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Preface
By A. J. C. WILSON

A new volume of the International Tables for Crystallography
containing mathematical, physical and chemical tables was
discussed by the Executive Committee of the International Union
of Crystallography at least as early as August 1979. My own
ideas about what has become Volume C began to develop in the
course of the Executive Committee meeting held at the Ottawa
Congress in August 1981. It was then conceived as an editorial
condensation of the old volumes II, III and IV, with obsolete
material deleted and tables easily reproduced on a pocket
calculator reduced to a skeleton form or omitted altogether.
However, it soon became obvious that advances since the old
volumes were produced could not be satisfactorily accommo-
dated within such a condensation, and that if Volume C were to
be a worthy companion of Volume A (Space-Group Symmetry)
and Volume B (Reciprocal Space) it would have to consist
largely of new material.

Work on Volumes B and C began officially on 1 January
1983, and the general outlines of the volumes were circulated to
the Executive Committee, the National Committees, and others
interested. This circulation generated much constructive criti-
cism and offers of help, particularly from several Commissions
of the Union. The Chairmen of certain Commissions were
particularly helpful in finding qualified contributors of specialist
sections, and from time to time served as members of the

Commission on International Tables for Crystallography. I often
had occasion to lament the lack of a Commission on X-ray
Diffraction. The revised outlines of the two volumes were
approved by the Executive Committee during the Hamburg
Congress in 1984.

For various reasons the publication of Volume C has taken
longer than expected. A requirement that prospective contribu-
tors should be approved by the Executive Committee produced
some delays, and more serious delays were caused by authors
who failed to deliver their contributions by the agreed date — or
at all. A decision was taken to include in this first edition only
what was in the Editor’s hands in January 1990, and since that
date the timetable has been set by the printers. The present
Volume is the result. Readers will find a few sections resulting
from the original idea of editorial condensation from Volumes
II, IIT and IV, and some sections from those volumes revised or
rewritten by their original authors. Most of Volume C is entirely
new.

I am indebted to many crystallographers for advice and
encouragement, to the authors of contributions that arrived
before the deadline, to the Chairmen of various Commissions
for their help, and to the Technical Editor for his skill and good
humour in dealing with much difficult material.

Preface to the third edition
By E. PRINCE

This is the third edition of International Tables for Crystal-
lography Volume C. The purpose of this volume is to provide
the mathematical, physical and chemical information needed for
experimental studies in structural crystallography. It covers all
aspects of experimental techniques, using all three principal
radiation types, from the selection and mounting of crystals and
production of radiation, through data collection and analysis, to
the interpretation of results. As such, it is an essential source of
information for all workers using crystallographic techniques in
physics, chemistry, metallurgy, earth sciences and molecular
biology.

Volume C of International Tables for Crystallography is one
of the many legacies to crystallographers of the late Professor
A. J. C. Wilson, whose death on 1 July 1995 left the
preparation of a revised and expanded second edition unfinished.
When I was appointed as Professor Wilson’s successor as
Editor, I realised that although most of the material in the first
edition was new, some had been carried over from Volumes II,

III, and IV of the earlier series International Tables for X-ray
Crystallography and had become outdated. Moreover, many of
the topics covered were changing very rapidly, so needed to be
brought up to date. In fact, by the time the second edition was
published in 1999, more than half the chapters had been revised
or updated and two completely new chapters, on reflectometry
and neutron topography, had been included. The second edition
of Volume C was also the first volume of International Tables to
be produced entirely electronically.

The authors of the second edition were asked if they wished
to submit revisions to their articles for this third edition in
August 2001. All revisions were received within the following
year. In total, 11 chapters have been revised, corrected or
updated, and all known errors in the second edition have been
corrected. I hope few new errors have been introduced. I thank
all authors, especially those who have submitted revisions, and
I particularly thank the Editorial staff in Chester for their
continued dilligence.

XXX
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1.1. SUMMARY OF GENERAL FORMULAE

Table 1.1.1.1. Direct and reciprocal lattices described with respect to conventional basis systems

. . Reciprocal lattice
Direct lattice
a.b,c, &b,
Bravais Unit-cell Conditions for reciprocal-lattice vectors | Unit-cell Bravais
letter Centring vectors volume V, ha + kb! + Ic; volume V} letter
B ia.+ic, 2v h+1=2n iy~ B
c la.+1ib, 2V h+k=2n Ly» c
1 ja.+3b.+1ic, 2V h+k+1=2n v F
F ta. +ib,, 4v h+k=2n, v 1
28 3¢ h+1=2n,
%bc—f—%cc k+1=2n
R 1a,+%b.+3c,, 3V —h+k+1=3n 1V R
38 +3be +3C
V* = a*b*c* sinasin B* sin y* As a direct lattice and its corresponding reciprocal lattice do
Wk ki s o not necessarily belong to the same type of Bravais lattices [IT A
=a’b’c"sina’sin fsiny (1987, Section 8.2.4)], the Bravais letter of L* is given in the last
=a*b*c*sina’ sin ¥ sin y. (1.1.1.9) column of Table 1.1.1.1. Except for P lattices, a conventionally

1.1.1.2. Non-primitive crystallographic bases

For certain lattice types, it is usual in crystallography to refer
to a ‘conventional’ crystallographic basis a,., b,, ¢, instead of a
primitive basis a, b, c. In that case, a,, b,, and ¢, with all their
integral linear combinations are lattice vectors again, but there
exist other lattice vectorst € L,

t = tlac + t2bC + l‘3CC,

with at least two of the coefficients #,, ¢,, t; being fractional.

Such a conventional basis defines a conventional or centred
unit cell for a corresponding point lattice, the volume V, of
which may be calculated by analogy with V by substituting
a., b, c. forab, and ¢ in (1.1.1.1).

If m designates the number of centring lattice vectors t with
0<t,t,t5 <1, V., may be expressed as a multiple of the
primitive unit-cell volume V:

V.=mV. (1.1.1.10)

With the aid of equations (1.1.1.2) and (1.1.1.3), the reciprocal
basis af, b}, ¢ may be derived from a, b, c,. Again, each
reciprocal-lattice vector

r* = ha! +kb? +Ic; € L*

is an integral linear combination of the reciprocal basis vectors,
but in contrast to the use of a primitive basis only certain triplets
h, k, [ refer to reciprocal-lattice vectors.

Equation (1.1.1.5) also relates V, to V7, the reciprocal cell
volume referred to &, b?, c:. From this it follows that

1
Vi=—V~. (1.1.1.11)

m

Table 1.1.1.1 contains detailed information on ‘centred
lattices’ described with respect to conventional basis systems.

chosen basis for L* coincides neither with a*, b*, ¢* nor with
ar, bl ct. This third basis, however, is not used in crystal-
lography. The designation of scattering vectors and the indexing
of Bragg reflections usually refers to a¥, by, c:.

If the differences with respect to the coefficients of direct- and
reciprocal-lattice vectors are disregarded, all other relations
discussed in Part 1 are equally true for primitive bases and for

conventional bases.

1.1.2. Lattice vectors, point rows, and net planes

The length ¢ of a vector t = ua+ vb + wc is given by
£ =u*a> +v*b? + W’ + 2uvabcos y

+ 2uwac cos 8 + 2vwbc cos . (1.1.2.1)

Accordingly, the length r* of a reciprocal-lattice vector
r* = ha* + kb* 4 Ic* may be calculated from
r? = ha*? + k*b*? + 1*¢*? 4 2hka*b* cos y*
+ 2hla*c* cos B* + 2kIb*c* cos y*. (1.1.2.2)
If the coefficients u, v, w of a vector t € L are coprime, [uvw]
symbolizes the direction parallel to t. In particular, [uvw] is used
to designate a crystal edge, a zone axis, or a point row with that
direction.

The integer coefficients 4, k, [ of a vector r* € L* are also the
coordinates of a point of the corresponding reciprocal lattice and
designate the Bragg reflection with scattering vector r*. If h, k, [
are coprime, the direction parallel to r* is symbolized by [hkI]*.

Each vector r* is perpendicular to a family of equidistant
parallel nets within a corresponding direct point lattice. If the
coefficients ki, k, [ of r* are coprime, the symbol (hkl) describes
that family of nets. The distance d(hkl) between two neighbour-
ing nets is given by
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(2) Orthorhombic lattice with b = +/3a: [310] is perpendicular
to (110).
(i) P lattice (cf. Fig. 1.3.2.2):
j=hu+kv+Iw=4 even
i=1jl/2=2.
(i) C lattice (c¢f. also Fig. 1.3.2.2):

Because of the C centring, [310] has to be replaced by [310].
j=hi'+kV+Iw =2 even

i=|jl/2=1
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Fig. 1.3.2.2. Projection of the lattices of the twin components of an
orthorhombic twinned crystal (0P, b = +/3a) with twin index 2. The
twin may be interpreted either as a rotation twin with twin axis [310]
or as a reflection twin with twin plane (110). The figure shows, in
addition, that twin index 1 results if the oP lattice is replaced by an oC
lattice in this example (twinning by pseudomerohedry).

(3) Orthorhombic C lattice with b = 2a: [210] is perpendicular
to (120) (¢f. Fig. 1.3.2.3).
As (120) refers to an ‘extinct reflection’ of a C lattice, the
triplet 240 has to be used in the calculation.

j=hu+kv+Iw=8 even
i=1j|/2=4.
O— — — — — —
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Fig. 1.3.2.3. Projection of the lattices of the twin components of an
orthorhombic twinned crystal (oC, b = 2a) with twin index 4. The
twin may be interpreted either as a rotation twin with twin axis [210]
or as a reflection twin with twin plane (120).
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(4) Rhombohedral lattice in hexagonal description with
¢ = 1+/3a: [112] is perpendicular to (111). .
Because of the R centring, [112] has to be replaced by [}13].
As (111) refers to an ‘extinct reflection’ of an R lattice, the
triplet 111 has to be replaced by 333.
j=hu + kv +Iw =—-4 even
i=1jl/2=2.

1.3.3. Implication of twinning in reciprocal space

As shown above, the direct lattices of the components of any
twin coincide in at least one row. The same is true for the
corresponding reciprocal lattices. They coincide in all rows
perpendicular to parallel net planes of the direct lattices.

For a reflection twin with twin plane (kkl), the reciprocal
lattices of the twin components have only the lattice points with
coefficients nh, nk, nl in common.

For a rotation twin with twofold twin axis [uvw], the reciprocal
lattices of the twin components coincide in all points of the plane
perpendicular to [uvw], i.e. in all points with coefficients 4, k, [
that fulfil the condition hu + kv + Iw = 0.

For a rotation twin with irrational twin axis parallel to a net
plane (hkl), only reciprocal-lattice points with coefficients nh,
nk, nl are common to both twin components.

As the entire direct lattices of the two twin components
coincide for an inversion twin, the same must be true for their
reciprocal lattices.

For a reflection or rotation twin with a twin lattice of index i,
the corresponding reciprocal lattices, too, have a sublattice with
index i in common (¢f. Fig. 1.3.2.10). In analogy to direct
space, the twin lattice in reciprocal space consists of each ith
lattice plane parallel to the twin plane or perpendicular to the
twin axis. If the twin index equals 1, the entire reciprocal lattices
of the twin components coincide.

If for a reflection twin there exists only a lattice row [uvw] that
is almost (but not exactly) perpendicular to the twin plane (hkl),
then the lattices of the two twin components nearly coincide in a
three-dimensional subset of lattice points. The corresponding
misfit is described by the quantity w, the twin obliquity. It is the
angle between the lattice row [uvw] and the direction perpendi-
cular to the twin plane (hkl). In an analogous way, the twin
obliquity w is defined for a rotation twin. If (hkl) is a net plane
almost (but not exactly) perpendicular to the twin axis [uvw],
then w is the angle between [uvw] and the direction perpendicular
to (hkl).

1.3.4. Twinning by merohedry

A twin is called a twin by merohedry if its twin operation belongs
to the point group of its vector lattice, i.e. to the corresponding
holohedry. As each lattice is centrosymmetric, an inversion twin
is necessarily a twin by merohedry. Only crystals from
merohedral (i.e. non-holohedral) point groups may form twins
by merohedry; 159 out of the 230 types of space groups belong to
merohedral point groups.

For a twin by merohedry, the vector lattices of all twin
components coincide in direct and in reciprocal space. The twin
index is 1. The maximal number of differently oriented twin
components equals the subgroup index m of the point group of
the crystal with respect to its holohedry.

Table 1.3.4.1 displays all possibilities for twinning by
merohedry. For each holohedral point group (column 1), the
types of Bravais lattices (column 2) and the corresponding
merohedral point groups (column 3) are listed. Column 4 gives
the subgroup index m of a merohedral point group in its



2.2. SINGLE-CRYSTAL X-RAY TECHNIQUES

Any relp (hkl) lying in the region of reciprocal space between
the 1/, and 1/4.;, Ewald spheres and the resolution sphere
1/d,;, will diffract (the shaded area in Fig. 2.2.1.1). This region
of reciprocal space is referred to as the accessible or stimulated
region. Fig. 2.2.1.2 shows a predicted Laue pattern from a well

Polychromatic X-ray beam

Fig. 2.2.1.1. Laue geometry. A polychromatic beam containing
wavelengths A.;, to 4., impinges on the crystal sample. The
resolution sphere of radius df,, = 1/d,;, is drawn centred at O, the
origin of reciprocal space. Any reciprocal-lattice point falling in the
shaded region is stimulated. In this diagram, the radius of each Ewald

sphere uses the convention 1//.

Example of a

Central blank region Nodal reflection
1

Fig. 2.2.1.2. A predicted Laue pattern of a protein crystal with a zone
axis parallel to the incident, polychromatic X-ray beam. There is a
pronounced blank region at the centre of the film (see Subsection
2.2.1.2). The spot marked N is one example of a nodal spot (see
Subsection 2.2.1.4).
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aligned protein crystal. For a description of the indexing of a
Laue photograph, see Bragg (1928, pp. 28, 29).

For a Laue spot at a given 6, only the ratio 4/d is determined,
whether it is a single or a multiple relp component spot. If the
unit-cell parameters are known from a monochromatic experi-
ment, then a Laue spot at a given 6 yields 4 since d is then
known. Conversely, precise unit-cell lengths cannot be deter-
mined from a Laue pattern alone; methods are, however, being
developed to determine these (see Carr, Cruickshank & Harding,
1992).

The maximum Bragg angle 6,

emax = Sin_l()“max/zdmin)‘
2.2.1.2. Crystal setting

is given by the equation

(2.2.12)

The main use of Laue photography has in the past been for
adjustment of the crystal to a desired orientation. With small-
molecule crystals, the number of diffraction spots on a mono-
chromatic photograph from a stationary crystal is very small.
With unfiltered, polychromatic radiation, many more spots are
observed and so the Laue photograph serves to give a better idea
of the crystal orientation and setting prior to precession
photography. With protein crystals, the monochromatic still is
used for this purpose before data collection via an area detector.
This is because the number of diffraction spots is large on a
monochromatic still and in a protein-crystal Laue photograph the
stimulated spots from the Bremsstrahlung continuum are
generally very weak. Synchrotron-radiation Laue photographs
of protein crystals can be recorded with short exposure times.
These patterns consist of a large number of diffraction spots.

Crystal setting via Laue photography usually involves trying
to direct the X-ray beam along a zone axis. Angular mis-setting
angles ¢ in the spindle and arc are easily calculated from the
formula

e =tan '(A/D), (2.2.1.3)

where A is the distance (resolved into vertical and horizontal)
from the beam centre to the centre of a circle of spots defining a
zone axis and D is the crystal-to-film distance.

After suitable angular correction to the sample orientation, the
Laue photograph will show a pronounced blank region at the
centre of the film (see Fig. 2.2.1.2). The radius of the blank
region is determined by the minimum wavelength in the beam
and the magnitude of the reciprocal-lattice spacing parallel to the
X-ray beam (see Jeffery, 1958). For the case, for example, of the
X-ray beam perpendicular to the a*b* plane, then

Amin = (1 — cos 26), (2.2.1.4a)

where
20 = tan"'(R/D) (2.2.1.4b)

and R is the radius of the blank region (see Fig. 2.2.1.2), and D
is the crystal-to-flat-film distance. If A, is known then an
approximate value of ¢, for example, can be estimated. The
principal zone axes will give the largest radii for the central
blank region.

2.2.1.3. Single-order and multiple-order reflections

In Laue geometry, several relp’s can occur in a Laue spot or
ray. The number of relp’s in a given spot is called the
multiplicity of the spot. The number of spots of a given
multiplicity can be plotted as a histogram. This is known as the
multiplicity distribution. The form of this distribution is
dependent on the ratio A,,./Ani.- The multiplicity distribution



2.3. POWDER AND RELATED TECHNIQUES: X-RAY TECHNIQUES

in all measurements, and errors due to (b) and (c) vary with each
specimen.

Ideally, the specimen should be in the form of a focusing torus
because of the beam divergence in the equatorial and axial
planes. The curvatures would have to vary continuously and
differently during the scan and it is impracticable to make
specimens in such forms. An approximation is to make the
specimen in a flexible cylindrical form with the radius of
curvature increasing with decreasing 26 (Ogilvie, 1963). This
requires a very thin specimen (thus reducing the intensity) to
avoid cracking and surface irregularities, and also introduces
background from the substrate. A compromise uses rigid curved
specimens, which match the SFC (Fig. 2.3.1.3) at the smallest
26 angle to be scanned, and this eliminates most of the aberration
(Parrish, 1968). A major disadvantage of the curvature is that it
is not possible to spin the specimen.

