4th IAGA School July 2 – 7, 2019 Station de biologie des Laurentides (near Montreal), Quebec, Canada ## **Program** | Time/Date | 02. July
Tuesday | 03. July
Wednesday | 04. July
Thursday | 05. July
Friday | 06. July
Saturday | 07. July
Sunday | |-----------|---------------------|------------------------------------|-------------------------------------|--------------------------------------|----------------------|------------------------------------| | 7:30 | | Breakfast | Breakfast | Breakfast | Breakfast | Breakfast | | 8:30 | | Welcome | | | | | | 9:00 | | Geomagnetic
Field I | Core
Dynamics | Electromag-
netic
Induction I | Solar
Physics I | Planetary
Magnetism I | | | | | | | | Break | | 10:30 | | Break | Break | Break | Break | | | 11:00 | Arrival | Geomagnetic
Field I & II | Ionosphere
Magneto-
sphere I | Electromag-
netic
Induction II | Solar
Physics II | Planetary
Magnetism II
Lunch | | 12:30 | at | Lunch | Lunch | Lunch | Lunch | | | 13:30 | SBL | Geomagnetic
Field II
Project | Ionosphere
Magneto-
sphere II | | Project
Work | Project
Presentations | | | | Assignment | Spricie ii | Outing | | | | 15:00 | | Break | Break |] | Break | Departure | | 15:30 | | Project
Work | Project
Work | | Project
Work | | | 18:00 | Dinner | Dinner | Dinner | Dinner | Dinner | | #### The Geomagnetic Field #### David Kerridge British Geological Survey, Edinburgh, UK - 1. Geomagnetic observations - A little bit of history of people and observations - Magnetic observatories and instruments. INTERMAGNET. - Magnetic surveys: from Captain Cook to the 3satellite Swarm mission - Magnetic activity indices and observatory data applications - Spherical harmonic analysis - The International Geomagnetic Reference Field: the main field and its secular variations - Building 'comprehensive models' that incorporate other magnetic field sources - Using geomagnetic field data to investigate the core #### Core dynamics and the geodynamo #### Mathieu Dumberry University of Alberta, Canada - Force balance in the Earth's fluid core - Quasi-geostrophic flows - Magnetic field generation: competition between dynamo action and decay - Observed magnetic field variations - Decadal to millennial timescale flows in the core #### **Ionosphere and Magnetosphere** # **Andrew Yau**University of Calgary, Canada - Formation of planetary ionosphere - The Earth's ionosphere: composition and structure - The Earth's (internal and external) magnetic field: the solar wind - The Earth's magnetosphere: origin, composition and structure - Dynamics of the ionosphere: plasma processes in a magnetic field - Magnetosphere-lonosphere Coupling: the aurora and space weather #### Electromagnetic induction methods and applications #### Stephan Thiel Geological Suvey of South Australia - Introduction to electrical and EM methods - Electrical conductivity of Earth materials - Source fields for electromagnetic induction - Theoretical background of electromagnetic methods with focus on magnetotellurics - Analysing MT data: dimensionality, strike, anisotropy - Modelling of MT data: from 1D to 4D - Case studies: Tectonics and mineral exploration - Case studies: Geothermal exploration and hydraulic fracture monitoring #### Solar magnetic fields and activity cycle #### Alexandre Lemerle Collège de Bois-de-Boulogne, Canada - Observations of solar activity - Solar magnetism - The solar dynamo - MHD induction - Full set of MHD equations - Numerical modeling - Solar activity forecasting - Eruptive events, radiative variability, coronae, etc. #### **Planetary Magnetic Fields** #### Manar Al Asad University of British Columbia - A tour of planetary magnetic fields: our solar system - Flybys vs orbital data - Data sets available: how/where to get them - Separating internal and external fields - Upward and downward continuation - Core, crustal and induced fields - Discussion of Science/Nature papers ### **Projects:** #### Geomagnetism #### David Kerridge British Geological Survey, Edinburgh Guided computer-based exercises including: - Signals in magnetic observatory data from seconds to decades - Examples of spherical harmonic analysis in action including using the IGRF to trace field lines and find conjugate points - Building a 'mini-IGRF' from a Swarm data set - Estimating the core radius using geomagnetic field models #### **Magnetometers** (emphasis on fluxgate low frequency) #### **Martin Connors** Athabasca University, Canada - Magnetic detection, B and dB/dt - Signal transduction (A/D conversion) - Control and data transmission systems (small computers) - Assembly of test system - Data storage and plotting - Near-real-time results - Remote data access and magnetometer networks - Aspects of data inversion (advantages and pitfalls of indices; problems with inversions) IAGA gratefully acknowledges financial support for the 4th IAGA School from the European Geosciences Union (EGU) and GEM Systems Advanced Magnetometers, Ontario, Canada.