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Foreword to the Fifth, Revised Edition

Six years ago, in 1995, the Fourth Edition of Volume A appeared,
followed by corrected reprints in 1996 and 1998. A list of
corrections and innovations in the Fourth Edition was published in
Acta Cryst. (1995). A51, 592-595.

The present Fifth Edition is much more extensively revised than
any of its predecessors, even though the casual reader may not
notice these changes. In keeping with the new millennium, the
production of this edition has been completely computer-based.
Although this involved an unusually large amount of effort at the
start, it will permit easy and flexible modifications, additions and
innovations in the future, including a possible electronic version
of the volume. In the past, all corrections had to be done by ‘cut-
and-paste’ work based on the printed version of the book.

The preparation of this new edition involved the following steps:

(i) The space-group tables (Parts 6 and 7) were reprogrammed
and converted to IZTEX by M. 1. Aroyo and P. B. Konstantinov in
Sofia, Bulgaria, and printed from the I&IEX files. This work is
described in the article ‘Computer Production of Volume A’.

(i1) The existing, recently prepared space-group diagrams were
scanned and included in the I£IEX files.

(iii) The text sections of the volume were re-keyed in SGML
format under the supervision of S. E. Barnes and N. J. Ashcroft
(Chester) and printed from the resulting SGML files.

The following scientific innovations of the Fifth Edition are
noteworthy, apart from corrections of known errors and flaws;
these changes will again be published in Acta Cryst. Section A.

(1) The incorporation of the new symbol for the ‘double’ glide
plane ‘e’ into five space-group symbols, which was started in the
Fourth Edition (cf. Foreword to the Fourth Edition and Chapter
1.3), has been completed:

In the headlines of space groups Nos. 39, 41, 64, 67 and 68, the
new symbols containing the ‘e’ glide are now the ‘main’ symbols

XV

and the old symbols are listed as ‘Former space-group symbol’;
the new symbols also appear in the diagrams.

The symbol ‘e’ now also appears in the table in Section 1.3.1
and in Tables 3.1.4.1, 4.3.2.1, 12.3.4.1, 14.2.3.2 and 15.2.1.3.

(2) Several parts of the text have been substantially revised and
reorganized, especially the article Computer Production of
Volume A, Sections 2.2.13, 2.2.15 and 2.2.16, Parts 8, 9 and 10,
Section 14.2.3, and Part 15.

(3) A few new topics have been added:

Section 9.1.8, with a description of the Delaunay reduction (H.
Burzlaff & H. Zimmermann);

Chapter 9.3, Further properties of lattices (B. Gruber);

in Chapter 15.2, the affine normalizers of orthorhombic and
monoclinic space groups are now replaced by Euclidean normal-
izers for special metrics (E. Koch, W. Fischer & U. Miiller).

(4) The fonts for symbols for groups and for ‘augmented’
(4 x 4) matrices and (4 x 1) columns have been changed, e.g. G
instead of &, W instead of 2/ and r instead of +; ¢f. Chapter 1.1.

It is my pleasure to thank all those authors who have
contributed new programs or sections or who have substantially
revised existing articles: M. I. Aroyo (Sofia), H. Burzlaff
(Erlangen), B. Gruber (Praha), E. Koch (Marburg), P. B.
Konstantinov (Sofia), U. Miiller (Marburg), H. Wondratschek
(Karlsruhe) and H. Zimmermann (Erlangen). I am indebted to
S. E. Barnes and N. J. Ashcroft (Chester) for the careful and
dedicated technical editing of this volume. Finally, I wish to
express my sincere thanks to K. Str6z (Katowice) for his extensive
checking of the data in the space-group tables using his program
SPACER [J. Appl. Cryst. (1997), 30, 178-181], which has led to
several subtle improvements in the present edition.

Aachen, November 2001 THEO HAHN



Preface

By TH. HAHN

History of the International Tables

The present work can be considered as the first volume of the third
series of the International Tables. The first series was published in
1935 in two volumes under the title Internationale Tabellen zur
Bestimmung von Kristallstrukturen with C. Hermann as editor.
The publication of the second series under the title International
Tables for X-ray Crystallography started with Volume I in 1952,
with N. F. M. Henry and K. Lonsdale as editors. [Full references
are given at the end of Part 2. Throughout this volume, the earlier
editions are abbreviated as IT (1935) and IT (1952).] Three further
volumes followed in 1959, 1962 and 1974. Comparison of the title
of the present series, International Tables for Crystallography,
with those of the earlier series reveals the progressively more
general nature of the tables, away from the special topic of X-ray
structure determination. Indeed, it is the aim of the present work to
provide data and text which are useful for all aspects of
crystallography.

The present volume is called A in order to distinguish it from
the numbering of the previous series. It deals with crystallographic
symmetry in ‘direct space’. There are six other volumes in the
present series: Al (Symmetry relations between space groups), B
(Reciprocal space), C (Mathematical, physical and chemical
tables), D (Physical properties of crystals), E (Subperiodic
groups) and F (Crystallography of biological macromolecules).

The work on this series started at the Rome Congress in 1963
when a new ‘Commission on International Tables’ was formed,
with N. F. M. Henry as chairman. The main task of this
commission was to prepare and publish a Pilot Issue, consisting of
five parts as follows:

Year Part Editors
1972 Part 1: Direct Space N. F. M. Henry
1972 Part 2: Reciprocal Space Th. Hahn & H. Arnold
1969  Part 3: Patterson Data M. J. Buerger
1973  Part 4: Synoptic Tables J. D. H. Donnay,
E. Hellner &
N. F. M. Henry
1969  Part 5: Generalised Symmetry V. A. Koptsik

The Pilot Issue was widely distributed with the aim of trying out
the new ideas on the crystallographic community. Indeed, the
responses to the Pilor Issue were a significant factor in
determining the content and arrangement of the present volume.
Active preparation of Volume A started at the Kyoto Congress
in 1972 with a revised Commission under the Chairmanship of Th.
Hahn. The main decisions on the new volume were taken at a full
Commission meeting in August 1973 at St. Nizier, France, and
later at several smaller meetings at Amsterdam (1975), Warsaw
(1978) and Aachen (1977/78/79). The manuscript of the volume
was essentially completed by the time of the Ottawa Congress
(1981), when the tenure of the Commission officially expired.
The major work of the preparation of the space-group tables in
the First Edition of Volume A was carried out between 1972 and
1978 by D. S. Fokkema at the Rekencentrum of the Rijksuni-
versiteit Groningen as part of the Computer trial project, in close
cooperation with A. Vos, D. W. Smits, the Editor and other
Commission members. The work developed through various
stages until at the end of 1978 the complete plane-group and
space-group tables were available in printed form. The following

years were spent with several rounds of proofreading of these
tables by all members of the editorial team, with preparation and
many critical readings of the various theoretical sections and with
technical preparations for the actual production of the volume.

The First Edition of Volume A was published in 1983. With
increasing numbers of later ‘Revised Editions’, however, it
became apparent that corrections and modifications could not be
done further by ‘cut-and-paste’ work based on the printed version
of the volume. Hence, for this Fifth Edition, the plane- and space-
group data have been reprogrammed and converted to an
electronic form by M. I. Aroyo and P. B. Konstantinov (details
are given in the following article Computer Production of Volume
A) and the text sections have been re-keyed in SGML format. The
production of the Fifth Edition was thus completely computer-
based, which should allow for easier corrections and modifications
in the future, as well as the possibility of an electronic version of
the volume.

