . , Xn are i.i.d. random variables then Xi’s are exponentiated random

variables if and only if the maximum of {X1, . . . , Xn} is an exponentiated random variable.

The proof follows easily from [9].

Raqab and Ahsanullah [29] considered different order statistics of the generalized expo-

nential distribution. The moment generating functions of the different order statistics and

the product moments can be obtained in Raqab and Ahsanullah [29]. They tabulated dif-

ferent product moments and used them to compute the best linear unbiased estimators of

the location and scale parameters of the generalized exponential distribution.

In the context of order statistics and reliability theory, the life length of the r-out-of-n

system is the (n− r + 1)-th order statistics in a sample of size n. Another related model is

the model of record statistics defined by Chandler [2] as a model for successive extremes in

a sequence of i.i.d. random variables. Raqab [28] considered the three parameter (including
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the location) generalized exponential distribution and obtained the best linear unbiased

estimators of the location and scale parameters using the moments of the records statistics.

2.4 Distribution of the Sum

Since the moment generating function of the generalized exponential distribution is not in a

very convenient form, the distribution of the sum of n i.i.d. generalized exponential random

variables can not be obtained very easily. It is observed that if X follows GE(α, 1), then e−X

has a Beta distribution. Since the product of independent Beta random variables has been

well studied in the literature, it is used effectively to compute the distribution of sum of the

n i.i.d. generalized exponential random variables. It is observed in [9] that the distribution

of the sum of n i.i.d. generalized exponential random variables can be written as the infinite

mixture of generalized exponential distributions. The exact mixing coefficients and the

parameters of the corresponding generalized exponential distributions can be obtained in

[9].

3 Inference

3.1 Classical Estimation Procedures

3.1.1 Maximum Likelihood Estimators

If {x1, . . . , xn} is a random sample from a GE(α, λ), then the log-likelihood function, L(α, λ)

is

L(α, λ) = n lnα + n lnλ+ (α− 1)
n
∑

i=1

ln
(

1− e−λxi
)

− λ
n
∑

i=1

xi. (12)
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The maximum likelihood estimator (MLE) of α as a function of λ, say α̂(λ), can be obtained

as

α̂(λ) = − n
∑n

i=1 ln (1− e−λxi)
. (13)

The MLE of λ can be obtained by maximizing the profile log-likelihood function with respect

to λ. It is observed in Gupta and Kundu [12] that the profile likelihood function of λ is a

unimodal function and its maximum can be easily obtained by using a very simple iterative

procedure.

3.1.2 Method of Moments Estimators

The moment estimators of α and λ can be obtained by equating the first two population

moments with the corresponding sample moments. It follows that the coefficient of variation

(C.V.) is independent of the scale parameter. Therefore, equating the sample C.V. with the

population C.V., namely

S

X̄
=

√

ψ′(1)− ψ′(α + 1)

ψ(α+ 1)− ψ(1)
, (14)

the moment estimator of α can be obtained. The non-linear equation (14) needs to be solved

iteratively to obtain the moment estimator of α. Extensive tables are available in Gupta and

Kundu [12], which can be used for an efficient initial guess of any iterative procedure. Once,

the moment estimator of α is obtained, the moment estimator of λ can be easily obtained.

3.1.3 Percentile Estimators

The generalized exponential distribution has the explicit distribution function, therefore

in this case the unknown parameters α and λ can be estimated by equating the sample

percentile points with the population percentile points and it is known as the percentile

method. If pi denotes an estimate of F (x(i);α, λ), then the percentile estimators of α and λ
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can be obtained by minimizing

n
∑

i=1

[

x(i) +
1

λ
ln
(

1− p
( 1
α

)

i

)]2

, (15)

with respect to α and λ. Here x(i)’s are ordered sample and the maximization has to be

performed iteratively. It is possible to use several estimators of pi’s. For example, pi =

i/(n + 1) is the most used estimator as it is an unbiased estimator of F (x(i);α, λ). Some

other choices of pi’s are ((i− 3/8))/(n+ (1/4)) and ((i− (1/2))/n).