In practice, a flat specimen is almost always used. The
specimen surface departs from the focusing circle by an amount
h at a distance //2 from the specimen centre:

h = Rpe — [R:c — (I2/2)]". (2.3.1.11)

This causes a broadening of the low-26 side of the profile and
shifts the centroid A26 to lower 20:

A26(rad) = —a /(6 tan 0). (2.3.1.12)

For o = 1° and 26 = 20°, A26 = —0.016°. The peak shift is
about one-third as large as the centroid shift in the forward-
reflection region. This aberration can be interpreted as a
continuous series of specimen-surface displacements, which
increase from O at the centre of the specimen to a maximum
value at the ends. The effect increases with o and decreasing 26.
The profile distortion is magnified in the small 26-angle region
where the axial divergence also increases and causes similar
effects. Typical flat-specimen profiles are shown in Fig.
2.3.1.10(c) and computed centroid shifts in Fig. 2.3.1.10(d).
The specimen-transparency aberration is caused by diffraction
from below the surface of the specimen which asymmetrically

Line Spot

Actual e I

Projected —— ’ .

broadens the profile (Langford & Wilson, 1962). The peak and
centroid are shifted to smaller 26 as shown in Fig. 2.3.1.10(e).
For the case of a thick absorbing specimen, the centroid is
shifted

A26(rad) = sin20/2uR (2.3.1.13)
and for a thin low-absorbing specimen
A26(rad) = tcos6/R, (2.3.1.14)

where p is the effective linear absorption coefficient of the
specimen used, ¢ the thickness in cm, and R the diffractometer
radius in cm. The intermediate absorption case is described by
Wilson (1963). A plot of equation (2.3.1.13) for various values
of p is given in Fig. 2.3.1.10(f). The effect varies with sin 26
and is maximum at 90° and zero at 0° and 180°. For example, if
i =50cm™!, the centroid shift is —0.033° at 90° and falls to
—0.012° at 20°26.

The observed intensity is reduced by absorption of the incident
and diffracted beams in the specimen. The intensity loss is
exp(—2u/x, cosec6), where  is the linear absorption coefficient
of the powder sample (it is almost always smaller than the solid
material) and x, is the distance below the surface, which may be
equal to the thickness in the case of a thin film or low-absorbing
material specimen. The thick (1 mm) specimen of LiF in Fig.
2.3.1.10(e) had twice the peak intensity of the thin (0.1 mm)
specimen.

The aberration can be avoided by making the sample thin.
However, the amount of incident-beam intensity contributing to
the reflections could then vary with 6 because different amounts
are transmitted through the sample and this may require
corrections of the experimental data. Because the effective
reflecting volume of low-absorbing specimens lies below the
surface, care must be taken to avoid blocking part of the
diffracted beam with the antiscatter slits or the specimen holder,
particularly at small 26.

There are additional problems related to the specimen such as
preferred orientation, particle size, and other factors; these are
discussed in Section 2.3.3.

0.40°

A

+—————0.025°—

59 60 61

20°
(@ ) (©)
Fig. 2.3.1.9. (a) Effect of source size on profile shape, Cu Ko, agg 1°, agg 0.05°, Si(111).
No. Projected size (mm) FWHM (°20)
1 1.6 x 1.0 (spot) 0.31
2 0.32 x 10 (line) 0.1
3 0.16 x 10 (line) 0.13
4 0.32 x 12 (line) 0.17.

Effect of receiving-slit aperture arg on profiles of quartz (b) (100) and (c) (121); peak intensities normalized, Cu Ko, agg 1°.



2.5. ENERGY-DISPERSIVE TECHNIQUES

determination, and texture studies. These and other applications
can be found in an annotated bibliography covering the period
1968-1978 (Laine & Liahteenmiki, 1980). The short counting
time and the simultaneous recording of the diffraction spectrum
permit the study of the kinetics of structural transformations in
time frames of a few seconds or minutes.

Energy-dispersive powder diffraction has proved to be of great
value for high-pressure structural studies in conjunction with
synchrotron radiation. The brightness of the radiation source and
the efficiency of the detector system permit the recording of a
diffraction spectrum with satisfactory counting statistics in a
reasonable time (100-1000s) in spite of the extremely small
sample volume (1073-107> mm?®). Reviews have been given by
Buras & Gerward (1989) and Hiusermann (1992). Recently,
XED experiments have been performed at pressures above
400 GPa, and pressures near 1 TPa may be attainable in the near
future (Ruoff, 1992). At this point, it should be mentioned that
XED methods have limited resolution and generally give
unreliable peak intensities. The situation has been transformed
recently by the introduction of the image-plate area detector,
which allows angle-dispersive, monochromatic methods to be
used with greatly improved resolution and powder averaging
(Nelmes & McMahon, 1994, and references therein).

2.5.2. White-beam and time-of-flight neutron diffraction (By
J. D. Jorgensen, W. I. F. David, and B. T. M. Willis)

2.5.2.1. Neutron single-crystal Laue diffraction

In traditional neutron-diffraction experiments, using a con-
tinuous source of neutrons from a nuclear reactor, a narrow
wavelength band is selected from the wide spectrum of neutrons
emerging from a moderator within the reactor. This mono-
chromatization process is extremely inefficient in the utilization
of the available neutron flux. If the requirement of discriminating
between different orders of reflection is relaxed, then the entire
white beam can be employed to contribute to the diffraction
pattern and the count-rate may increase by several orders of
magnitude. Further, by recording the scattered neutrons on
photographic film or with a position-sensitive detector, it is
possible to probe simultaneously many points in reciprocal
space.

If the experiment is performed using a pulsed neutron beam,
the different orders of a given reflection may be separated from
one another by time-of-flight analysis. Consider a short
polychromatic burst of neutrons produced within a moderator.
The subsequent times-of-flight, #, of neutrons with differing
wavelengths, A, measured over a total flight path, L, may be
discriminated one from another through the de Broglie relation-
ship:

m,(L/t) =h/A, (2.5.2.1)
where m, is the neutron mass and k is Planck’s constant.

Expressing ¢ in microseconds, L in metres and /4 in A, equation
(2.5.2.1) becomes

t =252.7784 LA.

Inserting Bragg’s law, 4 = 2(d/n)sin®, for the nth order of a
fundamental reflection with spacing d in A gives

t = (505.5568,/n)Ld sin 6. (2.522)

Different orders may be measured simply by recording the time
taken, following the release of the initial pulse from the
moderator, for the neutron to travel to the sample and then to
the detector.

The shaded area shows
the accessible portion
of reciprocal space for
the wavelength range
. 27T/km|n to 27T/kmax

- and for the range of
.scattering angles
20min to 20max

Reflections seen at

one scattering angle

and resolved at .
different times of \“ Y
flight .

Incident-
beame—
direction °

Fig. 2.5.2.1.Construction in reciprocal space to illustrate the use of
multi-wavelength radiation in single-crystal diffraction. The circles
with radii k,,, = 27/, and k,;, = 27/ 4., are drawn through the
origin. All reciprocal-lattice points within the shaded area may be
sampled by a linear position-sensitive detector spanning the scattering
angles from 26, ;, to 26,,.. With a position-sensitive area detector, a
three-dimensional portion of reciprocal space may be examined (after
Schultz, Srinivasan, Teller, Williams & Lukehart, 1984).

The origins of pulsed neutron diffraction can be traced back to
the work of Lowde (1956) and of Buras, Mikke, Lebech &
Leciejewicz (1965). Later developments are described by
Turberfield (1970) and Windsor (1981). Although a pulsed
beam may be produced at a nuclear reactor using a chopper, the
major developments in pulsed neutron diffraction have been
associated with pulsed sources derived from particle accelera-
tors. Spallation neutron sources, which are based on proton
synchrotrons, allow optimal use of the Laue method because the
pulse duration and pulse repetition rate can be matched to the
experimental requirements. The neutron Laue method is
particularly useful for examining crystals in special environ-
ments, where the incident and scattered radiations must penetrate
heat shields or other window materials. [A good example is the
study of the incommensurate structure of «-uranium at low
temperature (Marmeggi & Delapalme, 1980).]

A typical time-of-flight single-crystal instrument has a large
area detector. For a given setting of detector and sample, a three-
dimensional region is viewed in reciprocal space, as shown in
Fig. 2.5.2.1. Thus, many Bragg reflections can be measured at
the same time. For an ideally imperfect crystal, with volume V;
and unit-cell volume v,, the number of neutrons of wavelength 4
reflected at Bragg angle 6 by the planes with structure factor F is
given by

N = igy(D)A*V,F? /(2V2 sin” 6), (2.5.2.3)
where i,(1) is the number of incident neutrons per unit
wavelength interval. In practice, the intensity in equation
(2.5.2.3) must be corrected for wavelength-dependent factors,
such as detector efficiency, sample absorption and extinction,
and the contribution of thermal diffuse scattering. Jauch, Schultz
& Schneider (1988) have shown that accurate structural data can
be obtained using the single-crystal time-of-flight method despite
the complexity of these wavelength-dependent corrections.

2.5.2.2. Neutron time-of-flight powder diffraction

This technique, first developed by Buras & Leciejewicz
(1964), has made a unique impact in the study of powders in
confined environments such as high-pressure cells (Jorgensen &
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2.6. SMALL-ANGLE TECHNIQUES

scattering function because that leads to an increasing loss of
essential information about the particle (monomer) itself.

2.6.1.4. Polydisperse systems

In this subsection, we give a short survey of the problem of
polydispersity. It is most important that there is no way to decide
from small-angle scattering data whether the sample is mono- or
polydisperse. Every data set can be evaluated in terms of
monodisperse or polydisperse structures. Independent a priori
information is necessary to make this decision. It has been shown
analytically that a certain size distribution of spheres gives the
same scattering function as a monodisperse ellipsoid with axes a,
b and ¢ (Mittelbach & Porod, 1962).

The scattering function of a polydisperse system is determined
by the shape of the particles and by the size distribution. As
mentioned above, we can assume a certain size distribution and
can determine the shape, or, more frequently, we assume the
shape and determine the size distribution. In order to do this we
have to assume that the scattered intensity results from an
ensemble of particles of the same shape whose size distribution
can be described by D,(R), where R is a size parameter and
D,(R) denotes the number of particles of size R. Let us further
assume that there are no interparticle interferences or multiple
scattering effects. Then the scattering function I(%) is given by

I(h) = ¢, | D,(R)RS,(hR)dR, (2.6.1.54)
0

where c, is a constant, the factor R® takes into account the fact
that the particle volume is proportional to R®, and iy(hR) is the
normalized form factor of a particle size R. In many cases, one is
interested in the mass distribution D,,(R) [sometimes called
volume distribution D,(R)]. In this case, we have

I@:%TmmWMMNR (2.6.1.55)
0

The solution of these integral equations, i.e. the computation
of D,(R) or D,(R) from I(h), needs rather sophisticated
numerical or analytical methods and will be discussed later.

The problems of interparticle interference and multiple
scattering in the case of polydisperse systems cannot be
described analytically and have not been investigated in detail
up to now. In general, interference effects start to influence data
from small-angle scattering experiments much earlier, i.e. at
lower concentration, than multiple scattering. Multiple scatter-
ing becomes more important with increasing size and contrast
and is therefore dominant in light-scattering experiments in
higher concentrations.

A concentration series and extrapolation to zero concentration
as in monodisperse systems should be performed to eliminate
these effects.

2.6.1.5. Instrumentation

X-ray sources are the same for small-angle scattering as for
crystallographic experiments. One can use conventional gen-
erators with sealed tubes or rotating anodes for higher power.
For the vast majority of applications, an X-ray tube with copper
anode is used; the wavelength of its characteristic radiation
(CuKua line) is 0.154 nm. Different anode materials emit X-rays
of different characteristic wavelengths.

X-rays from synchrotrons or storage rings have a continuous
wavelength distribution and the actual wavelength for the
experiment is selected by a monochromator. The intensity is
much higher than for any type of conventional source but
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synchrotron radiation is available only at a few places in the
world. Reviews on synchrotron radiation and its application have
been published during recent years (Stuhrmann, 1978; Holmes,
1982; Koch, 1988). In these reviews, one can also find some
remarks on the general principles of the systems including
cameras and special detectors.

2.6.1.5.1. Small-angle cameras

General. In any small-angle scattering experiment, it is
necessary to illuminate the sample with a well defined flux of
X-rays. The ideal condition would be a parallel monochromatic
beam of negligible dimension and very high intensity. These
theoretical conditions can never be reached in practice (Pessen,
Kumosinski & Timasheff, 1973). One of the main reasons is the
fact that there are no lenses as in the visible range of
electromagnetic radiation. The refractive index of all materials
is equal to or very close to unity for X-rays. On the other hand,
this fact has some important advantages. It is, for example,
possible to use circular capillaries as sample holders without
deflecting the beam. There are different ways of constructing a
small-angle scattering system. Slit, pinhole, and block systems
define a certain area where the X-rays can pass. Any slit or edge
will give rise to secondary scattering (parasitic scattering). The
special construction of the instrument has to provide at least a
subspace in the detector plane (plane of registration) that is free
from this parasitic scattering. The crucial point is of course to
provide the conditions to measure at very small scattering angles.

The other possibility of building a small-angle scattering
system is to use monochromator crystals and/or bent mirrors to
select a narrow wavelength band from the radiation (important
for synchrotron radiation) and to focus the X-ray beam to a
narrow spot. These systems require slits in addition to eliminate
stray radiation.

Block collimation - Kratky camera. The Kratky (1982a)
collimation system consists of an entrance slit (edge) and two
blocks - the U-shaped centre piece and a block called bridge.
With this system, the problem of parasitic scattering can be
largely removed for the upper half of the plane of registration
and the smallest accessible scattering angle is defined by the size
of the entrance slit (see Fig. 2.6.1.13). This system can be
integrated in an evacuated housing (Kratky compact camera) and
fixed on the top of the X-ray tube. It is widely used in many
laboratories for different applications. In the Kratky system, the
X-ray beam has a rectangular shape, the length being much
larger than the width. Instrumental broadening can be corrected
by special numerical routines. The advantage is a relatively high
primary-beam intensity. The main disadvantage is that it cannot
be used in special applications such as oriented systems where

Fig. 2.6.1.13. Schematic drawing of the block collimation (Kratky
camera): E edge; B, centre piece; B, bridge; P primary-beam profile;
PS primary-beam stop; PR plane of registration.



2.7. TOPOGRAPHY

diffraction in CC’'D’'D will take the path shown by the heavy line
in Fig. 2.7.2.4, simplifying the picture to the case of extreme
confinement of energy flow to parallelism with the Bragg planes.
At the X-ray exit surface DD’, splitting into K, and K, beams
occurs. A slit-less arrangement, as shown in the figure, may
suffice. Then, when § is a point-like source of K« radiation, and
distance a is sufficiently large, films F; and F, will each record a
pair of narrow images formed by the «; and «, wavelengths,
respectively. A wider area of specimen can be imaged if a line
focus rather than a point focus is placed at S (Barth & Hosemann,
1958), but then the «; and o, images will overlap. Under
conditions of high anomalous transmission, defects in the crystal
cause a reduction in transmitted intensity, which appears
similarly in the K, and K, images. Thus, it is possible to gain
intensity and improve resolution by recording both images
superimposed on a film F; placed in close proximity to the X-ray
exit face DD’ (Gerold & Meier, 1959).

2.7.3. Double-crystal topography

The foregoing description of single-crystal techniques will have
indicated that in order to gain greater sensitivity in orientation
contrast there are required incident beams with closer collima-
tion, and limitation of dispersion due to wavelength spread of the
characteristic X-ray lines used. It suggests turning to prior
reflection of the incident beam by a perfect crystal as a means of
meeting these needs. Moreover, the application of crystal-
reflection-collimated radiation to probe angularly step by step as
well as spatially point by point the intensity of Bragg reflection
from the vicinity of an individual lattice defect such as a
dislocation brings possibilities of new measurements beyond the
scope provided by simply recording the local value of the
integrated reflection. The X-ray optical principles of double-
crystal X-ray topography are basically those of the double-
crystal spectrometer (Compton & Allison, 1935). The properties
of successive Bragg reflection by two or more crystals can be
effectively displayed by a Du Mond diagram (Du Mond 1937),
and such will now be applied to show how collimation and
monochromatization result from successive reflection by two
crystals, U and V, arranged as sketched in Fig. 2.7.3.1. They are
in the dispersive, antiparallel, ‘44’ setting, and are assumed to
be identical perfect crystals set for the same symmetrical Bragg
reflection. Only rays making the same glancing angle with both
surfaces will be reflected by both U and V. For example,
radiation of shorter wavelength reflected at a smaller glancing
angle at U (the ray shown by the dashed line) will impinge at a
larger glancing angle on V and not satisfy the Bragg condition. In
this ++ setting, with a given angle w between the Bragg-

Fs

C D F

1

Fig. 2.7.2.4. Topographic techniques using anomalous transmission.

reflecting planes of each crystal, 6;+6, = and
ABy = —A6,. The Du Mond diagram for the + 4 setting,
Fig. 2.7.3.2, shows plots of Bragg’s law for each crystal, the V
curve being a reflection of the U curve in a vertical mirror line
and differing by @ from the U curve in its coordinate of
intersection with the axis of abscissa, in accord with the
equations given above. The small angular range of reflection
of a monochromatic ray by each perfect crystal is represented
exaggeratedly by the band between the parallel curves. Where
the band for crystal U superimposes on the band for V (the
shaded area) defines semiquantitatively the divergence and
wavelength spread in the rays successively reflected by U and
V. (It is taken for granted that } w lies between the maximum and
minimum incident glancing angles on U, 6,,,, and 6,,;,, afforded
by the incident beam, assumed polychromatic.) The reflected
beam from U alone contains wavelengths ranging from A, to
Zmax- Comparison of these 6 and A ranges with the extent of the
shaded area illustrates the efficacy of the + 4 arrangement in
providing a collimated and monochromatic beam, which can be
employed to probe the reflecting properties of a third crystal
(Nakayama, Hashizume, Miyoshi, Kikuta & Kohra, 1973).
Techniques employing three or more successive Bragg reflec-
tions find considerable application when used with synchrotron
X-ray sources, and will be considered below, in Section 2.7.4.