Scope and arrangement of Volume A

The present volume treats the symmetries of one-, two- and three-
dimensional space groups and point groups in direct space. It thus
corresponds to Volume 1 of IT (1935) and to Volume I of IT
(1952). Not included in Volume A are ‘partially periodic groups’,
like layer, rod and ribbon groups, or groups in dimensions higher
than three. (Subperiodic groups are discussed in Volume E of this
series.) The treatment is restricted to ‘classical’ crystallographic
groups (groups of rigid motions); all extensions to ‘generalized
symmetry’, like antisymmetric groups, colour groups, symmetries
of defect crystals efc., are beyond the scope of this volume.

Compared to its predecessors, the present volume is consider-
ably increased in size. There are three reasons for this:

(1) Extensive additions and revisions of the data and diagrams in
the Space-group tables (Parts 6 and 7), which lead to a standard
layout of two pages per space group (see Section 2.2.1), as
compared to one page in IT (1935) and IT (1952);

(i) Replacement of the introductory text by a series of
theoretical sections;

(iii) Extension of the synoptic tables.

The new features of the description of each space group, as
compared to IT (1952), are as follows:

(1) Addition of Patterson symmetry;

(2) New types of diagrams for triclinic, monoclinic and
orthorhombic space groups;

(3) Diagrams for cubic space groups, including stereodiagrams
for the general positions;

(4) Extension of the origin description;

(5) Indication of the asymmetric unit;

(6) List of symmetry operations;

(7) List of generators;

(8) Coordinates of the general position ordered according to the
list of generators selected;

(9) Inclusion of oriented site-symmetry symbols;

(10) Inclusion of projection symmetries for all space groups;

(11) Extensive listing of maximal subgroups and minimal
supergroups;

(12) Special treatment (up to six descriptions) of monoclinic
space groups;
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(13) Symbols for the lattice complexes of each space group
(given as separate tables in Part 14).

(14) Euclidean and affine normalizers of plane and space
groups are listed in Part 15.

The volume falls into two parts which differ in content and, in
particular, in the level of approach:

The first part, Parts 1-7, comprises the plane- and space-group
tables themselves (Parts 6 and 7) and those parts of the volume
which are directly useful in connection with their use (Parts 1-5).
These include definitions of symbols and terms, a guide to the use
of the tables, the determination of space groups, axes transforma-
tions, and synoptic tables of plane- and space-group symbols.
Here, the emphasis is on the practical side. It is hoped that these
parts with their many examples may be of help to a student or
beginner of crystallography when they encounter problems during
the investigation of a crystal.

In contrast, Parts 8—15 are of a much higher theoretical level
and in some places correspond to an advanced textbook of
crystallography. They should appeal to those readers who desire a
deeper theoretical background to space-group symmetry. Part 8
describes an algebraic approach to crystallographic symmetry,
followed by treatments of lattices (Part 9) and point groups (Part
10). The following three parts deal with more specialized topics
which are important for the understanding of space-group
symmetry: symmetry operations (Part 11), space-group symbols
(Part 12) and isomorphic subgroups (Part 13). Parts 14 and 15
discuss lattice complexes and normalizers of space groups,
respectively.

At the end of each part, references are given for further studies.

Contributors to the space-group tables

The crystallographic calculations and the computer typesetting
procedures for the First Edition (1983) were performed by D. S.
Fokkema. For the Fifth Edition, the space-group data were
reprogrammed and converted to an electronic form by M. I. Aroyo
and P. B. Konstantinov. Details are given in the following article
Computer Production of Volume A.

The following authors supplied lists of data for the space-group
tables in Parts 6 and 7:

Headline and Patterson symmetry: Th. Hahn & A. Vos.
Origin: J. D. H. Donnay, Th. Hahn & A. Vos.
Asymmetric unit: H. Arnold.

Names of symmetry operations: W. Fischer & E. Koch.
Generators: H. Wondratschek.

Oriented site-symmetry symbols: J. D. H. Donnay.

Maximal non-isomorphic subgroups: H. Wondratschek.

Maximal isomorphic subgroups of lowest index: E. F. Bertaut
& Y. Billiet; W. Fischer & E. Koch.

Minimal non-isomorphic supergroups: H. Wondratschek, E. F.
Bertaut & H. Arnold.

The space-group diagrams for the First Edition were prepared
as follows:

Plane groups: Taken from IT (1952).

Triclinic, monoclinic & orthorhombic space groups: M. J.
Buerger; amendments and diagrams for ‘synoptic’ descriptions of
monoclinic space groups by H. Arnold. The diagrams for the
space groups Nos. 47-74 (crystal class mmm) were taken, with
some modifications, from the book: M. J. Buerger (1971),
Introduction to Crystal Geometry (New York: McGraw-Hill) by
kind permission of the publisher.

Tetragonal, trigonal & hexagonal space groups: Taken from IT
(1952); amendments and diagrams for ‘origin choice 2’ by H.
Arnold.

Cubic space groups, diagrams of symmetry elements: M. J.
Buerger; amendments by H. Arnold & W. Fischer. The diagrams
were taken from the book: M. J. Buerger (1956), Elementary
Crystallography (New York: Wiley) by kind permission of the
publisher.

Cubic space groups, stereodiagrams of general positions: G. A.
Langlet.

New diagrams for all 17 plane groups and all 230 space groups
were incorporated in stages in the Second, Third and Fourth
Editions of this volume. This project was carried out at Aachen by
R. A. Becker. All data and diagrams were checked by at least two
further members of the editorial team until no more discrepancies
were found.

At the conclusion of this Preface, it should be mentioned that
during the preparation of this volume several problems led to long
and sometimes controversial discussions. One such topic was the
subdivision of the hexagonal crystal family into either hexagonal
and trigonal or hexagonal and rhombohedral systems. This was
resolved in favour of the hexagonal-trigonal treatment, in order to
preserve continuity with I7 (1952); the alternatives are laid out in
Sections 2.1.2 and 8.2.8.

An even greater controversy evolved over the treatment of the
monoclinic space groups and in particular over the question
whether the b axis, the ¢ axis, or both should be permitted as the
‘unique’ axis. This was resolved by the Union’s Executive
Committee in 1977 by taking recourse to the decision of the 1951
General Assembly at Stockholm [cf. Acta Cryst. (1951). 4, 569]. It
is hoped that the treatment of monoclinic space groups in this
volume (cf: Section 2.2.16) represents a compromise acceptable to
all parties concerned.
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Computer Production of Volume A

First Edition, 1983

By D. S. FOKKEMA

Starting from the ‘Generators selected’ for each space group, the
following data were produced by computer on the so-called
‘computer tape’:

(i) The coordinate triplets of the general and special positions;
(ii) the locations of the symmetry elements;

(iii) the projection data;

(iv) the reflection conditions.

For some of these items minor interference by hand was
necessary.

Further data, such as the headline and the sub- and supergroup
entries, were supplied externally, in the form of punched cards.
These data and their authors are listed in the Preface. The file
containing these data is called the ‘data file’. To ensure that the
data file was free of errors, all its entries were punched and coded
twice. The two resulting data files were compared by a computer
program and corrected independently by hand until no more
differences remained.

By means of a typesetting routine, which directs the different
items to given positions on a page, the proper lay-out was obtained
for the material on the computer tape and the data file. The
resulting ‘page file’ also contained special instructions for the
typesetting machine, for instance concerning the typeface to be
used. The final typesetting in which the page file was read
sequentially line by line was done without further human
interference. After completion of the pages the space-group
diagrams were added. Their authors are listed in the Preface too.

In the following a short description of the computer programs is
given.