3.1.4 Least Squares Estimators

The least squares estimators and the weighted least squares estimators of α and λ can be

obtained by minimizing

n
∑

j=1

(

(

1− e−λx(j)

)α − j

n+ 1

)2

and
n
∑

j=1

wj

(

(

1− e−λx(j)

)α − j

n+ 1

)2

, (16)

respectively, with respect to α and λ, here wj = (n+1)2(n+2)
j(n−j+1)

. The motivation behind the

least squares and the weighted least squares estimators mainly follow from the following

observations. If Y1, . . . , Yn is a random sample from the distribution function G(.) and

if Y(1) < . . . < Y(n) denote the corresponding order statistics, then E(G(Y(j)), V (G(Y(j))

and Cov(G(Y(j)), G(Y(k))) are all independent of the unknown parameters. Since for the

generalized exponential distribution, the distribution function has a very convenient form,

the least squares and the weighted least squares methods can be used quite effectively to

compute the estimators of the unknown parameters, see Gupta and Kundu [11] for details.

3.1.5 L-Moment Estimators

The L-moment estimators analogous to the conventional moment estimators but they can be

obtained by linear combinations of the order statistics, i.e. by L-statistics, see for example

Hosking [17]. The L-moments have theoretical advantages over the conventional moments of
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being more robust to the presence of outliers in the data. Similar to the moment estimators,

the L-moment estimators can also be obtained by equating the population L-moments with

the corresponding sample L-moments. In case of generalized exponential distribution, the

two sample L-moments are

l1 =
1

n

n
∑

i=1

x(i), l2 =
2

n(n− 1)

n
∑

i=1

(i− 1)x(i) − l1, (17)

and the first two population L-moments are

λ1 =
1

λ
[ψ(α+ 1)− ψ(1)] , λ2 =

1

λ
[ψ(2α+ 1)− ψ(α+ 1)] , (18)

respectively, see Gupta and Kundu [11]. The L-moment estimator of α can be obtained by

solving the non-linear equation

ψ(2α + 1)− ψ(α+ 1)

ψ(α+ 1)− ψ(1)
=
l2
l1
. (19)

Once the L-moment estimator of α is obtained, the L-moment estimator of λ can be easily

obtained, the details are available in Gupta and Kundu [11].

It is not possible to compare theoretically the performances of the different estimators.

Due to that the authors performed [11] extensive simulations to compare the performances

of the different estimators for different sample sizes and for different parameter values in

terms of biases and mean squared errors. It is observed that for large sample sizes all the

estimators behave more or less in similar manner. For small sample sizes the performances

of the maximum likelihood estimators and the L-moment estimators are better than the rest.

For large values of α, the performances of the L-moment estimators are marginally better

than the maximum likelihood estimators.

3.2 Confidence Intervals and Testing of Hypotheses

It is well known that the construction of confidence intervals and testing of hypotheses are

equivalent problems and therefore we discuss both the problems together. First let us con-
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sider the asymptotic distribution of the maximum likelihood estimators of the unknown

parameters. For α, λ > 0, the generalized exponential family satisfies all the regularity

conditions, therefore the following result easily follows from the standard asymptotic dis-

tribution results of the maximum likelihood estimators, i.e.,
√
n
(

α̂MLE − α, λ̂MLE − λ
)

, is

asymptotically bivariate normally distributed with the mean vector 0. The exact expression

of the asymptotic dispersion matrix is obtained in Gupta and Kundu [11]

In this case the asymptotic distribution of the moment estimators also can be obtained. If

α̂ME and λ̂ME are the moment estimators of α and λ respectively, then
√
n
(

α̂ME − α, λ̂ME − λ
)

,

is asymptotically bivariate normally distributed with the mean vector 0 and the exact expres-

sion of the asymptotic dispersion matrix as given in Gupta and Kundu [11]. Therefore, the

asymptotic distributions of the maximum likelihood estimators or the moment estimators

can be used for constructing asymptotic confidence intervals. No comparison of the different

confidence intervals are available in the literature. More work is needed in that direction.