The most commonly used arrangement for double-crystal
topography is shown in Fig. 2.7.3.3, in which U is the
‘reference’ crystal, assumed perfect, and V is the specimen
crystal under examination. Crystals U and V are in the parallel,
‘4 —’ setting, which is non-dispersive when the Bragg planes of
U and V have the same (or closely similar) spacings. Before
considering the Du Mond diagram for this arrangement, note
that Bragg reflection at the reference crystal U is asymmetric,
from planes inclined at angle o to its surface. Asymmetric
reflections have useful properties, discussed, for example, by
Renninger (1961), Kohra (1972), Kuriyama & Boettinger
(1976), and Boettinger, Burdette & Kuriyama (1979). The
asymmetry factor, b, of magnitude |[K,-n/K, - n|, n being the

w, 0,->, <6,

Fig. 2.7.3.2. Du Mond diagram for + + setting in Fig. 2.7.3.1.
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2.9. NEUTRON REFLECTOMETRY

the wavelength resolution is determined by the monochromator,
whereas the timing and moderator characteristics determine the
wavelength resolution on a time-of-flight instrument. Although
the second term in equation (2.9.5.1) is standard in scattering, it
has a unique characteristic, in that the angular divergence of the
reflected beam determines the resolution. This is the case
because the sample is a §-function scatterer, so that the angle of
the incident beam can be determined precisely by knowing the
reflected angle (Hamilton, Hayter & Smith, 1994). For a more
complete description of both types of neutron reflectometry
instrumentation, see Russell (1990).

2.9.6. Resolution in real space

From Fig. 2.9.2.3, the period Q of the reflectivity oscillation
(in the region where the Born approximation becomes valid,
sufficiently far away from the critical angle) is inversely
proportional to the thickness ¢ of the film. That is,
27/(8Q) =t. Consequently, in order to be able to resolve
reflectivity oscillations for a film of thickness #, the instrumental
O resolution AQ [from equation (2.9.5.1)] must be approxi-
mately 2/t or smaller. With sufficiently good instrumental
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Fig. 2.9.7.3. Co/Cu(111) spin-dependent reflectivities (top). Nuclear
(Nb) and magnetic (Np) scattering densities (bottom). Also shown is
the (constant) moment direction [after Schreyer et al. (1993)].

resolution, even the thickness of a film with non-abrupt
interfaces can be accurately determined, as demonstrated by
the hypothetical case depicted in Fig. 2.9.6.1 (where the
instrumental resolution is taken to be perfect): an overall film-
thickness difference of 2 A (between 42 and 40 A films) is clearly
resolved at a Q of about 0.2 A~!. In practice, differences even
less than this can be dlstmgulshed. Note, however, that to ‘see’
more detailed features in the scattering-density profile (such as
the oscillation on top of the plateau shown for the long-dash
profile in the inset of Fig. 2.9.6.1), other than the overall film
thickness, it can be necessary to make reflectivity measurements
at values of Q corresponding to 2sr/(characteristic dimension of
the feature).

2.9.7. Applications of neutron reflectometry
2.9.7.1. Self-diffusion

One of the simplest, yet powerful, examples of the use of
neutron reflectivity is in the study of self-diffusion. Most
techniques to measure diffusion coefficients rely on chemical and
mechanical methods to measure density profiles after a sample
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Fig. 2.9.7.4. (a) Measured neutron reflectivity for the Langmuir-
Blodgett multilayer described in the text along with the fit. (b) Both
corresponding neutron and X-ray scattering density profiles. The
X-ray reflectivity is more sensitive to the high-Z barium in the head
groups whereas the neutron reflectivity can distinguish mixing
between adjacent hydrogenated and deuterated hydrocarbon tails
[after Wiesler et al. (1995)].
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3.4. MOUNTING AND SETTING OF SPECIMENS FOR X-RAY CRYSTALLOGRAPHIC STUDIES

Table 3.4.1.1. Single-crystal and powder mounting, capillary tubes and other containers

Temperature
Material range (K) Comments

(A) Capillary tubes

Glass <773 Lindemann glass scatters less, but is moisture

Lindemann glass <773 sensitive

Vitreous silica <1373 Thinner walled tubes that are less sensitive to
atmospheric influences can be obtained using other
types of glass

Collodion 93 to 343 These capillaries can be made by coating a copper

Polyvinyl methylal resin wire with a solution of the polymer in an appropriate

(e.g. Formvar) <323 organic solvent. When dry, the metal core may be

Cellulose acetate <373 removed by stretching, to reduce its diameter

Polyethylene <373 Tubes may be drawn from the molten polymer using a
glass tube and a slow stream of air. The polymer gives
a distinct diffraction pattern

(B) Other containers

Gelatin capsules <303 Vessels with very thin, 20 um, windows can be made

Methyl methacrylate <338

resin (e.g. Perspex)

Mica <1073 Mica windows useful in vessels for small-angle
scattering, but the wall size is generally thicker,
~0.3 mm, and there are discrete lines at 10.00, 3.34
and 2.60 A in the diffraction pattern

Regenerated cellulose Ambient

film (e.g. cellophane)

For optimum results, tube diameters should be between 0.3 and 0.5 mm with wall thicknesses of 0.02 to 0.05 mm. The materials listed above,
except where stated, give diffuse diffraction patterns. If necessary, control diffraction patterns, recorded only from the capillary or other container,

should be taken.

(1993) have developed a mirror furnace working at up to 2300 K
and suitable for polycrystalline or single-crystal samples.

A comprehensive account of cryogenic studies pertinent to
both polycrystalline and single-crystal samples is given by
Rudman (1976). Nieman, Evans, Heal & Powell (1984) have
described a device for the preparation of low-temperature
samples of noxious materials. The device is enclosed in a
vanadium can and is therefore only suitable for neutron
diffraction studies. Ihringer & Kuster (1993) have described a
cryostat for powder diffraction, temperature range 8-300K, for
use on a synchrotron-radiation beam line at HASYLAB,
Germany (Arnold et al., 1989).

3.4.1.3. Single crystals (small molecules)
3.4.1.3.1. General

Small single crystals of inorganic and organic materials,
suitable for intensity data collection, are normally glued to the
end of a glass or vitreous silica fibre, or capillary (Denne,
1971b; Stout & Jensen, 1968). A simple device that fits onto a
conventional microscope stage to facilitate the procedure of
cementing a single crystal to a glass fibre has been constructed
by Bretherton & Kennard (1976). The support is in turn fixed

to a metal pin that fits onto a goniometer head. For preliminary
studies, plasticine or wax are useful fixatives, since it is then
relatively easy to alter the orientation of the support, and hence
the crystal, as required. For data-collection purposes, the
support should be firmly fixed or glued to the goniometer head
pin. The fibre should be sufficiently thin to minimize
absorption effects but thick enough to form a rigid support.
The length of the fibre is usually about 10 mm. Kennard (1994)
has described a macroscope that allows specimens to be
observed remotely during data collection and can also be used
for measurement of crystal faces for absorption correction.
Large specimens can be directly mounted onto a camera or
onto a specially designed goniometer (Denne, 1971a; Shaham,
1982). A method using high-temperature diffusion to bond
ductile single crystals to a metal backing, for strain-free
mounting, has been described by Black, Burdette & Early
(1986).

Prior to crystal mounting, it is always prudent to determine the
nature of any spatial constraints that are applicable for the
proposed experiment. Some diffractometers have relatively little
translational flexibility, and the length of the fibre mount or
capillary is critical. For some low-temperature devices where the
cooling gas stream is coaxial with the specimen mount, the
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4.1. RADIATIONS USED IN CRYSTALLOGRAPHY

4.1.4. Special applications of X-rays, electrons, and neutrons

Special sources and/or special properties of these radiations are
used in general crystallography.

4.1.4.1. X-rays, synchrotron radiation, and y-rays

X-ray beams from rotating-anode tubes are approximately one
hundred times more intensive than those from normal X-ray
tubes. Laser plasma X-ray sources yield intensive nanosecond
pulses of the line spectrum of nearly electron-free ions in the
X-ray region with a spectral breadth of A4/~ 1073, Several
such pulses may be repeated per hour (Frankel & Forsyth,
1979). Synchrotron radiation is characterized by a continuous
spectrum of wavelengths, high spectral flux, high intensity, high
brightness, extreme collimation, sharp time structure (pulses
with 30-200 ps length emitted in ns intervals), and nearly 100%
polarization in the orbital plane (Kuntz, 1979; Bonse, 1980).
Some of these properties are utilized in ordinary structure
analysis: for example, fine tuning of the wavelength of
synchrotron radiation for the solution of the phase problem by
resonant scattering on chosen atomic species constituting the
material under study. But these radiations also offer new
advantages in other fields of crystallography, as, for example,
in X-ray topography (Tanner & Bowen, 1980), in time-resolving
studies (Bordas, 1980), in X-ray microscopy (Parsons, 1980), in
studies of local atomic arrangements by extended X-ray
absorption fine structure (XAFS) investigations (Lee, Citrin,
Eisenberger & Kincaid, 1981) or studies of surface structures by
X-ray photoemission spectroscopy (XPS) (Plummer & Eber-
hardt, 1982), etc. y-rays emitted by radioactive sources such as
198 Au (ti, =2.7d), ’Sm (1,, = 46.8 h), 1921r (ty, =74.2d) or
B7Cs (1, =29.9a) are characterized by short wavelengths
(typically hundreds of A), by narrow spectral breadth
(AE~10%¢eV, AL/A~107% and by relatively low beam
intensity (~ 108 —10° m~2 s7!). They are mainly used for
studies of the mosaic structure of single crystals (Schneider,
1983) or for the determination of charge density distribution
(Hansen & Schneider, 1984). The typical absorption length of
~ 1-4 cm and the increase of the extinction length by a factor of
about 50 compared with ordinary X-rays are advantages utilized
in these experiments. y-rays also find applications in magnetic
structure studies and in the determination of gradients of electric
fields by Mossbauer diffraction and spectroscopy (Kuz’'min,
Kolpakov & Zhdanov, 1966).

For Compton scattering, see Sections 6.1.1 and 7.4.3.

4.1.4.2. Electrons

Low-energy electrons (10-200eV) have wavelengths near 1 A
and a penetration of a few A below the surface of a crystal. Low-
energy electron diffraction (LEED) is thus used for the study of
surface-layer structures (Ertl & Kiippers, 1974). High-energy
electrons are also currently used in electron microscopy in
materials science. Under certair} conditions, images of lattice
planes with a resolution of 2 A or better can be obtained.
Transmission electron microscopy is also used for reconstruction
of the three-dimensional structure of biological objects (such as
viruses), alternatively in combination with X-ray diffraction (de
Rossier & Klug, 1968).

4.1.4.3. Neutrons

The most important application of neutron diffraction is found
in studies of magnetic structures (Marshall & Lovesey, 1971).
The magnetic moment of neutrons is equal to 1.913 p,,, where
Wy 1is the nuclear magneton, and neutrons have spin I = 1/2.

They can thus interact with the magnetic moments of nuclei or
with the magnetic moments of the electron shells with
uncompensated spins. Changes in wavelength from 1 to 30 A
enable one to study non-uniformities of different sizes and
structures of polymers and biological objects by the small-angle
method. Inelastic scattering of neutrons is used for determining
phonon-dispersion curves. Neutron topography and neutron
texture diffraction can be utilized for the relatively large samples
used in technological applications. The pulsed spallation neutron
sources are used for high-resolution time-of-flight powder
diffraction (Windsor, 1981) or for time-resolved Laue
diffraction.

4.1.5. Other radiations
4.1.5.1. Atomic and molecular beams

Fast charged particles like protons, deuterons or He™ ions
show preferential penetration through crystals when the direction
of incidence is almost parallel to the prominent planes or axes of
the lattice. The reverse effect of this channelling is shadowing
when the centres of emission of the fast charged particles are the
atoms of the crystal themselves. These methods are, for
example, used in studies of surface structures, lattice defects,
orientation, thermal vibrations, atomic displacements, and
concentration profiles (Feldman, Mayer & Picraux, 1982). Ion
beams are also applied in special analytical methods like
Rutherford backscattering (RBS), inelastic scattering, proton-
induced X-ray analysis (PIX), efc.

4.1.5.2. Positrons and muons

These elementary particles are used in crystallography mainly
in studies of lattice defects (vacancies, interstitials, and impurity
atoms) for the determination of their concentration, location, and
diffusion by means of the techniques such as positron annihila-
tion spectroscopy (PAS) and muon spin resonance (uSR) - see,
for example, Siegel (1980) and Gyax, Kiindig & Meier (1979).
The positron implantation range in a solid is < 100 um from the
positron sources usually used (e.g. *Na, **Cu, *2Co); these
sources yield positrons with end-point energies of <1 MeV. The
PAS techniques are based on lifetime, Doppler broadening or
angular correlation measurements of y-rays emitted by the
decaying nucleus of the radioactive source and those resulting
from the positron-electron annihilation process. Muon sources
require intense primary medium-energy proton beams. The
positive muon u*™ has charge +e, spin 1/2, mass
105.659MeV/c? and a magnetic moment equal to 1.001 of the
muon-magneton units. With a mean lifetime of 2.197 us, the
muon decays into a positron (e*) and two neutrinos (v, and Vy)-
The correlation between the direction of the emitted positron and
the spin direction of the muon allows one to measure the spin
precession frequency and/or the decay of the muon polarization
of an ensemble of muons implanted in a solid.

4.1.5.3. Infrared, visible, and ultraviolet light

Visible light is one of the oldest tools used by crystal-
lographers for macroscopic symmetry determination, for
orientation of crystals, and in metallographic microscopes
for phase analysis. Infrared and Raman spectroscopy are
highly complementary methods in the infrared and visible
range of wavelengths, respectively. The information content
available with the two techniques is determined by molecular
symmetry and polarity. This information is utilized for the
identification of molecules or structural groups [symmetric
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4.2. X-RAYS

Table 4.2.2.1. K-series reference wavelengths in A; bold numbers indicate a directly measured line

Numbers in parentheses are standard uncertainties in the least-significant figures.