(1) Positions

In the computer program the coordinate triplets of the general
position are considered as matrix representations of the symmetry
operations (cf. Section 2.11) and are given by (4 x 4) matrices.
The matrices of the general position are obtained by single-sided
multiplication of the matrices representing the generators until no
new matrices are found. Resulting matrices which differ only by a
lattice translation are considered as equal. The matrices are
translated into the coordinate-triplet form by a printing routine.

The coordinate triplets of the special positions describe points,
lines, or planes, each of which is mapped onto itself by at least one
symmetry operation of the space group (apart from the identity).
This means that they can be found as a subspace of three-
dimensional space which is invariant with respect to this
symmetry operation. In practice, for a particular symmetry
operation W the special coordinate triplet E representing the
invariant subspace is computed. All triplets of the corresponding
Wyckoff position are obtained by applying all symmetry
operations of the space group to E. In the resulting list triplets
which are identical to a previous one, or differ by a lattice
translation from it, are omitted. To generate all special Wyckoff
positions the complete procedure, mentioned above, is repeated
for all symmetry operations W of the space group. Finally, it was
decided to make the sequence of the Wyckoff positions and the
first triplet of each position the same as in earlier editions of the
Tables. Therefore, the Wyckoff letters and the first triplets were
supplied by hand after which the necessary arrangements were
carried out by the computer program.

(ii) Symmetry operations

Under the heading Symmetry operations, for each of the
operations the name of the operation and the location of the
corresponding symmetry element are given. To obtain these
entries a list of all conceivable symmetry operations including
their names was supplied to the computer. After decomposi-
tion of the translation part into a location part and a glide or
screw part, each symmetry operation of a space group is
identified with an operation in the list by comparing their
rotation parts and their glide or screw parts. The location of
the corresponding symmetry element is, for symmetry opera-
tions without glide or screw parts, calculated as the subspace
of three-dimensional space that is invariant under the
operation. For operations containing glide or screw compo-
nents, this component is first subtracted from the (4 x 4)
matrix representing the operation according to the procedure
described in Section 11.3, and then the invariant subspace is
calculated.

From the complete set of solutions of the equation describing
the invariant subspace it must be decided whether this set
constitutes a point, a line, or a plane. For rotoinversion axes the
location of the inversion point is found from the operation itself,
whereas the location and direction of the axis is calculated from
the square of the operation.

(>iii) Symmetry of special projections

The coordinate doublets of a projection are obtained by
applying a suitable projection operator to the coordinate triplets
of the general position. The coordinate doublets, i.e. the projected
points, exhibit the symmetry of a plane group for which, however,
the coordinate system may differ from the conventional
coordinate system of that plane group. The program contains a
list with all conceivable transformations and with the coordinate
doublets of each plane group in standard notation. After
transformation, where necessary, the coordinate doublets of the
particular projection are identified with those of a standard plane
group. In this way the symmetry group of the projection and the
relations between the projected and the conventional coordinate
systems are determined.

(iv) Reflection conditions

For each Wyckoff position the triplets A, k, [ are divided into
two sets,

(1) triplets for which the structure factors are systematically
zero (extinctions), and

(2) triplets for which the structure factors are not systematically
zero (reflections).

Conditions that define triplets of the second set are called
reflection conditions.

The computer program contained a list of all conceivable
reflection conditions. For each Wyckoff position the general and
special reflection conditions were found as follows. A set of &, k, [
triplets with A, k, and [ varying from O to 12 was considered. For
the Wyckoff position under consideration all structure factors
were calculated for this set of A, k, [ triplets for positions x = 1/p,
y=1/q, z=1/r with p, ¢, and r different prime numbers larger
than 12.

In this way accidental zeros were avoided. The 4, k, [ triplets
were divided into two groups: those with zero and those with non-
zero structure factors. The reflection conditions for the Wyckoff
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position under consideration were selected from the stored list of
all conceivable reflection conditions by the following procedure:

(1) All conditions which apply to at least one h, k, [ triplet of the
set with structure factor zero are deleted from the list of all
conceivable reflection conditions,

(2) conditions which do not apply to at least one A, k, [ triplet of
the set with structure factor non-zero are deleted,

(3) redundant conditions are removed by ensuring that each 4, k,
! triplet with structure factor non-zero is described by one
reflection condition only.

Finally the completeness of the resulting reflection conditions
for the Wyckoff position was proved by verifying that for each A,
k, I triplet with non-zero structure factor there is a reflection
condition that describes it. If this turned out not to be the case the
list of all conceivable reflection conditions stored in the program
was evidently incomplete and had to be extended by the missing
conditions, after which the procedure was repeated.

Fifth, Revised Edition, 2002

By M. 1. Aroyo AND P. B. KONSTANTINOV

The computer production of the space-group tables in 1983
described above served well for the first and several subsequent
editions of Volume A. With time, however, it became apparent
that a modern, versatile and flexible computer version of the entire
volume was needed (cf. Preface and Foreword to the Fifth,
Revised Edition).

Hence, in October 1997, a new project for the electronic
production of the Fifth Edition of Volume A was started. Part of
this project concerned the computerization of the plane- and
space-group tables (Part 6 and 7), excluding the space-group
diagrams. The aim was to produce a PostScript file of the content
of these tables which could be used for printing from and in which
the layout of the tables had to follow exactly that of the previous
editions of Volume A. Having the space-group tables in electronic
form opens the way for easy corrections and modifications of later
editions, as well as for a possible future electronic edition of
Volume A.

The I£IEX document preparation system [Lamport, L. (1994). A
Document Preparation System, 2nd ed. Reading, MA: Addison-
Wesley], which is based on the TEX typesetting software, was
used for the preparation of these tables. It was chosen because of
its high versatility and general availability on almost any
computer platform.

A separate file was created for each plane and space group and
each setting. These ‘data files’ contain the information listed in the
plane- and space-group tables and are encoded using standard
IAEX constructs. These specially designed commands and
environments are defined in a separate ‘package’ file, which
essentially contains programs responsible for the typographical
layout of the data. Thus, the main principle of I£[EX — keeping
content and presentation separate — was followed as closely as
possible.

The final typesetting of all the plane- and space-group tables
was done by a single computer job, taking 1 to 2 minutes on a
modern workstation. References in the tables from one page to
another were automatically computed. The result is a PostScript
file which can be fed to a laser printer or other modern printing or
typesetting equipment.

The different types of data in the IATEX files were either keyed
by hand or computer generated, and were additionally checked by
specially written programs. The preparation of the data files can be
summarized as follows:

Headline, Origin, Asymmetric unit: hand keyed.

Symmetry operations: partly created by a computer program.
The algorithm for the derivation of symmetry operations from
their matrix representation is similar to that described in the
literature [e.g. Hahn, Th. & Wondratschek, H. (1994). Symmetry
of Crystals. Sofia: Heron Press]. The data were additionally
checked by automatic comparison with the output of the computer
program SPACER [Str6z, K. (1997). SPACER: a program to
display space-group information for a conventional and noncon-
ventional coordinate system. J. Appl. Cryst. 30, 178-181].

Generators: transferred automatically from the database of the
forthcoming Volume Al of International Tables for Crystal-
lography, Symmetry Relations between Space Groups (edited by
H. Wondratschek & U. Miiller), hereafter referred to as IT Al.

General positions: created by a program. The algorithm uses
the well known generating process for space groups based on
their solvability property (H. Wondratschek, Part 8 of this
volume).

Special positions: The first representatives of the Wyckoff
positions were typed in by hand. The Wyckoff letters are assigned
automatically by the TgEX macros according to the order of
appearance of the special positions in the data file. The
multiplicity of the position, the oriented site-symmetry symbol
and the rest of the representatives of the Wyckoff position were
generated by a program. Again, the data were compared with the
results of the program SPACER.