Now we consider the following testing of hypotheses problems when both the parameters

are unknown.

Problem 1: H0 : α = α0 vs H1 : α 6= α0.

Problem 2: H0 : λ = λ0 vs H1 : λ 6= λ0.

Problem 3: H0 : α = α0, λ = λ0 vs H1 : at least one is not true

Note that in Problem 1, when α0 = 1, it tests exponentiality. It is an important prob-

lem in practice. The likelihood ratio test can be used in all the cases and the asymptotic

distributions have been used for computing the critical points. Graphical techniques have

been used in Gupta and Kundu [12] for constructing confidence intervals/ regions for the

unknown parameters when both the parameters are unknown. Since − ln
(

1− e−λX
)

has an

exponential distribution with hazard rate α, the usual inference procedure for the parameter

of the exponential distribution can be used when the scale parameter is known.
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3.3 Bayesian Inference

In the last couple of years although significant amount of work has been developed in the

classical set up, not much work except the recent related work of Nassar and Eissa [27]

and Kundu and Gupta [20] has been found in the Bayesian framework. When both the

parameters are unknown, it is quite natural to assume independent gamma priors on both

the shape and scale parameters. It is observed that in this case, the problem becomes quite

intractable analytically and it has to be solved numerically. Mainly two approaches have

been used to solve this problem (a) Lindley’s approximation method, (b) Markov Chain

Monte Carlo Method (MCMC).

Lindley [23] developed his procedure to approximate the ratio of two integrals. It has

been used quite extensively to compute different Bayes estimators in different cases. In

case of generalized exponential distribution, Lindley’s approximation method can be used to

compute the approximate Bayes estimates of α and λ for different loss functions. The exact

expressions of the approximate Bayes estimates, both under squared errors and LINUX loss

functions can be obtained as in Kundu and Gupta [20].

It is observed that the posterior density function of the shape parameter given the scale

parameter follows a gamma distribution. Also, the posterior density function of the scale

parameter given the shape parameter is log-concave. Therefore, MCMC method has been

used quite effectively to generate posterior samples and in turn compute the Bayes estimates

and construct the highest posterior density (HPD) credible intervals of the unknown param-

eters. When scale parameter is known, the explicit expression of the Bayes estimate of the

shape parameter can be obtained and the corresponding HPD credible interval also can be

constructed. If the shape parameter is known, then Lindley’s approximation and MCMC

methods have been used to compute the Bayes estimate of the scale parameter, see Kundu

and Gupta [20] for details.
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4 Inference for Stress-Strength Parameter

In this section inference for R = P (Y < X) is considered when X and Y are independent

generalized exponential distributions. In the statistical literature R is known as the stress-

strength parameter and it has received significant attention in the last few decades. Non-

parametric and parametric inferences on R for several specific distributions of X and Y have

been found in the literature. For an excellent account of all these methods the readers are

referred to the recent monograph of Kotz, Lumelskii and Pensky [18]. Recently authors [20]

developed the inference procedures on R both under classical and Bayesian frame work, when

X and Y are independent generalized exponential distributions. The problem can be stated

as follows. Suppose {X1, . . . Xn} and {Y1, . . . Ym} are random samples from the distribution

functions of X and Y respectively, we want to draw the statistical inference on R based on

these samples.

4.1 Two Scale Parameters are Equal

Suppose X and Y are independent random variables with distribution functions [G(x;λ)]α1

and [G(x;λ)]α2 , respectively, where G(x;λ) is any base line distribution. Then

R = P (Y < X) =
α1

α1 + α2

. (20)

Interestingly, R is independent of the base line distribution G(.;λ). If λ is known, the infer-

ence on R can be carried out by data transformation to the exponential case as mentioned

in section 3.2. However, if λ is unknown, to compute the MLE of R we need the MLE of

λ which has to be obtained from {X1, . . . Xn} and {Y1, . . . Ym}. In the case of generalized

exponential distribution, the MLE of λ can be computed by solving a non-linear equation. A

simple fixed point-type algorithm has been proposed by the authors [19] and it works quite

effectively even for small sample sizes. Once the MLE of λ is obtained, the MLEs of α1 and
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α2 can be obtained in explicit forms in terms of MLE of λ, same as provided in (13), see [19]

for details.