z Symbol A Ko, Ko, KB, KB, References
12 Mg 9.89153 (10) 9.889554 (88) (@)
13 Al 8.341831 (58) 8.339514 (58) (@)
14 Si 7.12801 (14) 7.125588 (78) ()
16 S 5.374960 (89) 5.372200 (78) )
17 Cl 4.730693 (71) 4.727818 (71) ()
18 Ar 4.194939 (23) 4.191938 (23) ©
19 K 3.7443932 (68) 3.7412838 (56) (@)
24 Cr 2.2936510 (30) 2.2897260 (30) 2.0848810 (40) 2.0848810 (40) (e)
25 Mn 2.1058220 (30) 2.1018540 (30) 1.9102160 (40) 1.9102160 (40) (e)
26 Fe 1.9399730 (30) 1.9360410 (30) 1.7566040 (40) 1.7566040 (40) (e)
27 Co 1.7928350 (10) 1.7889960 (10) 1.6208260 (30) 1.6208260 (30) (e)
28 Ni 1.6617560 (10) 1.6579300 (10) 1.5001520 (30) 1.5001520 (30) (e)
29 Cu 1.54442740 (50) 1.54059290 (50) 1.3922340 (60) 1.3922340 (60) (e)
31 Ga 1.3440260 (40) 1.3401270 (96) 1.208390 (75) 1.207930 (34) ®),(H
33 As 1.108830 (31) 1.104780 (12) 0.992689 (79) 0.992189 (53) ®),(f)
34 Se 1.043836 (30) 1.039756 (30) 0.933284 (74) 0.932804 (30) ®),(H)
36 Kr 0.9843590 (44) 0.9802670 (40) 0.8790110 (70) 0.8785220 (50) ()
40 Zr 0.7901790 (25) 0.7859579 (27) 0.7023554 (30) 0.7018008 (30) )
42 Mo 0.713607 (12) 0.70931715 (41) 0.632887 (13) 0.632303 (13) @),(f)
44 Ru 0.6474205 (61) 0.6430994 (61) 0.5730816 (42) 0.5724966 (42) @,(f)
45 Rh 0.6176458 (61) 0.6132937 (61) 0.5462139 (42) 0.5456189 (42) @,(N
46 Pd 0.5898351 (60) 0.5854639 (46) 0.5211363 (41) 0.5205333 (41) @),
47 Ag 0.5638131 (26) 0.55942178 (76) 0.4976977 (60) 0.4970817 (60) @),(H
48 Cd 0.5394358 (46) 0.5350147 (46) 0.4757401 (71) 0.4751181 (71) @),(f)
49 In 0.5165572 (60) 0.5121251 (46) 0.4551966 (41) 0.4545616 (41) @,(NH
50 Sn 0.4950646 (46) 0.4906115 (46) 0.4358821 (51) 0.4352421 (51) @),
51 Sb 0.4748391 (45) 0.4703700 (45) 0.4177477 (41) 0.4170966 (31) @),(f)
54 Xe 0.42088103 (71) 0.4163508 (14) 0.3694051 (13) 0.3687346 (13) (@)
56 Ba 0.38968378 (74) 0.38512464 (84) 0.3415228 (11) 0.34082708 (75) )
60 Nd 0.3248079 (59) 0.3201648 (59) 0.283634 (59) 0.282904 (44) @),(f)
62 Sm 0.31369830 (79) 0.30904506 (46) 0.273764 (30) 0.273014 (30) @),(f)
67 Ho 0.26549088 (84) 0.2607608 (42) 0.230834 (30) 0.230124 (30) N,
68 Er 0.2571133 (11) 0.25237359 (62) 0.2234766 (14) 0.22269866 (72) ()
69 Tm 0.24910095 (61) 0.24434486 (44) 0.216366 (30) 0.21559182 (57) (),(h)
74 w 0.21383304 (50) 0.20901314 (18) 0.18518317 (70) 0.1843768 (30) @),(f)
79 Au 0.18507664 (61) 0.18019780 (47) 0.1598249 (13) 0.15899527 (77) ()
82 Pb 0.17029527 (56) 0.16537816 (38) 0.1468129 (10) 0.14596836 (58) (@)
83 Bi 0.1657183 (20) 0.1607903 (46) 0.142780 (11) 0.1419492 (54) N,(®
90 Th 230 | 0.13782600 (31) 0.13282021 (36) 0.11828686 (78) 0.11740759 (59) ()
91 Pa 231 | 0.1343516 (29) 0.1293302 (27) 0.1152427 (21) 0.1143583 (21) @
92 U 238 | 0.13099111 (78) 0.12595977 (36) 0.11228858 (66) 0.11140132 (65) (@)
93 Np 237 | 0.1277287 (39) 0.1226882 (36) 0.1094230 (39) 0.1085265 (28) @
94 Pu 239 | 0.1245782 (15) 0.11952120 (69) (h)
94 Pu 244 | 0.1245705 (25) 0.1195140 (23) 0.1066611 (18) 0.1057595 (18) 0]
95 Am 243 | 0.1215158 (24) 0.1164463 (33) 0.1039794 (17) 0.1030803 (17) @
96 Cm 248 | 0.1185427 (23) 0.1134635 (21) 0.1013753 (17) 0.1004708 (16) @
97 Bk 249 | 0.1156630 (54) 0.1105745 (49) 0.0988598 (55) 0.0979514 (54) @
98 Cf 250 | 0.1128799 (82) 0.1077793 (75) 0)

References: (a) Schweppe er al. (1994); (b) Mooney (1996); (c¢) Schweppe (1995); (d) Deslattes & Kessler (1985); (e) Holzer et al. (1997); (f)

Bearden (1967); (g) Borchert, Hansen, Jonson, Ravn & Desclaux (1980);

theoretical framework (see below) has been undertaken and will
be made available in the longer publication and on the web site.

The feature of absorption spectra customarily designated as
‘the absorption edge’ has been variously associated with: the first
inflection point of the absorption spectrum; the energy needed to
produce a single inner vacancy with the photo-electron ‘at rest at
infinity’; or the energy needed to remove an electron from an
inner shell and place it in the lowest unoccupied energy level. A
general discussion of this question has been given by Parratt
(1959). If we choose the second alternative, then it is easy to see
that, with some care for symmetry restrictions, one can estimate
the absorption-edge energy by combining the binding energy for

(h) Borchert (1976); (i) Barreau, Borner, Egidy & Hoff (1982).

any accessible outer shell with the energy of an emission line for
which the transition terminus lies in the same outer shell. Of
course, this procedure does not focus on the details of absorption
thresholds, the locations of which are important for a number of
structural applications. On the other hand, our choice gives
greater regularity with respect to nuclear charge and facilitates
use of electron binding energies, since they are referenced to the
Fermi energy or the vacuum.

Electron binding energies have been tabulated for the
principal electron shells of all the elements considered in the
present table (Fuggle, Burr, Watson, Fabian & Lang, 1974;
Cardona & Ley, 1978; Nyholm, Berndtsson & Martensson,
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4.2. X-RAYS
Table 4.2.4.3. Mass attenuation coefficients (cm’ g~!) (cont.)
Energy 49 50 51 52 53 54 55 56
Radiation (MeV) Indium Tin Antimony Tellurium Todine Xenon Caesium Barium
Ag KB, 2.494E—02 1.13E+01 1.18E+01 1.25E+01 1.29E+01 1.40E+01 1.46E+01  1.56E+01 1.62E+01
Pd KB, 2.382E—02 1.27E4+01 1.34E+01 1.41E4+01 1.46E+01 1.59E+01 1.65E4+01 1.76E+01 1.83E+01
Rh KB, 2.272E—02 1.45E+01 1.52E+01 1.60E+01 1.66E+01  1.80E+01 1.88E+01 2.00E4+01 2.08E+01
Ag Ka 2.210E—-02 1.56E+01 1.64E+01 1.73E+01 1.79E+01 1.94E+01  2.02E+01 2.15E4+01 2.24E+01
Pd K& 2.112E—-02 1.76E4+01 1.85E+01 1.96E+01 2.02E+01 2.19E+01 2.29E+01 2.43E+01 2.54E+01
Rh Ka 2.017E—02 2.00E+01 2.10E4+01 2.22E+01 2.29E+01 2.18E+01 2.27E+01 2.42E+01 2.52E+01
Mo KB, 1.961E—-02 2.16E4+01 2.26E+01 2.39E4+01 2.47E+01 2.68E4+01 2.80E+01 2.98E+01 3.10E+01
Mo Ka 1.744E—02 2.95E+01 3.10E+01 3.27E+01 3.38E+01 3.67E+01 3.82E+01 4.07E+01 4.23E+01
Zn KB, 9.572E—03 1.48E+02 1.55E+02 1.64E+02 1.68E+02 1.82E+02 1.90E+02 2.01E+02 2.09E+02
Cu KB, 8.905E-03 1.80E+02 1.88E+02 1.98E+02 2.04E+02 2.20E+02 2.29E+02 2.43E+02 2.52E+02
Zn K& 8.631E-03 1.95E+02 2.04E+02 2.15E4+02 2.21E+02 2.39E4+02 2.49E+02 2.63E4+02 2.73E+02
Ni KB, 8.265E—03 2.19E+02 2.29E+02 2.41E+02 2.48E+02 2.68E+02 2.78E+02 2.95E+02 3.06E+02
Cu Ko 8.041E-03 2.36E+02 2.47E+02 2.59E+02 2.67E+02 2.88E+02 2.99E+02 3.17E+02 3.25E+02
Co KB, 7.649E—03 2.69E+02 2.81E+02 2.96E+02 3.04E+02 3.30E+02 3.43E+02 3.63E+02 3.76E+02
Ni K& 7.472E—03 2.86E+02 2.99E+02 3.14E4+02 3.23E+02 3.49E+02 3.62E+02 3.83E4+02 3.96E+02
Fe KB, 7.058E—03 3.32E+02 3.47E+02 3.65E+02 3.74E+02 4.08E+02 4.22E+02 4.46E+02 4.61E+02
Co Ka 6.925E—03 3.49E+02 3.64E+02 3.83E4+02 3.94E+02 4.25E4+02 4.40E+02 4.65E+02 4.80E+02
Mn KB, 6.490E—03 4.13E+02 4.31E+02 4.54E+02 4.66E+02 5.03E+02 5.20E+02 5.49E+02 5.66E+02
Fe Ka 6.400E—03 4.28E4+02 4.47E+02 4.71E4+02 4.83E+02 5.22E4+02 5.40E+02 5.69E4+02 5.86E+02
Cr KB, 5.947E-03 5.19E+02 5.42E+02 5.70E+02 5.85E+02 6.31E+02 6.52E+02 6.86E+02 6.45E+02
Mn K& 5.8905E—03 5.31E+02 5.54E+02 5.82E4+02 5.98E+02 6.45E4+02 6.66E+02 7.00E+02 6.60E+02
Cr Ka 5.412E-03 6.63E+02 6.91E+02 7.23E+02 7.40E+02 7.96E+02 7.21E+02 7.60E+02 5.70E+02
Ti KB, 4932E—03 8.41E4+02 8.76E+02 9.15E4+02 9.32E+02 1.00E4+03 1.03E+03 2.60E+02 3.14E+02
Ti Ko 4.509E—-03 1.05E+03 1.09E+03 9.91E+02 7.51E+02 2.83E+02 2.65E+02 3.30E+02 3.34E+02
57 58 59 60 61 62 63 64

Lanthanum Cerium  Praseodymium Neodymium Promethium Samarium Europium  Gadolinium
Ag KB, 2.494E—02 1.72E4+01  1.83E+01 1.95E4+01 2.04E+01 2.17E4+01 2.23E+4+01 2.35E+01 2.42E+01
Pd KB, 2.382E—-02 1.95E4+01 2.07E+01 2.20E+01 2.30E+01 2.45E+01 2.52E+01 2.66E+01 2.74E+01
Rh KB, 2.272E—02 2.21E4+01 2.35E+01 2.50E4+01 2.61E+01 2.78E4+01 2.86E+01 3.01E+01 3.10E+01
Ag Ka 2.210E—-02 2.38E+01 2.53E+01 2.69E+01 2.81E+01 2.99E+01 3.08E+01 3.24E+01 3.34E+01
Pd K& 2.112E—-02 2.69E4+01 2.86E+01 3.04E4+01 3.18E+01 3.38E4+01 3.48E+01 3.66E+01 3.77E+01
Rh K& 2.017E—-02 3.05E4+01 3.24E+01 3.45E+01 3.60E+01 3.83E+01 3.94E+01 4.15E+01 4.27E+01
Mo KB, 1.961E—02 3.29E+01 3.49E+01 3.72E4+01 3.88E+01 4.13E4+01 4.24E+01 4.47E+01 4.60E+01
Mo Ka 1.744E—02 4.49E+01 4.77E+01 5.07E+01 5.30E+01 5.63E+01 5.78E+01  6.09E+01  6.26E+01
Zn KB, 9.572E—03 2.21E4+02 2.33E+02 2.47E+4+02 2.57E+02 2.73E402 2.79E+02 2.93E4+02 3.00E+02
Cu KB, 8.905E-03 2.66E+02 2.82E+02 2.99E+02 3.10E+02 3.28E+02 3.35E+02 3.52E+02  3.60E+02
Zn K& 8.631E-03 2.89E+02 3.06E+02 3.24E4+02 3.36E+02 3.55E4+02 3.63E+02 3.80E+02 3.89E+02
Ni KB, 8.265E—-03 3.24E+02 3.43E+02 3.63E4+02 3.76E+02 3.97E+02 4.05E+02 4.24E+02 4.33E+02
Cu Ko 8.041E—03 3.48E+02 3.68E+02 3.90E4+02 4.04E+02 4.26E4+02 4.34E+02 4.34E4+02 4.03E+02
Co KB, 7.649E—03 3.95E+02 4.17E+02 4.41E+02 4.57E+02 4.82E+02 3.54E+02 4.80E+02 3.35E+02
Ni K& 7.472E—03 4.19E+02 4.42E4+02 4.68E4+02 4.84E+02 S5.11E4+02 3.71E+02 3.75E4+02 3.56E+02
Fe KB, 7.058E—-03 4.83E+02 5.10E+02 5.39E+02 4.92E+02 5.88E+02 1.63E+02 4.08E+02 1.53E+02
Co Ka 6.925E—-03 5.07E+02 5.35E+02 5.65E+02 5.05E+02 4.00E+02 1.76E+02 4.19E+02 1.61E+02
Mn KB, 6.490E—03 5.97E+02 547E+02 6.16E+02 4.39E+02 4.68E+02 1.66E+02 1.95E+02 1.89E+02
Fe K& 6.400E—03 6.18E4+02 5.61E+02 4.48E+02 4.55E+02 1.94E4+02 2.04E+02 2.03E4+02 1.95E+02
Cr KB, 5.947E-03 7.44E+02 4.94E+02 1.88E+02 1.98E+02 2.32E4+02 2.21E+02 2.44E+02 2.35E+02
Mn K& 5.8905E—03 7.60E+02 S5.12E4+02 1.93E4+02 2.03E+02 2.37E4+02 2.25E+02 2.49E+02 2.41E+02
Cr K& 5.412E-03 2.25E+02 2.38E+02 2.38E+02 2.51E+02 2.94E+02 2.79E+02 3.09E+02 2.98E+02
Ti KB, 4.932E—-03 2.84E+02 3.00E+02 3.00E+02 3.14E+02 3.69E+02 3.50E+02 3.90E+02 3.74E+02
Ti Ko 4.509E—03 3.55E4+02 3.57E+02 3.75E4+02 3.97E+02 4.62E+02 4.35E+02 4.88E+02 4.69E+02
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4.3. ELECTRON DIFFRACTION

Table 4.3.3.1. Partial wave elastic scattering factors for neutral atoms (cont.)