Reflection conditions: hand keyed. A program for automatic
checking of the special-position coordinates and the corre-
sponding reflection conditions with A, k, [ ranging from —20 to
20 was developed.

Symmetry of special projections: hand keyed.

Maximal subgroups and minimal supergroups: most of the data
were automatically transferred from the data files of /7 Al. The
macros for their typesetting were reimplemented to obtain exactly
the layout of Volume A. The data of isomorphic subgroups (IIc)
with indices greater than 4 were added by hand.

The contents of the I&[EX files and the arrangement of the data
correspond exactly to that of previous editions of this volume with
the following exceptions:

(1) Introduction of the glide-plane symbol ‘e’ [Wolff, P. M. de,
Billiet, Y., Donnay, J. D. H., Fischer, W., Galiulin, R. B., Glazer,
A. M., Hahn, Th., Senechal, M., Shoemaker, D. P., Wondratschek,
H., Wilson, A. J. C. & Abrahams, S. C. (1992). Symbols for
symmetry elements and symmetry operations. Acta Cryst. A48,
727-732] in the conventional Hermann—Mauguin symbols as
described in Chapter 1.3, Note (x). The new notation was also
introduced for some origin descriptions and in the nonconven-
tional Hermann—-Mauguin symbols of maximal subgroups.

(i1) Changes in the subgroup and supergroup data following the
IT A1 conventions:

(1) Introduction of space-group numbers for subgroups and
supergroups.

(2) Introduction of braces indicating the conjugation relations
for maximal subgroups of types I and Ila.

(3) Rearrangement of the subgroup data: subgroups are listed
according to rising index and falling space-group number within
the same lattice-relation type.

(4) Analogous rearrangement of the supergroup data: the
minimal supergroups are listed according to rising index and
increasing space-group number. In a few cases of type-II minimal
supergroups, however, the index rule is not followed.

(5) Nonconventional symbols of monoclinic subgroups: in the
cases of differences between Volume A and IT Al for these
symbols, those used in /7 Al have been chosen.
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(6) Isomorphic subgroups: in listing the isomorphic subgroups
of lowest index (type Ilc), preference was given to the index and
not to the direction of the principal axis (as had been the case in
previous editions of this volume).

(iii) Improvements to the data in Volume A proposed by K.
Stréz:

(1) Changes of the translational part of the generators (2) and (3)
of Fd3 (203), origin choice 2;

(2) Changes in the geometrical description of the glide planes
of type x, 2x, z for the groups R3m (160), R3c (161), R3m (166),
R3c (167), and the glide planes X, y, x for Fm3m (225), Fd3m
(227);

XX

(3) Changes in the sequence of the positions and symmetry
operations for the ‘rhombohedral axes’ descriptions of space
groups R32 (155), R3m (160), R3¢ (161), R3m (166) and R3c
(167), cf. Sections 2.2.6 and 2.2.10.

The electronic preparation of the plane- and space-group tables
was carried out on various Unix and Windows-based computers in
Sofia, Bilbao and Karlsruhe. The development of the computer
programs and the layout macros in the package file was done in
parallel by different members of the team, which included Asen
Kirov (Sofia), Eli Kroumova (Bilbao), Preslav Konstantinov and
Mois Aroyo. Hans Wondratschek and Theo Hahn contributed to
the final arrangement and checking of the data.
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1.4. Graphical symbols for symmetry elements in one, two and three dimensions

By TH. HAHN

1.4.1. Symmetry planes normal to the plane of projection (three dimensions) and symmetry lines in the plane of the

figure (two dimensions)

Glide vector in units of lattice translation
vectors parallel and normal to the projection
Symmetry plane or symmetry line Graphical symbol plane Printed symbol
Reflection plane, mirror plane None m
Reflection line, mirror line (two dimensions)
‘Axial’ glide plane %lattice vector along line in projection plane a, borc
Glide line (two dimensions) ) | ~— T T77 %lattice vector along line in figure plane g
‘Axial’ glide plane | eescseseeiennnns % lattice vector normal to projection plane a,borc
‘Double’ glide plane* (in centred cells only) | = ce==eemmee—ee Two glide vectors: e
% along line parallel to projection plane and
% normal to projection plane
‘Diagonal’ glide plane | eei————— One glide vector with two components: n
% along line parallel to projection plane,
% normal to projection plane
‘Diamond’ glide planef (pair of planes; in centred cells —— e — % along line parallel to projection plane, d
only) ——— e combined with jT normal to projection plane
(arrow indicates direction parallel to the
projection plane for which the normal
component is positive)

* For further explanations of the ‘double’ glide plane e see Note (iv) below and Note (x) in Section 1.3.2.

T See footnote § to Section 1.3.1.

1.4.2. Symmetry planes parallel to the plane of projection

Glide vector in units of lattice translation vectors
Symmetry plane Graphical symbol* parallel to the projection plane Printed symbol
Reflection plane, mirror plane I / None m
‘Axial’ glide plane l—— r % lattice vector in the direction of the arrow a,borc
‘Double’ glide planet (in centred cells only) Two glide vectors: e
I % in either of the directions of the two arrows
‘Diagonal’ glide plane One glide vector with two components n
l 1 in the direction of the arrow
‘Diamond’ glide planei (pair of planes; in centred % in the direction of the arrow; the glide vector is d
cells only) always half of a centring vector, i.e. one quarter
Jl || ‘ ) .
E1RES of a diagonal of the conventional face-centred
cell

* The symbols are given at the upper left corner of the space-group diagrams. A fraction £ attached to a symbol indicates two symmetry planes with ‘heights’ 4 and h +%
above the plane of projection; e.g. é stands for h = é and % No fraction means & = 0 and % (cf. Section 2.2.6).
1 For further explanations of the ‘double’ glide plane e see Note (iv) below and Note (x) in Section 1.3.2.

i See footnote § to Section 1.3.1.




2. GUIDE TO THE USE OF THE SPACE-GROUP TABLES

a3

by
as \
0
a
[001] by
G
b3 a b3 al

Fig. 2.2.6.4. Monoclinic space groups, cell choices 1, 2, 3. Upper pair of
diagrams: setting with unique axis b. Lower pair of diagrams: setting
with unique axis c¢. The numbers 1, 2, 3 within the cells and the
subscripts of the labels of the axes indicate the cell choice (cf. Section
2.2.16). The unique axis points upwards from the page.

standard setting, a, b, ¢, into those of the setting considered. For
instance, the setting symbol cab stands for the cyclic permutation

a=c, b=a c=b

or

010
(@b'¢)=(abe)| 0 0 1 | = (cab),
1 00

where a’, b/, ¢’ is the new set of basis vectors. An interchange of two
axes reverses the handedness of the coordinate system; in order to
keep the system right-handed, each interchange is accompanied by
the reversal of the sense of one axis, i.e. by an element 1 in the
transformation matrix. Thus, bac denotes the transformation

0 b c 0

[001] [010]
a a
c 0 b

[001]
G
[100] a

0 b

Fig. 2.2.6.5. Orthorhombic space groups. Diagrams for the ‘standard
setting” as described in the space-group tables (G = general-position
diagram).

22

0
0 | = (bac).

1

(a'b’c’) = (abe)

S = O
S O =

The six orthorhombic settings correspond to six Hermann—Mauguin
symbols which, however, need not all be different; cf. Table
2.2.6.1.%

In the earlier (1935 and 1952) editions of International Tables,
only one setting was illustrated, in a projection along c, so that it
was usual to consider it as the ‘standard setting’ and to accept its cell
edges as crystal axes and its space-group symbol as ‘standard
Hermann—-Mauguin symbol’. In the present edition, however, all six
orthorhombic settings are illustrated, as explained below.