It is observed that the asymptotic distribution of R is asymptotically normally distributed

and the explicit expression of the asymptotic variance can be found as in [19]. The asymptotic

distribution can be used to construct the asymptotic confidence interval of R.

4.2 Two Scale Parameters are Different

In this case the problem becomes quite different. Let us assume that X and Y follow

GE(α1, λ1) and GE(α2, λ2) respectively. Unfortunately R = P (Y < X) can not be expressed

in a compact form. It has the following form;

R =
∫ ∞

0

(

1− e−λ2x
)α2

α1λ1e
−λ1x

(

1− e−λ1x
)α1−1

dx =
∫ 1

0



1−
(

1− u
1
α1

)

λ2
λ1





α2

du. (21)

Since the explicit expression of R is not available the computation of the MLE of R be-

comes quite difficult. One of the method which can be used to compute the MLE of R by

plug-in estimates, i.e. replacing right hand side of (21) by the corresponding MLEs of the

different unknown parameters and computing the integration numerically. The asymptotic

distributions of the MLEs of the unknown parameters are known, therefore the asymptotic

distribution of the MLE of R can be obtained by the δ-method and the corresponding con-

fidence interval can be constructed at least numerically. Although the explicit expression of

R can not be obtained for general α1 and α2, but if α2 is an integer, R can be expressed as

R = α1Γ(α1)
α2
∑

i=0

(

α2

i

)

(−1)i
Γ
(

iλ2

λ1
+ 1

)

Γ
(

α1 +
iλ2

λ1
+ 1

) . (22)

Moreover, since R is a decreasing function of α2, from (22) it easily follows, that for general

α2

α1Γ(α1)
α2U
∑

i=0

(

α2

i

)

(−1)i
Γ
(

iλ2

λ1
+ 1

)

Γ
(

α1 +
iλ2

λ1
+ 1

) ≤ R ≤ α1Γ(α1)
α2L
∑

i=0

(

α2

i

)

(−1)i
Γ
(

iλ2

λ1
+ 1

)

Γ
(

α1 +
iλ2

λ1
+ 1

) ,
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where α2U(α2L) is the smallest (largest) integer greater (smaller) than α2. If α1 is an integer

then also similar bounds can be obtained by considering 1−R instead of R.

5 Closeness with Other Distributions

The generalized exponential distribution was originally introduced as an alternative to the

gamma and Weibull distributions. In fact it has been observed that in many situations, the

generalized exponential distribution can be used quite effectively in analyzing positive data

in place of gamma, Weibull or log-normal distributions.

5.1 Closeness

In a series of papers [13, 14, 15, 21] the authors studied the closeness of the generalized

exponential distribution with Weibull, gamma and log-normal distributions. It is observed

that for certain ranges of the shape parameters the distance between the generalized expo-

nential distribution and the other three distributions can be very small, see for example Fig

1 of [21]. It raises two important questions; (a) for a given data set which distribution is

preferable? (b) what is the minimum sample size needed to discriminate between the two

fitted distribution functions?

The first problem is a classical problem in the statistical data analysis. Cox [3] has first

proposed the likelihood ratio test to discriminate between two distribution functions and

since then a significant amount of research has been done to discriminate between two specific

distribution functions. Unfortunately, a general theory is very difficult to establish, therefore,

specific test needs to be constructed for any two particular distribution functions. It is

observed that the likelihood ratio test statistics for testing between GE and other distribution

functions are asymptotically normal and the details are available in [13, 15, 21]. Using the
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asymptotic distributions, the asymptotic critical regions and the asymptotic powers can be

easily obtained.