Nd; Z = 60
10 keV 40 keV 60 keV 90 keV
s I ()l n(s) £ ()l 1(s) 1f ()l 1(s) ()l 1(s)
0 1.4119E+01  2.8873E—01  1.6423E+01  2.0045E—01  1.7330E+01  1.7798E—01  1.8487E+01  1.5802E—01
1 1.0206E+01  3.8730E—01 1.2180E+01 2.6378E—01 1.2914E+01  2.3333E—01 1.3832E+01 2.0647E—01
2 6.0770E+00  6.0589E—01  7.5938E+00 3.9891E—01 8.1191E+00 3.5059E—01 8.7556E+00  3.0858E—01
3 4.0922E+00  8.2028E—01  5.3104E+00  5.2825E—01 5.7165E+00 4.6231E—01 6.1973E4+00 4.0556E—01
4 2.9430E+00 1.0317E+00 3.9433E+00 6.5384E—01 4.2696E+00 5.7046E—01 4.6496E+00  4.9923E—01
5 2.1968E+00  1.2549E+00 3.0173E+00  7.8447E—01 3.2827E+00 6.8261E—01 3.5884E+00  5.9612E—01
6 1.7004E+00  1.4824E+00 2.3737E+00 9.1683E—01 2.5919E+00  7.9603E—01 2.8414E+00 6.9396E—01
7 1.3600E+00  1.7040E+00 1.9174E+00 1.0458E+00 2.0991E+00 9.0649E—01 2.3062E+00  7.8917E—01
8 1.1160E+00 1.9158E+00 1.5834E+00 1.1693E+00 1.7370E+00 1.0122E+00 1.9117E4+00  8.8024E—01
9 9.3380E—-01  2.1191E+00 1.3307E+00 1.2878E+00  1.4620E+00 1.1136E+00 1.6113E+00  9.6756E—01
10 7.9448E—01 2.3165E+00 1.1340E+00 1.4028E+00 1.2473E+00 1.2120E+00 1.3761E+00 1.0523E+00
11 6.8613E—01  2.5094E+00 9.7772E—01  1.5156E+00 1.0760E+00 1.3085E+00 1.1878E+00 1.1354E+00
12 6.0093E—01 2.6978E+00  8.5185E—01 1.6267E+00 9.3737E—01 1.4036E+00 1.0349E+00 1.2173E+00
13 5.3305E—01  2.8810E+00  7.4934E—01 1.7358E+00  8.2397E—01  1.4972E+00  9.0940E—01  1.2979E+00
14 4.7806E—01 3.0581E+00 6.6503E—01  1.8424E+00  7.3036E—01 1.5887E+00  8.0546E—01 1.3769E+00
15 4.3262E—01  3.2284E+00 5.9499E—01 1.9458E+00  6.5239E—01 1.6777E+00  7.1872E—01  1.4538E+00
16 3.9429E-01 3.3918E+00 5.3618E—01 2.0456E+00 5.8686E—01 1.7637E+00 6.4574E—01  1.5282E+00
17 3.6131E—01  3.5485E+00 4.8624E—01 2.1413E+00 5.3126E—01  1.8462E+00  5.8382E—01  1.5996E+00
18 3.3244E—-01 3.6990E+00 4.4336E—01 2.2327E+00 4.8362E—01 1.9251E+00 5.3083E—01 1.6679E+00
19 3.0684E—01 3.8442E+00 4.0614E—01 2.3200E+00 4.4241E—01  2.0003E+00  4.8510E—01  1.7329E+00
20 2.8396E—01 3.9848E+00 3.7353E—01  2.4034E+00 4.0644E—01 2.0719E+00 4.4530E—01 1.7948E+00
21 2.6342E—01  4.1212E+00 3.4475E—01 2.4831E+00 3.7480E—01 2.1403E+00 4.1038E—01  1.8537E+00
22 2.4492E—01 4.2540E+00 3.1918E—01 2.5597E+00 3.4679E—01 2.2058E+00 3.7955E—01 1.9100E+00
23 2.2824E—01 4.3836E+00 2.9636E—01 2.6334E+00  3.2186E—01 2.2687E+00  3.5216E—01  1.9641E+00
24 2.1319E—-01 4.5101E4+00 2.7590E—01 2.7047E+00 2.9956E—01 2.3294E+00 3.2769E—01 2.0161E+00
25 1.9959E—01 4.6340E+00 2.5749E—01 2.7739E+00  2.7952E—01  2.3882E+00 3.0573E—01  2.0664E+00
26 1.8731E—-01  4.7553E+00 2.4088E—01 2.8412E+00 2.6144E—01 2.4452E+00 2.8594E—01 2.1152E+00
27 1.7619E—01  4.8741E+00 2.2584E—01 2.9068E+00  2.4508E—01  2.5008E+00 2.6803E—01 2.1627E+00
28 1.6612ZE—01  4.9906E+00  2.1222E—01  2.9709E+00 2.3025E—-01 2.5551E+00 2.5178E—01  2.2090E+00
29 1.5697E—01  5.1046E+00  1.9985E—01 3.0338E+00 2.1677E—01  2.6084E+00 2.3700E—01  2.2545E+00
30 1.4865E—01 5.2163E4+00  1.8859E—01  3.0954E+00 2.0449E—01 2.6606E+00  2.2352E—01  2.2991E+00
31 1.4106E—01  5.3258E+00 1.7832E—01  3.1559E+00 1.9327E—01 2.7119E+00 2.1119E—-01  2.3430E+00
32 1.3412E—01  5.4332E+00 1.6892E—01  3.2154E+00 1.8299E—-01 2.7624E+00 1.9988E—01  2.3861E+00
33 1.2776E—01  5.5387E+00 1.6031E—01  3.2738E+00  1.7355E—01  2.8120E+00 1.8948E—01  2.4286E+00
34 1.2191E—-01  5.6421E+00  1.5239E—01 3.3313E+00 1.6486E—01 2.8609E+00 1.7990E—01  2.4704E+00
35 1.1651E—01  5.7438E+00 1.4510E—01 3.3878E+00  1.5686E—01  2.9090E+00 1.7106E—01  2.5117E+00
36 1.1151E—-01  5.8437E+00  1.3837E—01  3.4434E+00 1.4946E—01 2.9563E+00 1.6288E—01 2.5523E+00
37 1.0687E—01  5.9420E+00 1.3215E—01 3.4980E+00  1.4262E—01  3.0029E+00  1.5531E—01  2.5924E+00
38 1.0256E—01  6.0387E+00  1.2637E—01  3.5517E+00 1.3626E—01 3.0488E+00 1.4827E—01 2.6318E+00
39 9.8547E—02  6.1341E4+00 1.2099E—01  3.6046E+00  1.3034E—01 3.0939E+00 1.4172E—01 2.6705E+00
40 9.4797E—02  6.2282E+00 1.1598E—01  3.6566E+00  1.2481E—01 3.1383E+00 1.3560E—01  2.7087E+00
41 9.1286E—02  3.7860E—02  1.1129E—01 3.7078E+00 1.1966E—01  3.1819E+00  1.2989E—01  2.7462E+00
42 8.7989E—02  1.2957E—01 1.0691E—01 3.7581E+00 1.1483E—01 3.2248E+00 1.2455E—01  2.7831E+00
43 8.4888E—02  2.2024E—01  1.0280E—01 3.8075E+00 1.1031E—01 3.2670E+00 1.1954E—01  2.8194E+00
44 8.1972E—02  3.0993E—01  9.8933E—02 3.8562E+00  1.0606E—01 3.3085E+00 1.1484E—01 2.8551E+00
45 7.9227E—02  3.9870E—01  9.5290E—02  3.9041E+00 1.0206E—01  3.3493E+00 1.1042E—01  2.8902E+00
46 7.6637TE—02  4.8660E—01  9.1852E—02  3.9512E+00 9.8288E—02 3.3894E+00 1.0625E—01  2.9246E+00
47 7.4192E—02  5.7369E—01  8.8603E—02 3.9976E+00 9.4726E—02 3.4289E+00 1.0232E—01  2.9584E+00
48 7.1876E—02  6.6005E—01  8.5532E—02  4.0432E+00 9.1361E—02 3.4676E+00 9.8609E—02  2.9917E+00
49 6.9682E—02  7.4573E—01  8.2624E—02 4.0881E+00  8.8179E—02  3.5057E+00  9.5104E—02  3.0243E+00
50 6.7604E—02  8.3073E—01  7.9865E—02 4.1323E+00 8.5163E—02  3.5432E+00 9.1785E—02  3.0564E+00
51 6.5635E—02  9.1508E—01  7.7243E—02 4.1758E+00  8.2299E—02 3.5801E+00  8.8637E—02  3.0880E+00
52 6.3769E—02  9.9881E—01  7.4750E—02 4.2188E+00 7.9579E—02 3.6164E+00 8.5648E—02  3.1190E+00
53 6.1997E—02  1.0819E+00  7.2378E—02 4.2611E+00  7.6991E—02 3.6521E+00 8.2809E—02  3.1495E+00
54 6.0314E—-02 1.1645E+00 7.0119E—02 4.3028E+00  7.4530E—02 3.6873E+00  8.0112E—02  3.1795E+00
55 5.8714E—02  1.2466E+00 6.7967E—02  4.3438E+00  7.2190E—02  3.7219E+00  7.7548E—02  3.2090E+00
56 5.7194E—02  1.3282E+00 6.5914E—02 4.3843E+00 6.9959E—02  3.7559E+00  7.5108E—02  3.2380E+00
57 5.5751E—-02  1.4093E+00 6.3954E—02  4.4242E+00 6.7830E—02 3.7895E+00  7.2781E—02  3.2665E+00
58 5.4378E—02  1.4899E+00 6.2081E—02  4.4636E+00 6.5797E—02  3.8225E+00  7.0560E—02  3.2946E+00
59 5.3074E—02  1.5700E+00  6.0291E—02  4.5024E+00  6.3854E—02 3.8551E+00 6.8439E—02  3.3222E+00
60 5.1835E—-02  1.6496E+00 5.8579E—02 4.5408E+00 6.1998E—02  3.8872E+00  6.6415E—02  3.3495E+00
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4.4. NEUTRON TECHNIQUES

particle pulse is short enough, the duration of the moderated
neutron pulses is roughly inversely proportional to the neutron
speed.

These accelerator-driven pulsed sources
frequencies of between 10 and 100 Hz.

There are two fundamental differences between a reactor and a
pulsed source.

(1) All experiments at a pulsed source must be performed with
time-of-flight techniques. The pulsed source produces neutrons
in bursts of 1 to 50 pus duration, depending on the energy, spaced
about 10 to 100 ms apart, so that the duty cycle is low but there is
very high neutron intensity within each pulse. The time-of-flight
technique makes it possible to exploit that high intensity. With
the de Broglie relationship, for neutrons

@A) = 0.3966 1 (us)/L (cm),

are pulsed at

where ¢ is the flight time in ps and L is the total flight path in cm.

(2) The spectral characteristics of pulsed sources are some-
what different from reactors in that they have a much larger
component of higher-energy (above 100 meV) neutrons than the
thermal spectrum at reactors. The exploitation of this new energy
regime accompanied by the short pulse duration is one of the
great opportunities presented by spallation sources.

Fig. 4.4.1.2 illustrates the essential difference between
experiments at a steady-state source (left panel) and a pulsed
source (right panel). We confine the discussion here to
diffraction. If the time over which useful information is gathered
is equivalent to the full period of the source At (the case
suggested by the lower-right figure), the peak flux of the pulsed
source is the effective parameter to compare with the flux of the
steady-state source. Often this is not the case, so one makes a
comparison in terms of time-averaged flux (centre panel). For the
pulsed source, this is lowered from the peak flux by the duty
cycle, but with the time-of-flight method one uses a large interval
of the spectrum (shaded area). For the steady-state source, the
time-averaged flux is high, but only a small wavelength slice
(stippled area) is used in the experiment. It is the integrals of the

two areas which must be compared; for the pulsed sources now
being designed, the integral is generally favourable compared
with present-day reactors. Finally, one can see from the central
panel that high-energy neutrons (100-1000 meV) are especially
plentiful at the pulsed sources. These various features can be
exploited in the design of different kinds of experiments at pulsed
sources.

4.4.2. Beam-definition devices
(By I. S. Anderson and O. Scharpf)

4.4.2.1. Introduction

Neutron scattering, when compared with X-ray scattering
techniques developed on modern synchrotron sources, is flux
limited, but the method remains unique in the resolution and
range of energy and momentum space that can be covered.
Furthermore, the neutron magnetic moment allows details of
microscopic magnetism to be examined, and polarized neutrons
can be exploited through their interaction with both nuclear and
electron spins.

Owing to the low primary flux of neutrons, the beam definition
devices that play the role of defining the beam conditions
(direction, divergence, energy, polarization, efc.) have to be
highly efficient. Progress in the development of such devices not
only results in higher-intensity beams but also allows new
techniques to be implemented.

The following sections give a (non-exhaustive) review of
commonly used beam-definition devices. The reader should keep
in mind the fact that neutron scattering experiments are typically
carried out with large beams (1 to 50cm?) and divergences
between 5 and 30 mrad.

4.4.2.2. Collimators

A collimator is perhaps the simplest neutron optical device and
is used to define the direction and divergence of a neutron beam.
The most rudimentary collimator consists of two slits or pinholes
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Fig. 4.4.1.2. Schematic diagram for performing diffraction experiments at steady-state and pulsed neutron sources. On the left we see the familiar
monochromator crystal allowing a constant (in time) beam to fall on the sample (centre left), which then diffracts the beam through an angle 26,
into the detector. The signal in the latter is also constant in time (lower left). On the right, the pulsed source allows a wide spectrum of neutrons to
fall on the sample in sharp pulses separated by Atz (centre right). The neutrons are then diffracted by the sample through 26, and their time of
arrival in the detector is analysed (lower right). The centre figure shows the time-averaged flux at the source. At a reactor, we make use of a

narrow band of neutrons (heavy shading), here chosen with 2 = 1.5 A.

At a pulsed source, we use a wide spectral band, here chosen from 0.4 to

3 A and each one is identified by its time-of-flight. For the experimentalist, an important parameter is the integrated area of the two-shaded areas.

Here they have been made identical.
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4.4. NEUTRON TECHNIQUES
Table 4.4.5.10. (j,) form factors for 4d atoms and their ions

Atom or

ion A a B b C c D e

Y —8.0767 32.201 7.9197 25.156 1.4067 6.827 —0.0001 0.1031
Zr —5.2697 32.868 4.1930 24.183 1.5202 6.048 —0.0002 0.0855
Zrt —5.6384 33.607 4.6729 22.338 1.3258 5.924 —0.0003 0.0674
Nb —3.1377 25.595 2.3411 16.569 1.2304 4.990 —0.0005 0.0615
Nb* —3.3598 25.820 2.8297 16.427 1.1203 4.982 —0.0005 0.0724
Mo —2.8860 20.572 1.8130 14.628 1.1899 4.264 —0.0008 0.0410
Mo™ —3.2618 25.486 2.3596 16.462 1.1164 4.491 —0.0007 0.0592
Tc —2.7975 20.159 1.6520 16.261 1.1726 3.943 —0.0008 0.0657
Tct —2.0470 19.683 1.6306 11.592 0.8698 3.769 —0.0010 0.0723
Ru —1.5042 17.949 0.6027 9.961 0.9700 3.393 —0.0010 0.0338
Ru* 1.6278 18.506 1.1828 10.189 0.8138 3.418 —0.0009 0.0673
Rh —1.3492 17.577 0.4527 10.507 0.9285 3.155 —0.0009 0.0483
Rh* —1.4673 17.957 0.7381 9.944 0.8485 3.126 —0.0012 0.0487
Pd —1.1955 17.628 0.3183 11.309 0.8696 2.909 —0.0006 0.0555
Pd* —1.4098 17.765 0.7927 9.999 0.7710 2.930 —0.0006 0.0530

Table 4.4.5.11. (j,) form factors for rare-earth ions
Ion A a B b C c D e
Ce** —0.6468 10.533 0.4052 5.624 0.3412 1.535 0.0080 0.0522
Nd** —0.5416 12.204 0.3571 6.169 0.3154 1.485 0.0098 0.0519
Nd** —0.4053 14.014 0.0329 7.005 0.3759 1.707 0.0209 0.0372
Sm?+ —0.4150 14.057 0.1368 7.032 0.3272 1.582 0.0192 0.0319
Sm3+ —0.4288 10.052 0.1782 5.019 0.2833 1.236 0.0088 0.0328
Eu?t —0.4145 10.193 0.2447 5.164 0.2661 1.205 0.0065 0.0516
Eu*t —0.4095 10.211 0.1485 5.175 0.2720 1.237 0.0131 0.0494
Gd*+ —0.3824 10.344 0.1955 5.306 0.2622 1.203 0.0097 0.0363
Gd*+ —0.3621 10.353 0.1016 5.310 0.2649 1.219 0.0147 0.0494
Tb** —0.3443 10.469 0.1481 5.416 0.2575 1.182 0.0104 0.0280
Tb*+ —0.3228 10.476 0.0638 5.419 0.2566 1.196 0.0159 0.0439
Dy** —0.3206 12.071 0.0904 8.026 0.2616 1.230 0.0143 0.0767
Dy** —0.2829 9.525 0.0565 4.429 0.2437 1.066 0.0092 0.0181
Ho** —0.2976 9.719 0.1224 4.635 0.2279 1.005 0.0063 0.0452
Ho** —0.2717 9.731 0.0474 4.638 0.2292 1.047 0.0124 0.0310
Er*t —0.2975 9.829 0.1189 4.741 0.2116 1.004 0.0117 0.0524
Er’t —0.2568 9.834 0.0356 4.741 0.2172 1.028 0.0148 0.0434
Tm?* —0.2677 9.888 0.0925 4.784 0.2056 0.990 0.0124 0.0396
Tm3*+ —0.2292 9.895 0.0124 4.785 0.2108 1.007 0.0151 0.0334
Yb2+ —0.2393 9.947 0.0663 4.823 0.2009 0.965 0.0122 0.0311
Yb3+ —0.2121 8.197 0.0325 3.153 0.1975 0.884 0.0093 0.0435
Table 4.4.5.12. (j,) form factors for actinide ions

Ton A a B b C c D e
U —0.9859 16.601 0.6116 6.515 0.6020 2.597 —0.0010 0.0599
U+ —1.0540 16.605 0.4339 6.512 0.6746 2.599 —0.0011 0.0471
Ut —0.9588 16.485 0.1576 6.440 0.7785 2.640 —0.0010 0.0493
Np** 0.9029 16.586 0.4006 6.470 0.6545 2.563 —0.0004 0.0470
Np*+* —0.9887 12.441 0.5918 5.294 0.5306 2.263 —0.0021 0.0583
Np** —0.8146 16.581 —0.0055 6.475 0.7956 2.562 —0.0004 0.0600
Np®+ 0.6738 16.553 —0.2297 6.505 0.8513 2.553 —0.0003 0.0623
Pu* —0.7014 16.369 —0.1162 6.697 0.7778 2.450 0.0000 0.0546
Pu*t —0.9160 12.203 0.4891 5.127 0.5290 2.149 —0.0022 0.0520
Pu’* —0.7035 16.360 —0.0979 6.706 0.7726 2.447 0.0000 0.0610
PuS* —0.5560 16.322 —0.3046 6.768 0.8146 2.426 0.0001 0.0596
Am** —0.7433 16.416 0.3481 6.788 0.6014 2.346 0.0000 0.0566
Am** 0.8092 12.854 0.4161 5.459 0.5476 2.172 —0.0011 0.0530
Am** —0.8548 12.226 0.3037 5.909 0.6173 2.188 —0.0016 0.0456
Am>* —0.6538 15.462 —0.0948 5.997 0.7295 2.297 0.0000 0.0594
Am®+ —0.5390 15.449 —0.2689 6.017 0.7711 2.297 0.0002 0.0729
Am’* —0.4688 12.019 —0.2692 7.042 0.7297 2.164 —0.0011 0.0262
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5. DETERMINATION OF LATTICE PARAMETERS

Table 5.2.4.1. Centroid displacement {A6/60) and variance W of certain aberrations of an angle-dispersive diffractometer; for
references see Wilson (1963, 1965¢c, 1974) and Gillham (1971)

For the Seemann-Bohlin arrangement, S and R are given by equations (5.2.4.1) and (5.2.4.2); for the symmetrical arrangement, they are equal to

R,. Other notation is explained at the end of the table.

Aberration

Thin specimen

(AQ20)) w
Zero-angle calibration Constant 0
Specimen displacement —s{R™!cos(260 — ¢) + S~ cos ¢} 0
Specimen transparency
Thick specimen —sin2¢/ R+ S) sin? 2¢/u?(R + S)°

See Wilson (1974, p. 547)

2:1 mis-setting

Zero if centroid of illuminated area is centred

BRA2 R cos(20 — @) + S~ cos ¢]*/3

Inclination of plane of specimen to axis of

Zero if centroid of illuminated area on

Y22 [R™ cos(26 — @) + S~ cos ¢]* /3 for

rotation equator of specimen uniform illumination
Flat specimen —A%sin20/3 RS 44% sin® 26/45 R2S*
Focal-line width Small ~f2/128?
Receiving-slit width Small ~ r}/12R?