The three projections of the symmetry elements can be
interpreted in two ways. First, in the sense indicated above, that
is, as different projections of a single (standard) setting of the space
group, with the projected basis vectors a, b, ¢ labelled as in Fig.
2.2.6.5. Second, each one of the three diagrams can be considered as
the projection along ¢’ of either one of two different settings: one
setting in which b’ is horizontal and one in which b’ is vertical
(@', b', ¢ refer to the setting under consideration). This second
interpretation is used to illustrate in the same figure the space-group
symbols corresponding to these two settings. In order to view these
projections in conventional orientation (b’ horizontal, a’ vertical,
origin in the upper left corner, projection down the positive ¢’ axis),
the setting with b’ horizontal can be inspected directly with the
figure upright; hence, the corresponding space-group symbol is
printed above the projection. The other setting with b’ vertical and
a’ horizontal, however, requires turning the figure over 90°, or
looking at it from the side; thus, the space-group symbol is printed
at the left, and it runs upwards.

The ‘setting symbols’ for the six settings are attached to the three
diagrams of Fig. 2.2.6.6, which correspond to those of Fig. 2.2.6.5.
In the orientation of the diagram where the setting symbol is read in
the usual way, a’ is vertical pointing downwards, b’ is horizontal
pointing to the right, and ¢ is pointing upwards from the page. Each
setting symbol is printed in the position that in the space-group
tables is actually occupied by the corresponding full Hermann—
Mauguin symbol. The changes in the space-group symbol that are

* A space-group symbol is invariant under sign changes of the axes; i.e. the same
symbol applies to the right-handed coordinate systems abe, abc,abc,abc and the
left-handed systems abc, abc, abc, abc.

abc ach

bac
cab

cba

bca

Fig. 2.2.6.6. Orthorhombic space groups. The three projections of the
symmetry elements with the six setting symbols (see text). For setting
symbols printed vertically, the page has to be turned clockwise by 90° or
viewed from the side. Note that in the actual space-group tables instead
of the setting symbols the corresponding full Hermann-Mauguin space-
group symbols are printed.



4.2. Symbols for plane groups (two-dimensional space groups)

BY E. F. BERTAUT

4.2.1. Arrangement of the tables

Comparative tables for the 17 plane groups first appeared in
IT (1952). The classification of plane groups is discussed in Chapter
2.1. Table 4.2.1.1 lists for each plane group its system, lattice
symbol, point group and the plane-group number, followed by
the short, full and extended Hermann—Mauguin symbols. Short
symbols are included only where different from the full symbols.
The next column contains the full symbol for another setting which
corresponds to an interchange of the basis vectors a and b; it is only
needed for the rectangular system. Multiple cells ¢ and % for the
square and the hexagonal system are introduced in the last column.

4.2.2. Additional symmetry elements and extended
symbols

‘Additional symmetry’ elements are

(i) rotation points 2, 3 and 4, reproduced in the interior of the cell
(¢f. Table 4.1.2.1 and plane-group diagrams in Part 6);

(ii) glide lines g which alternate with mirror lines m.

In the extended plane-group symbols, only the additional glide
lines g are listed: they are due either to ¢ centring or to ‘inclined’
integral translations, as shown in Table 4.1.2.2.

4.2.3. Multiple cells
The c cell in the square system is defined as follows:
a=aFb; b==da+h,

with ‘centring points’ at 0, 0; %, % It plays the same role as the three-
dimensional C cell in the tetragonal system (cf. Section 4.3.4).

Likewise, the triple cell / in the hexagonal system is defined as
follows:

a=a—b; b=a+2b,

with ‘centring points’ at 0, 0; 3, 1:1, 3. It is the two-dimensional

analogue of the three-dimensional H cell (c¢f. Chapter 1.2 and
Section 4.3.5).

4.2.4. Group-subgroup relations

The following example illustrates the usefulness of multiple cells.

Example: p3ml (14)
The symbol of this plane group, described by the triple cell 4, is
h31m, where the symmetry elements of the secondary and
tertiary positions are interchanged. ‘Decentring’ the h cell gives
rise to maximal non-isomorphic k subgroups p31m of index [3],
with lattice parameters av/3, a\/b7 (cf. Section 4.3.5).

Table 4.2.1.1. Index of symbols for plane groups

Hermann—Mauguin symbol
System and No. of plane Full symbol for
lattice symbol Point group group Short Full Extended other setting Multiple cell
Oblique 1 pl
)4 2 2 p2
Rectangular 3 pm plml pllm
p.c m 4 P8 plgl pllg
5 cm clml clml cllm
6 p2mm 8 p2mm
7 p2mg p2gm
2mm
8 p2gg P28
9 c2mm c2mm c2mm
88
Square 4 10 p4 c4
p 11 pamm pdmm cdmm
4mm 8 8
12 pagm plgm cdmg
8 8
Hexagonal 3 13 p3 h3
)4 14 p3ml p3ml h31m
3m 8 8
15 p3lm p3lm h3ml
8 8
6 16 po6 h6
6mm 17 pomm pomm h6mm
88 88
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P 6b6mm 6mm Hexagonal

No. 17 P 6 mm Patterson symmetry p6mm

Origin at 6mm

Asymmetric unit 0<x<
0,0 ;3

Vertices 1,0 34
Symmetry operations
)1 (2) 3* 0,0 (3) 37 0,0
4 2 0,0 (5) 60 0,0 (6) 6" 0,0
(7 m x,x ®) m x,2x 9 m 2x,x
(10) m x,x (11) m x,0 (12) m 0,y
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CONTINUED

Generators selected (1); #(1,0); ¢(0,1); (2); (4); (7)

Positions

Multiplicity, Coordinates
Wyckoff letter,
Site symmetry

12 f 1 (1) x,y () yx—y (3) x+y,x
) x,y () y,x+y (6) x—y,x
(7 y,x (®) x+y,y O x,x—y
(10) y,x aD x—yy (12) x,x+y
6 e m X, X X,2x 2X, X% X, x X, 2%
6 d m x,0 0,x XX x,0 0,x
3 ¢ 2mm 1,0 0,1 1,3
2 b 3m. T HE
1 a 6mm 0,0

Maximal non-isomorphic subgroups

| [21 p611(p6, 16) 1; 2; 3; 4, 5; 6
[2] p31m (15) 1; 2; 3; 10; 11; 12
[21 p3m1(14) 1; 2; 3; 7, 8 9
[Blp2mm(c2mm,9) 1; 4; 7; 10
Blp2mm(c2mm,9) 1; 4; 8; 11
[Blp2mm(c2mm,9) 1; 4; 9; 12

IIa none

IIb none

Maximal isomorphic subgroups of lowest index
IIc  [3]h6mm(a’ =3a,b’ =3b) (p6mm, 17)

Minimal non-isomorphic supergroups
I none
I none
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2x,x

pbmm

Reflection conditions

General:

no conditions

Special: no extra conditions



5
C2h

P12,/cl

P2,/c
No. 14

UNIQUE AXIS b, CELL CHOICE 1

B

vees
.....
*eaes
.......
.....
eee
_____

.
..
........
..
cee
ces
........
e
“ees

Origin at 1

Asymmetric unit 0<x<1; 0<y<i 0<z<l1

Symmetry operations

(1 2 2(0,5,0) 0,y,3 3) 1 0,0,0

2/m Monoclinic
Patterson symmetry P12/m 1
— "
| I
— ! ! —
I |
o | | o]
' [
-— | I —_—
[ | .
I | | s
20 -0
O+ O+
#+O O
r olt
-O© -©
O+ O+
4) ¢ x4,z
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CONTINUED No. 14 P2,/c