5.2 Sample Size

Now let us look at the second question about the minimum sample size needed to discriminate

between the two fitted distribution functions. This is an important question because although

asymptotically the two fitted distribution functions are always distinguishable, but for finite

sample it may be difficult to discriminate between the two. Intuitively, it is clear that if the

two distribution functions are very close, one needs a very large sample size to discriminate

between the two. On the other hand if two distribution functions are quite different then

one may not need very large sample size to discriminate between the two. Moreover, if two

distribution functions are very close to each other, then one may not need to differentiate

between the two from a practical point of view, see for details in [13]. Therefore, it is

expected that the user will specify the tolerance limit in terms of the distance between the

two distribution functions. The tolerance limit simply indicates that the user does not want

to make the distinction between the two distribution functions if their distance is less than

the tolerance limit. For the user specified tolerance limit the minimum sample required to

discriminate between generalized exponential distribution and the other distributions have

been provided in [13, 15, 21] for the given probability of correct selection.

5.3 Generating Data

Since the distribution functions of the generalized exponential distribution and gamma or

log-normal can be very close, this property can be exploited to generate gamma or normal

random variables using the generalized exponential distribution. The gamma or normal

distribution functions do not have explicit inverse functions, therefore, specific algorithms
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are needed to generate gamma or normal random numbers. It is observed [14] that for the

gamma distribution if the shape parameter is less than 2.5, then it can be generated quite

effectively using generalized exponential distribution. The exact values of the corresponding

shape and scale parameters of the generalized exponential distribution are available in [14].

In Fig. 1 of [21] it can be seen that the distribution functions of the GE(12.9,1) and log-

normal distribution function with the shape and scale parameters as 0.3807482 and 2.9508672

respectively are indistinguishable. Therefore, log-normal distribution with the correspond-

ing shape and scale parameters can be generated from the above generalized exponential

distribution. In [22] normal random numbers have been generated using the generalized

exponential distribution. Extensive simulations justified that this simple procedure is very

effective for generating normal random number. Moreover, it is also observed that the stan-

dard normal distribution function can be approximated very well ( up to third digit) by the

generalized exponential distribution function as follows:

Φ(z) ≈
(

1− e−e
1.0792510+0.3820198z

)12.8
. (23)

Note that even simple hand calculator can be used to compute (23).

5.4 Comparison of Fisher Information

Very recently, the authors [16] compared in detail the Fisher information of the Weibull and

generalized exponential distributions for both complete and censored samples. Interestingly,

it is observed that even though the two distribution functions can be quite close, their Fisher

information matrices can be quite different. The Fisher information matrices are compared

using the determinants and traces and it is observed that for certain ranges of the shape pa-

rameter Weibull model has more Fisher information than the generalized exponential model

and vice versa. The information losses due to truncation for the two models are critically
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examined theoretically as well as numerically. The authors compared the Fisher information

at the different percentile points which was used for model discrimination purposes also.

6 Conclusions

In this article we provide an introduction of this relatively new generalized exponential dis-

tribution. Although this is a particular member of a more general exponentiated model, it

is observed that this two-parameter model is quite flexible and can be used quite effectively

in analyzing positive lifetime data in place of well known gamma, Weibull or log-normal

model. Some of the salient features of the generalized exponential distributions are as fol-

lows. This particular distribution has several properties which are quite close to the gamma

distribution. Although, gamma distribution enjoys several nice theoretical properties, due

to its intractable distribution function it is quite difficult to use for data analysis purposes.

In real life wherever gamma distribution has been used we believe that the generalized ex-

ponential distribution also can be used. Because of its tractable distribution function, it can

be easily generated and if the data are censored this model can be used quite effectively. The

different Fisher information matrices for censored samples are available in [12, 33], although

not much development has taken place for censored data. Moreover, the introduction of

location parameter is also possible, see [9], but not much work has been done regarding

the three-parameter generalized exponential distribution, more work is needed along these

directions.
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