Interaction terms

Small if adjustment reasonably good

See Wilson (1963, 1974)

Axial divergence

—h2[(S72 + R72)cot 20 + (RS) ™' cosec26]/3

H7S™ +2(RS) 2 + TR *} cot? 20

No Soller slits, source, specimen and receiver
equal

+ 14(RS)'(S72 + R?) cot 20 cosec 26
+ 19(RS) 2 cosec? 26]/45

Narrow Soller slits
One set in incident beam

Two sets

—[A%/12 + h2 /3R cot 260

—(A%cot 26)/6

7[A* /720 + h* /45R*] cot? 20
+ h? cosec? 20/9R?

A*(10 4 17 cot? 26)/360

Wide Soller slits
(1971)

Complex. See Pike (1957), Langford & Wilson (1962), Wilson (1963, 1974), and Gillham

Refraction

~ —25tanf

~ 8[—61n(A/2) + 25]/4up

Physical aberrations

See Wilson (1963, 1965¢, 1970a, 1974) and Gillham & King (1972)

Notation: 24 = illuminated length of specimen; 8 = angle of equatorial mis-setting of specimen; y = angle of inclination of plane of specimen to
axis of rotation; A = angular aperture of Soller slits; u = linear absorption coefficient of specimen; r; = width of receiving slit (varies with 6 in
some designs of diffractometer); s = specimen-surface displacement; f; = projected width of focal line; # = half height of focal line, specimen,
and receiving slit, taken as equal; 1 — § = index of refraction; p = effective particle size.

extrapolation is quick and easy for cubic substances, and by the
use of successive approximations it can be applied to hexagonal
(Wilson & Lipson, 1941), tetragonal, and even orthorhombic
materials. It is, however, very cumbersome for non-cubic
substances, and impracticable if the symmetry is less than
orthorhombic.

Analytic extrapolation seems to have been first used by Cohen
(19364a,b). 1t is now usual even in the cubic case: programs are
often included in the software accompanying powder diffrac-
tometers, and many others are available separately. Some

programs that are frequently referred to are described by
Appleman & Evans (1973), Mighell, Hubbard & Stalick (1981),
and Ferguson, Rogerson, Wolstenholme, Hughes & Huyton
(1987); for a comparison, see Kelly (1988). If the precision
warrants it, the single function KF(6) may be replaced by a sum
of functions K;F;(6), one for each of the larger aberrations listed
in Tables 5.2.4.1, 5.2.7.1, and 5.2.8.1. Two - the zero error and
a function corresponding to specimen-surface displacement and
transparency — must be used routinely; one or two more may be
added if the precision warrants it.
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5.2. X-RAY DIFFRACTION METHODS: POLYCRYSTALLINE

Table 5.2.10.6. Fluorophlogopite 00l standard reflection angles

[NIST

SRM 675,  d(00) = 9.98104(7) 4,

). = 1.5405929 A]

T = 298K,

l 20 (°)

1 8.853
2 17.759
3 26.774
4 35.962
5 45.397
6 55.169
7 65.399
8 76.255
10 101.025
11 116.193
12 135.674

Table 5.2.10.7. Silver behenate 00l standard reflection angles

[d(001) = 58.380(3) 4,

3

). = 1.5405929 A
Blanton & Wu, 1993)]

(Huang, Toraya,

l 20 (°)
1 1.512
2 3.024
3 4.537
4 6.051
5 7.565
6 9.081
7 10.599
8 12.118
9 13.640
10 15.164
11 16.691
12 18.221
13 19.754

The forward reflections have been used in parallel-beam

synchrotron-radiation lattice-parameter studies (Parrish et
al., 1987).
The profile shape has a strong influence on the accuracy of
the angle measurement. The geometrical aberrations
produce asymmetries that reduce the accuracy; the effects
can be minimized by a proper selection of slit sizes. In most
cases, it is inadvisable to use K radiation to avoid
Koa-doublet splitting, as the intensity is reduced by a factor
of seven. Symmetrical profiles are obtained with parallel-
beam optics, but it is usually necessary to use synchrotron
radiation to achieve sufficient intensity.

@

&)

Q)

(7

®

®

The largest and commonest source of systematic error in
focusing geometry is the specimen-surface displacement.
Several remountings of the specimen in the diffractometer
and measurement of some low-angle reflections may be
helpful in determining and minimizing the error. This
aberration does not occur in parallel-beam geometry unless
a receiving slit is used.

The precision of the diffractometer gears (or the equiva-
lent) may be the limiting factor in high-precision measure-
ments. The use of an electromagnetic encoder mounted on
the 26-output shaft can increase the precision considerably.
It is not normally included in commercial diffractometers
because of its cost, but it is essential for adequate accuracy
when the 20 angles must be determined to better than
0.001°. The various types of mechanical error have been
described by Jenkins & Schreiner (1986).

The diffractometer must be carefully adjusted to avoid
mechanical problems. The effect of backlash can be
minimized by slewing beyond and then returning to the
starting angle, and by always scanning in the same
direction. It is essential to avoid over-tight worm-and-
gear meshing, as it causes jerky rather than smooth
movement.

The beam must be precisely centred, the slits and
monochromator (if used) must be parallel to the line
focus of the X-ray tube, and the scanning plane must be
perpendicular to the line focus.

The use of standard specimens with accurately known
lattice parameters (Section 5.2.10) and ideally free of line
broadening is strongly recommended as a test of the overall
precision of the instrumentation and method.

For a given total time available for an experiment, it is
necessary to strike a balance between numerous short steps
with short counting times and fewer longer steps with
longer counting times. The former alternative may give a
better definition of the line shape; the latter may give lower
calculated standard uncertainties (formerly called estimated
standard deviations) in any derived parameters. Obviously,
the step length must be considerably shorter than the width
of any feature of the profile that is considered to be of
importance.

Least-squares refinement is discussed in Subsection
5.2.3.2. The programs and the methods of handling the
data should be carefully checked, as various programs
have been found to give slightly different values from the
same experimental data (see, for example, JCPDS -
International Centre for Diffraction Data, 1986; Kelly,
1988).

(10) Specimen preparation is very important; the particle size

should preferably be less than 10 um, and a flat smooth
surface normal to the diffraction vector is essential. The
linearity of the detector and the temperature of the

Table 5.2.11.1. NIST intensity standards, SRM 674

1., hkl
Crystal . .
Standard system a, (A) ¢ (A) 2 3 I,/1.(113)
AL O, (corundum) Trigonal 4.75893 (10) 12.9917 (7) 92.5 (26) 116 87.4 (19) 104 —
ZnO Hexagonal 3.24981 (12) 5.20653 (13) 57.6 (11) 100 40.2 (14) 002 5.17 (13) 101
TiO, (rutile) Tetragonal 4.59365 (10) 2.95874 (8) 56.9 (28) 211 44.0 (17) 101 3.39 (12) 110
Cr,0, Trigonal 4.95916 (12) 13.5972 (6) 94.5 (22) 116 87.1 (23) 110 2.10 (5) 104
CeO, Cubic 5.41129 (8) — 53.5 (20) 220 43.4 (23) 311 7.5@2) 111
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5.4. Electron-diffraction methods
By A. W. S. JOHNSON AND A. OLSEN

5.4.1. Determination of cell parameters from single-crystal
patterns (By A. W. S. Johnson)

5.4.1.1. Introduction

This article treats the recovery of cell axes and angles from (a)
a single pattern with suitable Laue zones and (b) two patterns
with different zone axes. It is assumed that instrument
distortions, if significant, are corrected and that the patterns
are free of artefacts such as twinning, double diffraction etc.
(Edington, 1975). The treatment is valid for convergent-beam,
micro and selected-area electron-diffraction patterns and accel-
erating voltages above approximately 30 kV. Relevant papers are
by LePage (1992) and Zuo (1993), and background reading is
contained in Edington (1975), Gard (1976), and Hirsch, Howie,
Nicholson, Pashley & Whelan (1965).

The basic requirement in the determination of the unit cell of a
crystal is to find, from one or more diffraction patterns, the basis
vector set, a*, b*, ¢*, of a primitive reciprocal unit cell. The
Cartesian components of these vectors form an orientation
matrix

UB = (a*,b", ¢*),

which, when inverted, gives the vector components of the
corresponding real-space cell. The elements of UB can be
measured directly from the diffraction pattern in millimetres.
Define axes x and y to be in the recording plane and z in the beam
direction. A point in the diffraction pattern x, y, z is then related
to the indices £, k, [ by

X h
y | =UB| k
z l

Note that points with non-zero z are observed on the plane z = 0,
see Fig. 5.4.1.1.

The metric M of UB~! is used to find the unit-cell edges and
angles as

Fig. 5.4.1.1. Diffraction geometry. Crystal at C with the direct
transmitted beam, CRO, intersecting the reciprocal-lattice origin at R
and the recording plane at normal incidence at O. The camera length L
is CO and the reciprocal of the wavelength 1 is CR.

Table 5.4.1.1. Unit-cell information available for photographic

recording
Constants
Pattern type known Information available
(€)) Zero zone None or d ratios and interplane
Aor L angles
?2) LJ. or d values and interplane
L and 2 angles
3) Multiple zone None or L As for (1)
C)) L As for (2)
(&) A Unit-cell axial ratios and
angles
©6) L and 2 Unit-cell axes and angles
(@) Two or more None or L As for (5)
Zero-zone
(8) | patterns® L), As for (6)

* See text, Subsection 5.4.1.2.

M =UB"'. (UB"),

where T means the transpose. Then,

a-a a-b a-c
M=1]a-b b-b b-c
a-c b-¢c c-c
gives
a=L)a-a)"?
b=LAb-b)'"
c=Li(c )
cosy=a-b/(a-ab-b)"?
cosB=a-c/(a-ac-c)’?,
and

cosa=b-c/(b-bec-c)/?

where L is the effective distance between the diffracting crystal
and the recording plane and / is the wavelength. These quantities
are defined in Fig. 5.4.1.1 together with the nomenclature and
geometrical relationships required in this article.

If necessary, the cell is reduced to the Bravais cell according
to the procedures given in IT A (1983, Chapter 9.3), before
calculating the metric.

In practice, there may be a difficulty in choosing a vector set
that describes a primitive reciprocal cell. Although a record of
any reasonably dense plane of reciprocal space immediately
exposes two basis vectors of a cell, the third vector lies out of the
plane of the diffraction pattern containing the first two vectors
and may not be directly measurable. Hence, some care must be
taken to ensure that the third vector chosen makes the cell
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6.1. INTENSITY OF DIFFRACTED INTENSITIES
Table 6.1.1.1. Mean atomic scattering factors in electrons for free atoms

Methods: E: exact; RHF, *RHF (see text): relativistic Hartree-Fock.

Element H He Li Be B C N (0] F Ne
Z 1 2 3 4 5 6 7 8 9 10

Method E RHF RHF RHF RHF RHF RHF RHF RHF RHF

(sin6)/4 (A™H

0.00 1.000 2.000 3.000 4.000 5.000 6.000 7.000 8.000 9.000 10.000
0.01 0.998 1.998 2.986 3.987 4.988 5.990 6.991 7.992 8.993 9.993
0.02 0.991 1.993 2.947 3.950 4.954 5.958 6.963 7.967 8.970 9.973
0.03 0.980 1.984 2.884 3.889 4.897 5.907 6.918 7.926 8.933 9.938
0.04 0.966 1.972 2.802 3.807 4.820 5.837 6.855 7.869 8.881 9.891
0.05 0.947 1.957 2.708 3.707 4.724 5.749 6.776 7.798 8.815 9.830
0.06 0.925 1.939 2.606 3.592 4.613 5.645 6.682 7.712 8.736 9.757
0.07 0.900 1.917 2.502 3.468 4.488 5.526 6.574 7.612 8.645 9.672
0.08 0.872 1.893 2.400 3.336 4.352 5.396 6.453 7.501 8.541 9.576
0.09 0.842 1.866 2.304 3.201 4.209 5.255 6.321 7.378 8.427 9.469
0.10 0.811 1.837 2.215 3.065 4.060 5.107 6.180 7.245 8.302 9.351
0.11 0.778 1.806 2.135 2.932 3.908 4.952 6.030 7.103 8.168 9.225
0.12 0.744 1.772 2.065 2.804 3.756 4.794 5.875 6.954 8.026 9.090
0.13 0.710 1.737 2.004 2.683 3.606 4.633 5.714 6.798 7.876 8.948
0.14 0.676 1.701 1.950 2.569 3.459 4.472 5.551 6.637 7.721 8.799
0.15 0.641 1.663 1.904 2.463 3.316 4.311 5.385 6.472 7.560 8.643
0.16 0.608 1.624 1.863 2.365 3.179 4.153 5.218 6.304 7.395 8.483
0.17 0.574 1.584 1.828 2.277 3.048 3.998 5.051 6.134 7.226 8.318
0.18 0.542 1.543 1.796 2.197 2.924 3.847 4.886 5.964 7.055 8.150
0.19 0.511 1.502 1.768 2.125 2.808 3.701 4.723 5.793 6.883 7.978
0.20 0.481 1.460 1.742 2.060 2.699 3.560 4.563 5.623 6.709 7.805
0.22 0.424 1.377 1.693 1.951 2.503 3.297 4.254 5.289 6.362 7.454
0.24 0.373 1.295 1.648 1.864 2.336 3.058 3.963 4.965 6.020 7.102
0.25 0.350 1.254 1.626 1.828 2.263 2.949 3.825 4.808 5.851 6.928
0.26 0.328 1.214 1.604 1.795 2.195 2.846 3.693 4.655 5.685 6.754
0.28 0.287 1.136 1.559 1.739 2.077 2.658 3.445 4.363 5.363 6.412
0.30 0.251 1.060 1.513 1.692 1.979 2.494 3.219 4.089 5.054 6.079
0.32 0.220 0.988 1.465 1.652 1.897 2.351 3.014 3.834 4.761 5.758
0.34 0.193 0.920 1.417 1.616 1.829 2.227 2.831 3.599 4.484 5.451
0.35 0.180 0.887 1.393 1.600 1.799 2.171 2.747 3.489 4.353 5.302
0.36 0.169 0.856 1.369 1.583 1.771 2.120 2.667 3.383 4.225 5.158
0.38 0.148 0.795 1.320 1.551 1.723 2.028 2.522 3.186 3.983 4.880
0.40 0.130 0.738 1.270 1.520 1.681 1.948 2.393 3.006 3.759 4.617
0.42 0.115 0.686 1.221 1.489 1.644 1.880 2.278 2.844 3.551 4.370
0.44 0.101 0.636 1.173 1.458 1.611 1.821 2.178 2.697 3.360 4.139
0.45 0.095 0.613 1.149 1.443 1.596 1.794 2.132 2.629 3.270 4.029
0.46 0.090 0.591 1.125 1.427 1.581 1.770 2.089 2.564 3.183 3.923
0.48 0.079 0.548 1.078 1.395 1.553 1.725 2.011 2.445 3.022 3.722
0.50 0.071 0.509 1.033 1.362 1.526 1.685 1.942 2.338 2.874 3.535
0.55 0.053 0.423 0.924 1.279 1.463 1.603 1.802 2.115 2.559 3.126
0.60 0.040 0.353 0.823 1.195 1.402 1.537 1.697 1.946 2.309 2.517
0.65 0.031 0.295 0.732 1.112 1.339 1.479 1.616 1.816 2.112 2.517
0.70 0.024 0.248 0.650 1.030 1.276 1.426 1.551 1.714 1.956 2.296
0.80 0.015 0.177 0.512 0.876 1.147 1.322 1.445 1.568 1.735 1.971
0.90 0.010 0.129 0.404 0.740 1.020 1.219 1.353 1.463 1.588 1.757
1.00 0.007 0.095 0.320 0.622 0.900 1.114 1.265 1.377 1.482 1.609
1.10 0.005 0.072 0.255 0.522 0.790 1.012 1.172 1.298 1.398 1.502
1.20 0.003 0.055 0.205 0.439 0.690 0.914 1.090 1.221 1.324 1.418
1.30 0.003 0.042 0.165 0.369 0.602 0.822 1.004 1.145 1.254 1.346
1.40 0.002 0.033 0.134 0.311 0.524 0.736 0.921 1.070 1.186 1.280
1.50 0.001 0.026 0.110 0.263 0.457 0.659 0.843 0.997 1.120 1.218
1.60 0.021 0.091 0.223 0.398 0.588 0.769 0.926 1.055 1.158
1.70 0.017 0.075 0.190 0.347 0.525 0.700 0.857 0.990 1.099
1.80 0.014 0.063 0.163 0.304 0.468 0.636 0.792 0.928 1.041
1.90 0.011 0.053 0.139 0.266 0.418 0.578 0.731 0.868 0.984
2.00 0.010 0.044 0.120 0.233 0.373 0.525 0.674 0.810 0.929
2.50 0.004 0.021 0.060 0.126 0.216 0.324 0.443 0.564 0.680
3.00 0.002 0.011 0.033 0.072 0.130 0.204 0.292 0.389 0.489
3.50 0.001 0.006 0.019 0.043 0.081 0.132 0.196 0.270 0.331
4.00 0.001 0.004 0.012 0.027 0.053 0.088 0.134 0.190 0.254
5.00 0.002 0.005 0.012 0.025 0.043 0.067 0.099 0.137
6.00 0.001 0.003 0.006 0.013 0.023 0.037 0.055 0.079
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6. INTERPRETATION OF DIFFRACTED INTENSITIES

Table 6.1.1.3. Mean atomic scattering factors in electrons for chemically significant ions

Methods: C: correlated; HF: non-relativistic Hartree-Fock; RHF: relativistic Hartree-Fock; *DS: modified Dirac-Slater.