Generators selected (1); #(1,0,0); #(0,1,0); #(0,0,1); (2); (3)

Positions
Multiplicity, Coordinates Reflection conditions
Wyckoff letter,
Site symmetry General:
4 e 1 (D x,y,z ) xy+3,2+4; (3) x5,z B x,y+3,2+3 hOL = I=2n
0kO: k=2n
00l : I=2n
Special: as above, plus
2 d 1 1,03 1,1,0 hkl : k+1=12n
2 ¢ 1 0,0,3 0,3,0 hkl : k+1=12n
2 b 1 1,0,0 3y3,3 hkl : k+1=12n
2 a 1 0,0,0 0,1,3 hkl : k+1=2n
Symmetry of special projections
Along [001] p2gm Along [100] p2gg Along [010] p2
a=a b =b a=b b'=c, a =;c b =a
Origin at 0,0,z Origin at x,0,0 Origin at 0,y,0

Maximal non-isomorphic subgroups
I [21P1cl(Pc,7) 1; 4
[2]P12,1(P2,,4) 1;2
21 P1(2) 1; 3
IIa none
IIb  none

s

Maximal isomorphic subgroups of lowest index
IIc [2]P12/cl(a =2aora =2a,¢ =2a+c)(P2/c, 14);[31P12,/c1(b' =3b) (P2 /c, 14)

Minimal non-isomorphic supergroups

I [2]1 Pnna (52); [2] Pmna (53); [2] Pcca (54); [21 Pbam (55); [2] Pccn (56); [21 Pbcm (57); [2] Pnnm (58); [2] Pbcn (60);
[21Pbca(61); [2] Pnma (62); [2] Cmce (64)

I [2]A12/m1(C2/m, 12);[21C12/c1(C2/c, 15); [2]1112/c1(C2/c, 15); [21P12,/m1 (¢ = i¢) (P2, /m, 11);
[21P12/c1 (b = ib)(P2/c, 13)
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5
P 21/ C C2h 2/m Monoclinic
No. 14

UNIQUE AXIS b, DIFFERENT CELL CHOICES

P12,/cl o/

UNIQUE AXIS b, CELL CHOICE 1 A.

Origin at 1
Asymmetric unit 0<x<1; 0<y<i 0<z<l1

Generators selected (1); #(1,0,0); #(0,1,0); #(0,0,1); (2); (3)

Positions
Multiplicity, Coordinates Reflection conditions
Wyckoff letter,
Site symmetry General:
4 e 1 (D x,y,z ) xy+3,2+; (3) %,3,2 B x,y+3,2+; hOl : 1 =2n
0kO: k=2n
00/ : I=2n
Special: as above, plus
2 d 1 5,03 11,0 hkl : k+1=2n
2 ¢ 1 0,0,3 0,3,0 hkl © k+1=2n
2 b 1 1,0,0 1033 hkl © k+1=2n
2 a 1 0,0,0 0,1,1 hkl © k+1=2n
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CONTINUED No. 14 P2,/c

P12,/n1

UNIQUE AXIS b, CELL CHOICE 2

Origin at 1
Asymmetric unit 0<x<1; 0<y<i 0<z<lI

Generators selected (1); #(1,0,0); 7(0,1,0); #(0,0,1); (2); (3)

Positions
Multiplicity, Coordinates Reflection conditions
Wyckoff letter,
Site symmetry General:
4 e 1 (D x,y,z () x+3,y+15,2+3 (3) x5,z ®) x+3,9+5,2+3 hOL = h+1="2n
0kO: k=2n
h00: h=2n
00l : I[=2n
Special: as above, plus
2 d 1 1,0,0 0,3,3 hkl © h+k+1=2n
2 ¢ 1 10,1 0,10 hkl © h+k+1="2n
2 b 1 0,0,1 3,3,0 hkl : h+k+1=2n
2 a 1 0,0,0 140 hkl © h+k+1=2n
P12, /al

UNIQUE AXIS b, CELL CHOICE 3

Origin at 1
Asymmetric unit 0<x<1; 0<y<i 0<z<l1

Generators selected (1); #(1,0,0); 7(0,1,0); #(0,0,1); (2); (3)

Positions
Multiplicity, Coordinates Reflection conditions
Wyckoff letter,
Site symmetry General:
4 e 1 (1) x,y,z ) x+1,y+3,2 (3) %,z B x+3,5+71,2 hOL : h=2n
0kO: k=2n
h00: h=2n

Special: as above, plus

2 d 1 0,0, iy hkl : h+k=2n
2 ¢ 1 1,0,0 0,1,0 hkl : h+k=2n
2 b 1 1,0, 0,1, Rkl : h+k=2n
2 a 1 0,0,0 11,0 hkl : h+k=2n
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8.2. Classifications of space groups, point groups and lattices

By H. WONDRATSCHEK

8.2.1. Introduction

One of the main tasks of theoretical crystallography is to sort the
infinite number of conceivable crystal patterns into a finite number
of classes, where the members of each class have certain properties
in common. In such a classification, each crystal pattern is assigned
only to one class. The elements of a class are called equivalent, the
classes being equivalence classes in the mathematical sense of the
word. Sometimes the word ‘type’ is used instead of ‘class’.

An important principle in the classification of crystals and crystal
patterns is symmetry, in particular the space group of a crystal
pattern. The different classifications of space groups discussed here
are displayed in Fig. 8.2.1.1.

Classification of crystals according to symmetry implies three
steps. First, criteria for the symmetry classes have to be defined. The
second step consists of the derivation and complete listing of the
possible symmetry classes. The third step is the actual assignment
of the existing crystals to these symmetry classes. In this chapter,
only the first step is dealt with. The space-group tables of this
volume are the result of the second step. The third step is beyond the
scope of this volume.

8.2.2. Space-group types

The finest commonly used classification of three-dimensional space
groups, i.e. the one resulting in the highest number of classes, is the
classification into the 230 (crystallographic) space-group types.*
The word ‘type’ is preferred here to the word ‘class’, since in
crystallography ‘class’ is already used in the sense of ‘crystal class’,
cf. Sections 8.2.3 and 8.2.4. The classification of space groups into
space-group types reveals the common symmetry properties of all
space groups belonging to one type. Such common properties of the
space groups can be considered as ‘properties of the space-group
types’.

The practising crystallographer usually assumes the 230 space-
group types to be known and to be described in this volume by
representative data such as figures and tables. To the experimentally
determined space group of a particular crystal structure, e.g. of
pyrite FeS,, the corresponding space-group type No. 205 (Pa3 =
T,?) of International Tables is assigned. Two space groups, e.g.
those of FeS; and CO,, belong to the same space-group type if their
symmetries correspond to the same entry in International Tables.

The rigorous definition of the classification of space groups into
space-group types can be given in a more geometric or a more
algebraic way. Here matrix algebra will be followed, by which
primarily the classification into the 219 so-called affine space-group
types is obtained.f For this classification, each space group is
referred to a primitive basis and an origin. In this case, the matrices
W; of the symmetry operations consist of integral coefficients and

* These space-group types are often denoted by the word ‘space group’ when
speaking of the 17 ‘plane groups’ or of the 219 or 230 ‘space groups’. In a number of
cases, the use of the same word ‘space group’ with two different meanings (‘space
group’ and ‘space-group type’ which is an infinite set of space groups) is of no
further consequence. In some cases, however, it obscures important relations. For
example, it is impossible to appreciate the concept of isomorphic subgroups of a
space group if one does not strictly distinguish between space groups and space-
group types: cf. Section 8.3.3 and Part 13.