Element H!- Lil* Be?t Coa o'~ F!- Nal* Mgt APt Sigy
zZ 1 3 4 6 8 9 11 12 13 14

Method C C C HF HF HF RHF RHF HF HF

(sin6)/A (A"

0.00 2.000 2.000 2.000 6.000 9.000 10.000 10.000 10.000 10.000 14.000
0.01 1.983 1.999 1.999 5.989 8.986 9.988 9.995 9.997 9.997 13.973
0.02 1.933 1.997 1.999 5.956 8.945 9.953 9.981 9.986 9.989 13.894
0.03 1.857 1.994 1.997 5.903 8.878 9.895 9.958 9.969 9.976 13.766
0.04 1.763 1.990 1.995 5.829 8.785 9.816 9.925 9.945 9.957 13.593
0.05 1.659 1.984 1.992 5.738 8.670 9.716 9.883 9.914 9.933 13.381
0.06 1.550 1.977 1.988 5.629 8.534 9.597 9.833 9.876 9.904 13.138
0.07 1.442 1.968 1.983 5.507 8.381 9.461 9.773 9.832 9.870 12.870
0.08 1.338 1.959 1.978 5.372 8.211 9.309 9.705 9.782 9.831 12.586
0.09 1.238 1.948 1.973 5.227 8.029 9.144 9.630 9.725 9.787 12.293
0.10 1.145 1.936 1.966 5.074 7.836 8.967 9.546 9.662 9.738 11.995
0.11 1.058 1.923 1.959 4.916 7.635 8.781 9.455 9.594 9.684 11.700
0.12 0.978 1.909 1.952 4.754 7.429 8.586 9.357 9.519 9.625 11.410
0.13 0.904 1.894 1.944 4.591 7.218 8.386 9.253 9.440 9.563 11.130
0.14 0.836 1.877 1.935 4.428 7.005 8.181 9.142 9.355 9.495 10.862
0.15 0.773 1.860 1.925 4.267 6.792 7.973 9.026 9.265 9.424 10.608
0.16 0.715 1.842 1.915 4.109 6.579 7.762 8.904 9.171 9.349 10.368
0.17 0.661 1.823 1.905 3.954 6.368 7.551 8.777 9.072 9.270 10.143
0.18 0.612 1.804 1.894 3.805 6.160 7.341 8.647 8.969 9.187 9.933
0.19 0.567 1.783 1.882 3.661 5.956 7.131 8.512 8.862 9.101 9.737
0.20 0.526 1.762 1.870 3.523 5.756 6.924 8.374 8.751 9.011 9.553
0.22 0.452 1.718 1.845 3.266 5.371 6.517 8.089 8.521 8.823 9.222
0.24 0.390 1.671 1.817 3.035 5.008 6.126 7.795 8.280 8.623 8.931
0.25 0.362 1.647 1.803 2.930 4.836 5.937 7.646 8.156 8.520 8.798
0.26 0.337 1.623 1.788 2.831 4.670 5.753 7.496 8.030 8.414 8.671
0.28 0.291 1.573 1.758 2.651 4.357 5.399 7.195 7.774 8.198 8.435
0.30 0.253 1.523 1.726 2.495 4.068 5.067 6.894 7.513 7.975 8.214
0.32 0.220 1.471 1.692 2.358 3.804 4.756 6.597 7.251 7.747 8.005
0.34 0.192 1.419 1.658 2.241 3.564 4.467 6.304 6.987 7.515 7.803
0.35 0.179 1.394 1.641 2.188 3.452 4.330 6.160 6.856 7.399 7.704
0.36 0.168 1.368 1.623 2.139 3.345 4.199 6.018 6.725 7.282 7.606
0.38 0.147 1.316 1.587 2.050 3.147 3.951 5.739 6.465 7.047 7.410
0.40 0.129 1.265 1.551 1.974 2.969 3.724 5.471 6.210 6.813 7.215
0.42 0.113 1.215 1.514 1.907 2.808 3.514 5.212 5.959 6.581 7.021
0.44 0.100 1.165 1.476 1.849 2.663 3.322 4.964 5.715 6.350 6.826
0.45 0.094 1.141 1.458 1.822 2.597 3.233 4.845 5.595 6.237 6.729
0.46 0.089 1.117 1.439 1.798 2.533 3.147 4.728 5.477 6.124 6.632
0.48 0.079 1.069 1.401 1.752 2.417 2.987 4.503 5.247 5.901 6.437
0.50 0.070 1.023 1.364 1.711 2.313 2.841 4.290 5.025 5.683 6.244
0.55 0.0526 0.914 1.270 1.624 2.097 2.531 3.808 4.508 5.162 5.766
0.60 0.0401 0.814 1.179 1.552 1.934 2.288 3.395 4.046 4.681 5.303
0.65 0.0311 0.724 1.091 1.488 1.808 2.096 3.046 3.641 4.243 4.865
0.70 0.0243 0.643 1.007 1.428 1.710 1.945 2.753 3.288 3.851 4.455
0.80 0.0155 0.507 0.852 1.315 1.567 1.729 2.305 2.724 3.195 3.734
0.90 0.0102 0.400 0.717 1.204 1.463 1.585 1.997 2.315 2.693 3.150
1.00 0.0070 0.317 0.602 1.096 1.376 1.481 1.785 2.023 2.319 2.691
1.10 0.0049 0.253 0.505 0.992 1.296 1.397 1.635 1.813 2.041 2.338
1.20 0.0036 0.203 0.424 0.894 1.219 1.322 1.524 1.662 1.837 2.069
1.30 0.0026 0.164 0.357 0.802 1.143 1.252 1.438 1.548 1.685 1.867
1.40 0.0020 0.133 0.301 0.718 1.067 1.184 1.367 1.460 1.570 1.713
1.50 0.0015 0.109 0.255 0.642 0.994 1.117 1.304 1.388 1.479 1.595
1.60 0.0012 0.090 0.216 1.246 1.326
1.70 0.0009 0.075 0.184 1.191 1.270
1.80 0.0008 0.062 0.157 1.137 1.218
1.90 0.0006 0.053 0.135 1.084 1.168
2.00 0.0005 0.044 0.116 1.032 1.119
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6.2. Trigonometric intensity factors
By H. LipsoN, J. I. LANGFORD AND H.-C. Hu

6.2.1. Expressions for intensity of diffraction

The expressions for the intensity of diffraction of X-rays contain
several trigonometrical factors. The earlier series of Interna-
tional Tables (Kasper & Lonsdale, 1959, 1972) gave extensive
tables of these functions, but such tables are now unnecessary,
as the functions are easily computed. In fact, many crystal-
lographers can ignore the trigonometric factors entirely, as they
are built into ‘black-box’ data-processing programs. The
formulae for single-crystal reflections (b) and (c¢) of Table
6.2.1.1 in the previous edition (Lipson & Langford, 1998) list
only the integrated reflection power ratio (i.e. integrated
reflection) under the strong absorption case. The revised
formulae given here include both the reflection power ratio
and the integrated reflection power ratio for a crystal slab of
finite thickness with any values of the ratio of the absorption to
the diffraction cross sections and under all possible kinds of
diffraction geometry.

A conspectus of the expressions for the intensity of diffraction
as recorded by various techniques, including the fundamental
constants as well as the trigonometric factors, is given in Table
6.2.1.1. Details of the techniques are given elsewhere in this
volume (Chapters 2.1-2.3) and in textbooks, such as those of
Arndt & Willis (1966) for single-crystal diffractometry and Klug
& Alexander (1974) for powder techniques. Notes on individual
factors follow.

6.2.2. The polarization factor

X-rays are an electromagnetic radiation, and the amplitude with
which they are scattered is proportional to the sine of the angle
between the direction of the electric vector of the incident
radiation and the direction of scattering. Synchrotron radiation is
practically plane-polarized, with the electric vector in the plane
of the ring, but the radiation from an ordinary X-ray tube is
unpolarized, and it may thus be regarded as consisting of two
equal parts, half with the electric vector in the plane of
scattering, and half with the electric vector perpendicular to this
plane. For the latter, the relevant angle is 7/2, and for the
former it is (w/2) —26. The intensity is proportional to the
square of the amplitude, so that the polarization factor - really
the non-polarization factor - is

{sin’(7/2) + sin®[(7r/2) — 20)]}/2

= (1 + cos’26)/2. (6.2.2.1)

If the radiation has been ‘monochromatized’ by reflection from a
crystal, it will be partially polarized, and the two parts of the
beam will be of unequal intensity. The intensity of reflection
then depends on the angular relations between the original, the
reflected, and the scattered beams, but in the commonest
arrangements all three are coplanar. The polarization factor then
becomes

(1 4+ Acos?20)/(1 + A), (6.2.2.2)

where
A = cos* 20, (6.2.2.3)

and 6,, is the Bragg angle of the monochromator crystal. The
expression (6.2.2.2) may be substituted for (6.2.2.1) in Table
6.2.1.1 whenever appropriate.

6.2.3. The angular-velocity factor

In experiments where the crystal is rotated or oscillated,
reflection of X-rays takes place as a reciprocal-lattice point
moves through the surface of the sphere of reflection. The
intensity is thus proportional to the time required for the transit
of the point through the surface, and so is inversely proportional
to the component of the velocity perpendicular to the surface. In
most experimental arrangements — the precession camera
(Buerger, 1944) is an exception - the crystals move with a
constant angular velocity, and the perpendicular component of
the velocity varies in an easily calculable way with the ‘latitude’
of the reciprocal-lattice point referred to the axis of rotation. If
the reciprocal-lattice point lies in the equatorial plane and the
radiation is monochromatic — the most important case in practice
- the angular-velocity factor is

cosec 26. (6.2.3.1)

If the latitude of the reciprocal-lattice point is ¢, a somewhat
more complex calculation shows that the factor becomes

(6.2.3.2)

For ¢ =0, the expression (6.2.3.2) reduces to (6.2.3.1). In
some texts, ¢ is used for the co-latitude; this and various
trigonometric identities can give superficially very different
appearances to (6.2.3.2).

cosec 6(cos’ ¢ — sin” 6)'/2.

6.2.4. The Lorentz factor

There has been some argument over the meaning to be attached
to the term Lorentz factor, probably because Lorentz did not
publish his results in the ordinary way; they appear in a note
added in proof to a paper on temperature effects by Debye
(1914). Ordinarily, Lorentz factor is used for the trigonometric
part of the angular-velocity factor, or its equivalent, if the
sample is stationary. (See below).

6.2.5. Special factors in the powder method

In the powder method, all rays diffracted through an angle 26 lie
on the surface of a cone, and in the absence of preferred
orientation the diffracted intensity is uniformly distributed over
the circumference of the cone. The amount effective in
blackening film, or intercepted by the receiving slit of a
diffractometer, is thus inversely proportional to the circum-
ference of the cone, and directly proportional to the fraction of
the crystallites in a position to reflect. When allowance is made
for these geometrical factors, it is found that for the Debye-
Scherrer and diffractometer arrangements the intensity is
proportional to

(6.2.5.1)

where p” is the multiplicity factor (the number of permutations
of hkl leading to the same value of 6). For the flat-plate front-
reflection arrangement, the variation becomes

p" cosec 9,

p" cos 20 cosec 6. (6.2.5.2)

Combining the polarization, angular-velocity, and special

factors gives a trigonometric variation of

p"(1 + cos® 20) sec @ cosec® 6 (6.2.5.3)
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6.4 THE FLOW OF RADIATION IN A REAL CRYSTAL

W(4) =

! ex ( A2> (6.4.8.2)
W P\ 2E) A
where A is the angular deviation of the block from the mean
orientation of all blocks in the crystal, and »n is the standard
deviation of the distribution. (The assumption of a Gaussian
distribution is not critical to the argument that follows.)

Let the crystal be a cube of side L, and let « be the probability
that a ray reflected by the first block is reflected again by a
subsequent block. The effective size of the crystal for Bragg
scattering of a single incident ray is then

(L) = £+ (L — O, (6.4.8.3)

while the size of the crystal for all other attenuation processes is
L, since, for them, the Bragg condition does not apply. The
probability of re-scattering, «, can readily be expressed in terms
of crystallographic quantities. The full width at half-maximum
intensity of the Darwin reflection curve is given, after conversion
to the glancing-angle (6) scale, by Zachariasen (1945) as

3)*N.F
7+/2 sin 26
The full width at half-maximum (FWHM) of the mosaic-block
distribution (6.4.8.2) is derived in the usual way, and the
parameter g (= 1/2n./m) is introduced to clear (to 1%)

numerical constants. Then «, which is equal to the ratio of the
widths, is given by

Af = (radians). (6.4.8.4)

N.J*F
o= gsin TR (6.4.8.5)

Insertion of (L) [equation (6.4.8.3)] in place of ¢ in equation
(6.4.8.1) for x leads to

x = [NJFE + gQy(L — O)F,
where Q, = N32*F?/sin26.

(6.4.8.6)

6.4.9. Secondary extinction

A separate treatment of secondary extinction is required only in
the uncorrelated block model, and the method given by Hamilton
(1957) is used in this work. The coupling constant in the
H-D equations is given by o(A0) = Q,E,W(A0), where
Q, = N?J3F*/sin20 for equatorial reflections in the neutron
case, E, is the correction for primary extinction evaluated at the
angle 6, and W(A6) is the distribution function for the tilts
between mosaic blocks. The choice of this function has a
significant influence on the final result (Sabine, 1985), and a
rectangular or triangular form is suggested.

In the following equations for the secondary-extinction factor,

x =E,Q,GD, (6.4.9.1)

and A and B are given by equations (6.4.5.6) and (6.4.5.7). The
average path length through the crystal for the reflection under
consideration is D and G is the integral breadth of the angular
distribution of mosaic blocks. It is important to note that A
should be set equal to one if the data have been corrected for
absorption, and B should be set equal to one if absorption-
weighted values of D are used. If D for each reflection is not
known, the average dimension of the crystal may be used for all
reflections.

For a  rectangular  function, wW(a0) = G, for
|AO] < 1/2G, W(AH) = 0 otherwise, and the secondary-extinc-
tion factor becomes

—uD
E, = %[1 — exp(—2%)], (6.4.9.2)
A
= . 6.4.9.3
2 =11 Bx ( )
For a triangular function, W(A0) = G(1 —|A9|G), for

| A6 < 1/G, W(AO) = 0 otherwise, and the secondary-extinc-
tion factor becomes

E, = M {1 — %[1 - exp(—2x)]}, (6.4.9.4)
E, =4 [Bx — Inf1 + Bxl] (6.4.9.5)
B_(Bx)2 X x|]. 4.9.

6.4.10. The extinction factor
6.4.10.1. The correlated block model

For this model of the real crystal, the variable x is given by
equation (6.4.8.6), with ¢ and g the refinable variables.
Extinction factors are then calculated from equations (6.4.5.3),
(6.4.5.4), and (6.4.5.5). For a reflection at a scattering angle of
26 from a reasonably equiaxial crystal, the appropriate extinction
factor is given by (6.4.7.1) as E(26) = E, cos® 20 + Eg sin® 26.

It is a meaningful procedure to refine both primary and
secondary extinction in this model. The reason for the high
correlation between £ and g that is found when other theories are
applied, for example that of Becker & Coppens (1974), lies in
the structure of the quantity x. In the theory presented here, x is
proportional to F? for pure primary extinction and to Q2 for pure
secondary extinction.

6.4.10.2. The uncorrelated block model

When this model is used, two values of x are required. These
are designated x, for primary extinction and x, for secondary
extinction. Equation (6.4.8.1) is used to obtain a value for x,.
The primary-extinction factors are then -calculated from
(6.4.5.3), (6.4.5.4) and (6.4.5.5), and E,(20) is given by
equation (6.4.7.1). In the second step, x, is obtained from
equation (6.4.9.1), and the secondary-extinction factors are
calculated from either (6.4.9.2) and (6.4.9.3) or (6.4.9.4) and
(6.4.9.5). The result of these calculations is then used in equation
(6.4.7.1) to give E,(260). It is emphasised that x; includes the
primary-extinction factor. Finally, E(20) = E,(20)E [E,(20), 20].

Application of both models to the analysis of neutron
diffraction data has been carried out by Kampermann, Sabine,

Craven & McMullen (1995).

6.4.11. Polarization

The expressions for the extinction factor have been given, by
default, for the o-polarization state, in which the electric field
vector of the incident radiation is perpendicular to the plane
defined by the incident and diffracted beams. For this state, the
polarization factor is unity. For the w-polarization state, in which
the electric vector lies in the diffraction plane, the factor is
cos26. The appropriate values for the extinction factors for this
state are given by multiplying F' by cos 26 wherever F occurs.

For neutrons, which are matter waves, the polarization factor
is always unity.

For an unpolarized beam from an X-ray tube, the observed
integrated intensity is given by I°™ = 1I¥" (E, + E, cos*26). In
the kinematic limit, E, = E_ = 1, and the power to which cos 26
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7.3. THERMAL NEUTRON DETECTION

Table 7.3.2.1. Neutron capture reactions used in neutron detection

n = neutron, p = H* = proton, ¢t = 3H~ = triton, « = *H* = alpha, e~ = electron
Cross section Secondary-particle energies

Capture reaction at 1 A (barns) (MeV)
SHe+n—t+p 3000 t 020 p 057
Li+n—t+a 520 t 3.74 a 2.05
0B 4+ p —>7L%* +a (93%)

LLi+y 2100 a 147 Li 0.83 y 048
—TLi+a (7%) a 1.78 Li 1.01
57Gd 4+ n — Gd* 74000 e spectrum  0.07 to 0.182
Ly + conversion electrons | ("Gd: 17000) y spectrum up to 8

25U + n — fission fragments 320 Fission fragments up to 80

There are two modes of operation.