T According to the ‘Theorem of Bieberbach’, in all dimensions the classification
into affine space-group types results in the same types as the classification into
isomorphism types of space groups. Thus, the affine equivalence of different space
groups can also be recognized by purely group-theoretical means: cf. Ascher &
Janner (1965, 1968/69).

det (W;) = £1 holds. Two space groups G and G are then
represented by their (n+ 1) X (n+ 1) matrix groups {W} and
{UW'}. These two matrix groups are now compared.

Definition: The space groups G and G’ belong to the same space-
group type if, for each primitive basis and each origin of G, a
primitive basis and an origin of G’ can be found so that the matrix
groups {W} and {W'} are identical. In terms of matrices, this can be
expressed by the following definition:

Definition: The space groups G and G’ belong to the same space-
group type if an (n+ 1) x (n+ 1) matrix [P exists, for which the
matrix part P is an integral matrix with det(P) = +1 and the
column part p consists of real numbers, such that

W} =P~ {W)P

holds. The matrix part P of [® describes the transition from the
primitive basis of G to the primitive basis of G'. The column part p
of [P expresses the (possibly) different origin choices for the
descriptions of G and G

(8.2.2.1)

Equation (8.2.2.1) is an equivalence relation for space groups.
The corresponding classes are called affine space-group types. By
this definition, one obtains 17 plane-group types for E? and 219
space-group types for E>, see Fig. 8.2.1.1. Listed in the space-group

6 crystal
families
8.2.7
/ \
7 lattice 7 crystal
systems systems
8.2.8 8.2.8
14 Bravais 32 (geometric)
flocks crystal classes
8.2.6 8.2.4

\/

73 arithmetic
crystal classes
8.2.3

l

219 (affine)
space-group types
8.2.2

I

230 (crystallographic)
space-group types
8.2.2

[

oo space groups
8.1.6

Fig. 8.2.1.1. Classifications of space groups. In each box, the number of
classes, e.g. 32, and the section in which the corresponding term is
defined, e.g. 8.2.4, are stated.
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9. CRYSTAL LATTICES

Table 9.1.6.1. Representations of the five types of Voronoi polyhedra

VI VII VI[I

Viv Vv

subdivided with respect to their topological types of domains,
resulting in two classes in two dimensions and five classes in three
dimensions. They are called Voronoi types (see Table 9.1.6.1). If the
classification involves topological and symmetry properties of the
domains, 24 Symmetrische Sorten (Delaunay, 1933) are obtained in
three dimensions and 5 in two dimensions. Other classifications
consider either the centring type or the point group of the lattice.
The most important classification takes into account both the
lattice point-group symmetry and the centring mode (Bravais,
1866). The resulting classes are called Bravais types of lattices or,

for short, Bravais lattices. Two lattices belong to the same Bravais
type if and only if they coincide both in their point-group symmetry
and in the centring mode of their conventional cells. The Bravais
lattice characterizes the translational subgroup of a space group.
The number of Bravais lattices is 1 in one dimension,
5 in two dimensions, 14 in three dimensions and 64 in four
dimensions. The Bravais lattices may be derived by topological
(Delaunay, 1933) or algebraic procedures (Burckhardt, 1966;
Neubiiser er al., 1971). It can be shown (Wondratschek et al.,
1971) that ‘all Bravais types of the same crystal family can be

aP

Fig. 9.1.7.1. Conventional cells of the three-dimensional Bravais lattices (for symbols see Table 9.1.7.2).
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10.1. CRYSTALLOGRAPHIC AND NONCRYSTALLOGRAPHIC POINT GROUPS
Table 10.1.4.3. The two icosahedral point groups (cont.)

PEVZAEN NN
s e A

-’ “ P 4
RS IANAZRIIANS
® v
235 \/ORERXr) \ XD )
- SN EN QI
Q74 NN
(- S -\
60+10A+150+15m + Centre
120 e 1 Hecatonicosahedron or hexaicosahedron (hkl)
Pentagon-dodecahedron truncated by icosahedron and by X9,z
rhomb-triacontahedron o
60 d m.. Trisicosahedron (Okl) with |I] < 0.382|k|

Pentagon-dodecahedron truncated by icosahedron
(poles between axes 2 and 3)

Deltoid-hexecontahedron
Rhomb-triacontahedron & pentagon-dodecahedron &

0,y,z with |z| < 0.382]y]

(Okl) with 0.382[k| < |/ < 1.618[k]
0,y,z with 0.382]y| < |z] < 1.618]y|

icosahedron
(poles between axes 3 and 5)
Pentakisdodecahedron (Okl) with |I] > 1.618|k|
Icosahedron truncated by pentagon-dodecahedron 0,y,z with |z] > 1.618]|y|
(poles between axes 5 and 2)
30 c 2mm.. Rhomb-triacontahedron (100)
Icosadodecahedron (= pentagon-dodecahedron & x,0,0
icosahedron)
20 b 3m (m3.)  Regular icosahedron (111)
Regular pentagon-dodecahedron X, X, X
12 a 5m (m.5)  Regular Pentagon—dodecahedron (017) with 7= (V3 + 1) = 1.618
Regular icosahedron 0,y, 7y 2
Symmetry of special projections
Along [001] Along [111] Along [170]
2mm 6mm 10mm
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12.1. Point-group symbols

By H. BURZLAFF AND H. ZIMMERMANN

12.1.1. Introduction

For symbolizing space groups, or more correctly types of space
groups, different notations have been proposed. The following three
are the main ones in use today:

(i) the notation of Schoenflies (1891, 1923);

(ii) the notation of Shubnikov (Shubnikov & Koptsik, 1972),
which is frequently used in the Russian literature;

(iii) the international notation of Hermann (1928) and Mauguin
(1931). It was used in IT(1935) and was somewhat modified in
IT (1952).

In all three notations, the space-group symbol is a modification of
a point-group symbol.

Symmetry elements occur in lattices, and thus in crystals, only in
distinct directions. Point-group symbols make use of these discrete
directions and their mutual relations.

12.1.2. Schoenflies symbols

Most Schoenflies symbols (Table 12.1.4.2, column 1) consist of the
basic parts C,,, D,,,* T or O, designating cyclic, dihedral, tetrahedral
and octahedral rotation groups, respectively, with n = 1,2,3,4,6.
The remaining point groups are described by additional symbols for
mirror planes, if present. The subscripts 4 and v indicate mirror
planes perpendicular and parallel to a main axis taken as vertical.
For T, the three mutually perpendicular twofold axes and, for O,
the three fourfold axes are considered to be the main axes. The
index d is used for mirror planes that bisect the angle between two
consecutive equivalent rotation axes, i.e. which are diagonal with
respect to these axes. For the rotoinversion axes 1,2 = m, 3 and 4,
which do not fit into the general Schoenflies concept of symbols,
other symbols C;, Cs, C3; and Sy are in use. The rotoinversion axis 6
is equivalent to 3/m and thus designated as Csj,.

12.1.3. Shubnikov symbols

The Shubnikov symbol is constructed from a minimal set of
generators of a point group (for exceptions, see below). Thus,
strictly speaking, the symbols represent types of symmetry
operations. Since each symmetry operation is related to a symmetry
element, the symbols also have a geometrical meaning. The
Shubnikov symbols for symmetry operations differ slightly from
the international symbols (Table 12.1.3.1). Note that Shubnikov,
like Schoenflies, regards symmetry operations of the second kind as
rotoreflections rather than as rotoinversions.

If more than one generator is required, it is not sufficient to give
only the types of the symmetry elements; their mutual orientations
must be symbolized too. In the Shubnikov symbol, a colon (:), a dot
() or a slash (/) is used to designate perpendicular, parallel or
oblique arrangement of the symmetry elements. For a reflection, the
orientation of the actual mirror plane is considered, not that of its
normal. The exception mentioned above is the use of 3 : m instead
of 3 in the description of point groups.

12.1.4. Hermann-Mauguin symbols
12.1.4.1. Symmetry directions

The Hermann—Mauguin symbols for finite point groups make use
of the fact that the symmetry elements, i.e. proper and improper

* Instead of Dy, in older papers V (from Vierergruppe) is used.

rotation axes, have definite mutual orientations. If for each point
group the symmetry directions are grouped into classes of
symmetrical equivalence, at most three classes are obtained.
These classes were called Blickrichtungssysteme (Heesch, 1929).
If a class contains more than one direction, one of them is chosen as
representative.

The Hermann—-Mauguin symbols for the crystallographic point
groups refer to the symmetry directions of the lattice point groups
(holohedries, cf. Part 9) and use other representatives than chosen
by Heesch [IT (1935), p. 13]. For instance, in the hexagonal case,
the primary set of lattice symmetry directions consists of
{[001],[001]}, representative is [001]; the secondary set of lattice
symmetry directions consists of [100], [010], [110] and their
counter-directions, representative is [100]; the tertiary set of lattice
symmetry directions consists of [110],[120], [210] and their
counter-directions, representative is [110]. The representatives for
the sets of lattice symmetry directions for all lattice point groups are
listed in Table 12.1.4.1. The directions are related to the
conventional crystallographic basis of each lattice point group (cf.
Part 9).

The relation between the concept of lattice symmetry directions
and group theory is evident. The maximal cyclic subgroups of
the maximal rotation group contained in a lattice point group
can be divided into, at most, three sets of conjugate subgroups.
Each of these sets corresponds to one set of lattice symmetry
directions.

12.1.4.2. Full Hermann—Mauguin symbols

After the classification of the directions of rotation axes, the
description of the seven maximal rotation subgroups of the lattice
point groups is rather simple. For each representative direction, the
rotational symmetry element is symbolized by an integer »n for an
n-fold axis, resulting in the symbols of the maximal rotation
subgroups 1, 2, 222,32, 422,622, 432. The symbol 1 is used for the
triclinic case. The complete lattice point group is constructed by
multiplying the rotation group by the inversion 1. For the even-fold
axes, 2, 4 and 6, this multiplication results in a mirror plane
perpendicular to the rotation axis yielding the symbols
2n/m (n=1,2,3). For the odd-fold axes 1 and 3, this product
leads to the rotoinversion axes 1 and 3. Thus, for each representative
of a set of lattice symmetry directions, the symmetry forms a point

Table 12.1.3.1. International (Hermann—Mauguin) and Shub-
nikov symbols for symmetry elements

The first power of a symmetry operation is often designated by the symmetry-
element symbol without exponent 1, the other powers of the operation carry the
appropriate exponent.

Symmetry elements

of the first kind of the second kind

Hermann—Mauguin 1 2 3 46 1 m 3 46

Shubnikov* 1 23 46 2 m 6 4 3

* According to a private communication from J. D. H. Donnay, the symbols for
elements of the second kind were proposed by M. J. Buerger. Koptsik (1966) used
them for the Shubnikov method.
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15.2. Euclidean and affine normalizers of plane groups and space groups

By E. KOCH, W. FISCHER AND U. MULLER

15.2.1. Euclidean normalizers of plane groups and space
groups

Since each symmetry operation of the Euclidean normalizer N (G)
maps the space group G onto itself, it also maps the set of all
symmetry elements of G onto itself. Therefore, the Euclidean
normalizer of a space group can be interpreted as the group of
motions that maps the pattern of symmetry elements of the space
group onto itself, i.e. as the ‘symmetry of the symmetry pattern’.

For most space (plane) groups, the Euclidean normalizers are
space (plane) groups again. Exceptions are those groups where
origins are not fully fixed by symmetry, i.e. all space groups of the
geometrical crystal classes 1, m, 2, 2mm, 3, 3m, 4, 4mm, 6 and 6mm,
and all plane groups of the geometrical crystal classes 1 and m. The
Euclidean normalizer of each such group contains continuous
translations (i.e. translations of infinitesimal length) in one, two or
three independent lattice directions and, therefore, is not a space
(plane) group but a supergroup of a space (plane) group.

If one regards a certain type of space (plane) group, usually the
Euclidean normalizers of all corresponding groups belong also to
only one type of normalizer. This is true for all cubic, hexagonal,
trigonal and tetragonal space groups (hexagonal and square plane
groups) and, in addition, for 21 types of orthorhombic space group
(4 types of rectangular plane group), e.g. for Pnma.

In contrast to this, the Euclidean normalizer of a space (plane)
group belonging to one of the other 38 orthorhombic (3 rectangular)
types may interchange two or even three lattice directions if the
corresponding basis vectors have equal length (example: Pmmm
with a = b). Then, the Euclidean normalizer of this group belongs
to the tetragonal (square) or even to the cubic crystal system,
whereas another space (plane) group of the same type but with
general metric has an orthorhombic (rectangular) Euclidean
normalizer.

For each space (plane)-group type belonging to the monoclinic
(oblique) or triclinic system, there also exist groups with specialized
metric that have Euclidean normalizers of higher symmetry than for
the general case (cf. Koch & Miiller, 1990). The description of these
special cases, however, is by far more complicated than for the
orthorhombic system.

The symmetry of the Euclidean normalizer of a monoclinic
(oblique) space (plane) group depends only on two metrical
parameters. A clear presentation of all cases with specialized
metric may be achieved by choosing the cosine of the monoclinic
angle and the related axial ratio as parameters. To cover all different
metrical situations exactly once, not all pairs of parameter values
are allowed for a given type of space (plane) group, but one has to
restrict the study to a certain parameter range depending on the type,
the setting and the cell choice of the space (plane) group. Parthé &
Gelato (1985) have discussed in detail such parameter regions for
the first setting of the monoclinic space groups. Figs. 15.2.1.1 to
15.2.1.4 are based on these studies.

Fig. 15.2.1.1 shows a suitably chosen parameter region for the
five space-group types P2, P2y, Pm, P2/m and P2;/m and for the
plane-group types pl and p2. Each such space (plane) group with
general metric may be uniquely assigned to an inner point of this
region and any metrical specialization corresponds either to one of
the three boundary lines or to one of their points of intersection and
gives rise to a symmetry enhancement of the respective Euclidean
normalizer.

For each of the other eight types of monoclinic space groups, i.e.
C2, Pc,Cm, Cc,C2/m, P2/c, P2y/c and C2/c, and for each setting
three possibilities of cell choice are listed in Part 7, which can be
distinguished by different space-group symbols (example: C12/m1,

029 —f <

O.C v T ] Ll
O 1 2 3 4 5

—-cos 3
(=cos y)

Fig. 15.2.1.1. Parameter range for space groups of types P2, P2, Pm, P2/m
and P2;/m (plane groups of types pl and p2). The information in
parentheses refers to unique axis c.
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Fig. 15.2.1.2. Parameter range for space groups of types C2, Pc, Cm, Cc,
C2/m, P2/c, P2y /c and C2/c:
unique axis b, cell choice 2: Plnl, P12/nl, P12,/nl;
unique axis b, cell choice 3: 1121, Ilml, Ial, I12/m1, I12/al,
unique axis ¢, cell choice 2: P11n, P112/n, P112; /n;
unique axis ¢, cell choice 3: 1112, [11m, I11b, I112/m, 1112/b.

The information in parentheses refers to unique axis c.
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