In the case of direct collection of charges, the 25 000 electrons
corresponding to one neutron capture (primary electrons) are
collected by the anode in about 100-500ns, and generate an
input pulse in the charge preamplifier (see Section 7.3.4).

If the electrical field created by the high voltage applied to the
anode exceeds a critical value, the electrons will be accelerated
sufficiently to produce a cascade of ionizing collisions with the
neutral molecules they encounter, the new electrons liberated in
the process being called secondary electrons. This phenomenon,
gas multiplication, occurs in the vicinity of the thin wire anode,
since the field varies as 1/r. The avalanche stops when all the
free electrons have been collected at the anode. With proper
design, the number of secondary electrons is proportional to the
number of primary electrons. For cylindrical geometries, the
multiplication coefficient M can be calculated (Wolf, 1974). This
type of detection mode is called the proportional mode. It is very
commonly used because it gives a better signal-to-noise ratio (see
Section 7.3.4).

A few critical remarks about gas detectors:

(i) Some gases have a tendency to form negative ions by the
attachment of a free electron to a neutral gas molecule, giving a
loss of detector current. This effect is negligible for *He but it
limits the use of '°BF; to about 2 atmospheres pressure, although
traces of gases such as O, or H,O (e.g. detector materials and
wall outgasing) are often the reason for loss by attachment.

(ii) Pure *He and '°BF; gas detectors are practically
insensitive to y radiation. This is no longer the case when
additional gases, which are necessary for *He, are used, although
the polyatomic additives C;Hg and CF, are much better than the
rare gases Kr, Xe, and Ar (Fischer, Radeka & Boie, 1983).

(iii) For various reasons (the price of >He and '°BF; and the
toxicity of BF;), neutron gas detectors are closed chambers,
which must be leak-proof and insensitive to BF; corrosion. The
wall thickness must be adapted to the inside pressure, which
sometimes implies a rather thick front aluminium window (e.g. a
10 mm window for a 16 bar *He gas position-sensitive detector;
aluminium is chosen for its very good transmission of neutrons,
about 90% for 10 mm thickness).

7.3.3.2. Detection via solid converter and gas ionization: the
foil detector

This mode of detection is generally used for monitors. In a
typical design, a '°B deposit of controlled thickness, for example

t =0.04 um giving a capture efficiency of 103 at 1 = 1A, is
made on a thin aluminium plate (see Fig. 7.3.3.2). One of the
two particles («, Li) produced in the solid by the capture reaction
is absorbed by the plate; the other escapes and ionizes the gas.
The electrons produced are collected by the aluminium plate,
itself acting as the anode, or by a separate anode wire, allowing
the use of the proportional mode. The detection efficiency is
proportional to the deposit thickness ¢, but # must be kept less
than the average range r of the secondary particles in the deposit
(for B, r,=3.8um and r; =1.7pm), which limits the
efficiency to a maximum value of 3-4% for A =1A. The
fraction of the secondary particle energy that is lost in the deposit
reduces the detector current, i.e. the signal-to-noise ratio, and
worsens the amplitude spectrum (see Section 7.3.4).

7.3.3.3. Detection via scintillation

In the detection process via scintillation (see Table 7.3.3.1),
the secondary particles produced by the neutron capture ionize
and excite a number of valence-band electrons of the solid
scintillator to high-energy states, from which they tend to decay
with the emission of a light flash of photons detected by a
photomultiplier [see Fig. 7.3.3.3(a)]. A number of conditions
must be satisfied:

(i) The scintillation must be immediate after the neutron-
capture triggering event.

(i) The scintillation decay time must be short. It depends on
materials, and is around 50-100 ns for lithium silicate glasses.

(iii) A large fraction of the energy must be converted into light
(rather than heat).

(iv) The material must be transparent to its own radiation.

Most thermal neutron scintillation detectors are currently
based on inorganic salt crystals or glasses doped with traces of an
activating element (Eu, Ce, Ag, efc.) (extrinsic scintillators). (A
plastic scintillator might be considered to be a solid organic
solution with a neutron converter.)

The use of extrinsic scintillators (Convert & Forsyth, 1983),
although less efficient energetically, permits better decoupling
of the energy of the photon-emitting transition (occurring now
in the activator centres) from that of the valence-band electron
excitation or ionization energy. The crystal or glass is then
transparent to its own emission, and the light emitted is shifted
to a wavelength better adapted to the following optical
treatment.
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7.5. STATISTICAL FLUCTUATIONS

=T/, (7.5.3.7)

where ¢ is the time devoted to the measurement, and the variance
of the counting rate is

o*(t) =T/ = 1/t. (7.5.3.8)

Similar expressions apply for the background, with B for the
count, b for the time, and B for the counting rate. For the
reflection count, the corresponding expressions are

o=T/t— B/b, (7.53.9)
o*(p) = t/t + B/b. (7.5.3.10)

To avoid confusion, upper-case italic letters are used for
numbers of counts, lower-case italic for counting times, and
the corresponding lower-case Greek letters for the corresponding
counting rates. In accordance with common practice, however, IJ
will be used for the intensity of the jth reflection, the context
making it clear whether / is a number of counts or a counting
rate.

7.5.4. Fixed-count timing

The probability of a time ¢ being required to accumulate N
counts when the true counting rate is v is given by a I
distribution (Abramowitz & Stegun, 1964, p. 255):

p(t)dt = [(N — D] )V exp(—vt) d(ve).

The ratio N/t is a slightly biased estimate of the counting rate v;
the unbiased estimate is (N — 1)/z. The variance of this estimate
is 12 /gN —2), or, nearly enough for most purposes,
(N — 1)°/(N —2)£2. The differences introduced by the correc-
tions —1 and —2 are generally negligible, but would not be so
for counts as low as those proposed by Killean (1967). If such
corrections are important, it should be noticed that there is an
ambiguity concerning N, depending on how the timing is
triggered. It may be triggered by a count that is counted, or by a
count that is not counted, or may simply be begun, independently
of the incidence of a count. Equation (7.5.4.1) assumes the first
of these.

Equation (7.5.4.1) may be inverted to give the probability
distribution of the observed counting rate v, instead of the
probability distribution of the time ¢:

p(v,)dv, = [(N — DI [v(N — 1)/v, V!
x exp{—(N — D/v,}d[v,/(N — )v].

(7.5.4.1)

(7.5.4.2)

There does not seem to be any special name for the distribution
(7.5.4.2). Only its first (N — 1) moments exist, and the integral
expressing the probability distribution of the difference of the
reflection and the background rates is intractable (Wilson, 1980).

7.5.5. Complicating phenomena
7.5.5.1. Dead time

After a count is recorded, the detector and the counting
circuits are ‘dead’ for a short interval, and any ionizing event
occurring during that interval is not detected. This is important if
the dead time is not negligible in comparison with the reciprocal
of the counting rate, and corrections have to be made; these are
large for Geiger counters, and may sometimes be necessary for
counters of other types. The need for the correction can be
eliminated by suitable monitoring (Eastabrook & Hughes, 1953);
other advantages of monitoring are described in Chapter 2.3.

7.5.5.2. Voltage fluctuations

Mains-voltage fluctuations, unless compensated, and un-
smoothed high-tension supplies may affect the sensitivity of
detectors and counting circuits, and in any case cause the
probability distribution of the arrival of counts to be non-
Poissonian. Backlash in the diffractometer drives may be even
more important in altering the observed counting rates. As de
Boer (1982) says, the ideal distributions represent a Utopia that
experimenters can approach but never reach. He observed
erratic fluctuations in counting rates, up to ten times as big as the
expected statistical fluctuations. When care is taken, the
instabilities observed in practice are much less than those of
the extreme cases described by de Boer. Stabilizing an X-ray
source and testing its stability are discussed in Subsection
2.3.5.1.

7.5.6. Treatment of measured-as-negative (and other weak)
intensities

It has been customary in crystallographic computations, but
without theoretical justification, to omit all reflections with
intensities less than two or three times their standard uncertain-
ties. Hirshfeld & Rabinovich (1973) asserted that the failure to
use all reflections, even those for which the subtraction of
background has resulted in a negative net intensity, at their
measured values will lead to a bias in the parameters resulting
from a least-squares refinement. This is, however, inconsistent
with the Gauss—-Markov theorem (see Section 8.1.2), which
shows that least-squares estimates are unbiased, independent of
the weights used, if the observations are unbiased estimates of
quantities predicted by a model. Giving some observations zero
weight therefore cannot introduce bias. Provided the set of
included observations is sufficient to give a nonsingular normal
equations matrix, parameter estimates will be unbiased, but
inclusion of as many well determined observations as possible
will yield the most precise estimates. Requiring that the net
intensity be greater than 2¢ assures that the value of |F| will be
well determined. Furthermore, Prince & Nicholson (1985)
showed that, if the net intensity, I, or |F |2 is used as the
observed quantity, weak reflections have very little leverage (see
Section 8.4.4), and therefore omitting them cannot have a
significant effect on the precision of parameter estimates.

The use of negative values of I or |F|* is also inconsistent with
Bayes’s theorem, which implies that a negative value cannot be
an unbiased estimate of an inherently non-negative quantity.
There are statistical methods for estimating the positive value of
|F| that led to a negative value of /. The best known approach is
the Bayesian method of French & Wilson (1978), who observe
that “‘Instead of thanking the data for the information that certain
structure factor moduli are small, we accuse them of assuming
‘impossible’ negative values. What we should do is combine our
knowledge of the non-negativity of the true intensities with the
information concerning their magnitudes contained in the data.”’

7.5.7. Optimization of counting times

There have been many papers on optimizing counting times for
achieving different purposes, and all optimization procedures
require some knowledge of the distributions of counts or
counting rates; often only the mean and variance of the
distribution are required. It is also necessary to know the
functional relationship between the quantity of interest and the
counts (counting rates, intensities) entering into its measurement.
Typically, the object is to minimize the variance of some
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8.2. OTHER REFINEMENT METHODS

might seem to have the effect of making the weights dependent
on the calculated values, so that the right-hand side of (8.2.2.6)
is no longer zero, but this applies only if the weights are changed
during the refinement. There is thus no conflict with the result in
(8.1.2.9). In practice, in any case, many other sources of
uncertainty are much more important than any possible bias that
could be introduced by this effect.

8.2.3. Entropy maximization
8.2.3.1. Introduction

Entropy maximization, like least squares, is of interest
primarily as a framework within which to find or adjust
parameters of a model. Rationalization of the name ‘entropy
maximization’ by analogy to thermodynamics is controversial,
but there is formal proof (Shore & Johnson, 1980) supporting
entropy maximization as the unique method of inference that
satisfies basic consistency requirements (Livesey & Skilling,
1985). The proof consists of discovering the consequences of
four consistency axioms, which may be stated informally as
follows:

(1) the result of the inference should be unique;

(2) the result of the inference should be invariant to any

transformations of coordinate system;

(3) it should not matter whether independent information is
accounted for independently or jointly;

(4) it should not matter whether independent subsystems are
treated separately in conditional problems or collected and
treated jointly.

The term ‘entropy’ is used in this chapter as a name only, the
name for variation functions that include the form ¢In ¢, where
¢ may represent probability or, more generally, a positive
proportion. Any positive measure, either observed or derived, of
the relative apportionment of a characteristic quantity among
observations can serve as the proportion.

The method of entropy maximization may be formulated as
follows: given a set of n observations, y;, that are measurements
of quantities that can be described by model functions, M;(x),
where x is a vector of parameters, find the prior, positive
proportions, w; =f(y;), and the values of the parameters for
which the positive proportions ¢ = f[M;(x)] make the sum

— 2 ¢ In(gi/ 1)), (8.2.3.1)
i=1

where ¢, = ¢,/ > ¢, and u; = p;/ > 11;, a maximum. § is called

the Shannon-Jaynes entropy. For some applications (Collins,

1982), it is desirable to include in the variation function

additional terms or restraints that give S the form

- 2_:1 @ n(gl/ i) + 451X, ¥) + 45X, y) +.... (8.2.3.2)

where the s are undetermined multipliers, but we shall discuss
here only applications where A; = O for all i, and an unrestrained
entropy is maximized. A necessary condition for S to be a
maximum is for the gradient to vanish. Using

S I~/ 0S a¢,>
PN (2 i (8.2.3.3)
axj ; <8g0,-> ( ij

and
s _ < 35) <3¢k> , (8.2.3.4)
dp; = \9¢/ \9¢;

straightforward algebraic manipulation gives equations of the

form
" | 9¢; "3
{30 bu (%) -0
i=1 ij k=1 8xj “i

It should be noted that, although the entropy function should, in
principle, have a unique stationary point corresponding to the
global maximum, there are occasional circumstances, particu-
larly with restrained problems where the undetermined multi-
pliers are not all zero, where it may be necessary to verify that a
stationary solution actually maximizes entropy.

(8.2.3.5)

8.2.3.2. Some examples

For an example of the application of the maximum-entropy
method, consider (Collins, 1984) a collection of diffraction
intensities in which various subsets have been measured under
different conditions, such as on different films or with different
crystals. All systematic corrections have been made, but it is
necessary to put the different subsets onto a common scale.
Assume that every subset has measurements in common with
some other subset, and that no collection of subsets is isolated
from the others. Let the measurement of intensity 7, in subset i be
J,:» and let the scale factor that puts intensity /, on the scale of
subset i be k;. Equation (8.2.3.1) becomes

Z Z(k 1) In [(" b ]

where the term is zero if , does not appear in subset i. Because k;
and [, are parameters of the model, equations (8.2.3.5) become

Z"l {(kzh)] Z Z(klh) <Zkz> {(klh)} o,

(8.2.3.6)

(8.2.3.7a)
and
kL) -~ ES (kL)
};1 [ T > ;(kilh) ;I, In 7= 0.
(8.2.3.7b)
These simplify to
Inl, = 0 — 3 K In(k,/J,) (8.2.3.84)
i=1
and
Ink; =0 — Z 1, In(Z,/ 7). (8.2.3.8b)
h=1
where
0 =3 >(kdy) In[(k;dy) /Tl (8.2.3.8¢)

h:

1 i=1

Equations (8.2.3.8) may be solved iteratively, starting with the
approximations k; = >_,_, J,; and Q = 0.

The standard uncertainties of scale factors and intensities are
not used in the solution of equations (8.2.3.8), and must be
computed separately. They may be estimated on a fractional
basis from the variances of estimated population means (J,,/1I;,)
for a scale factor and <Jhi /ki> for an intensity, respectively. The
maximum-entropy scale factors and scaled intensities are
relative, and either set may be multiplied by an arbitrary,
positive constant without affecting the solution.
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8.6. THE RIETVELD METHOD

Profile R factor:

>

v;(obs.) — yl-(calc.)|

Ry = >_yi(obs.)

Weighted profile R factor:

2 1/2
Z w,|yi(obs.) — y,(calc.)|

R , =
" > w;y7(obs.)

Bragg R factor:

>[I (obs.) — L(calc.)|
%

R, =
! ijlk(obs.)
Expected R factor:
12
N —-P
Re = S" w; y?(obs.)
- i Vi .

I, is the integrated intensity of the kth reflection, N is the
number of independent observations, and P is the number of
refined parameters. The most important indicators are R, p
and R;. The ratio R, /Ry is the so-called ‘goodness-of-fit’,
x*: in a successful refinement x?> should approach unity. The
Bragg R factor is useful, since it depends on the fit of the

structural parameters and not on the profile parameters.

8.6.2. Problems with the Rietveld method

One should be aware of certain problems that may give rise to
failure in a Rietveld refinement.

8.6.2.1. Indexing

The first step in refinement is the indexing of the pattern.
As the Rietveld method is often applied to the refinement of
data for which the unit-cell parameters and space group are
already known, there is then little difficulty in indexing the
pattern, provided that there are a few well resolved lines.
Without this knowledge, the indexing requires, as a starting
point, the measurement of the d values of low-angle
diffraction lines to high accuracy. According to Shirley
(1980): ‘Powder indexing works beautifully on good data, but
with poor data it usually will not work at all’. The indexing
of powder patterns and associated problems are discussed by
Shirley (1980), Pawley (1981), Cheetham (1993) and Werner
(2002).

8.6.2.2. Peak-shape function (PSF)

The appropriate function to use varies with the nature of
the experimental technique. In addition to the Gaussian PSF
in (8.6.1.3), functions commonly used for angle-dispersive
data are (Young & Wiles, 1982):

G, = 7rH ( )1 (Lorentzian)
k
G = ”Hk l ( ) ]
2
+(1—1) f‘ i, Zexp [—41112(%?”‘)1 (pseudo-Voigt)
2rm(2n - 1) n 220,\*] "
o="grm-y |- ( )

(Pearson VII)

where A20, =26, —26,. n is a parameter that defines the
fraction of Lorentzian character in the pseudo-Voigt profile.
I'(n) is the gamma function: when n =1, Pearson VII
becomes a Lorentzian, and when n =o00, it becomes a
Gaussian.

The tails of a Gaussian distribution fall off too rapidly to
account for particle size broadening. The peak shape is then
better described by a convolution of Gaussian and Lorentzian
functions [i.e. Voigt function: see Ahtee, Nurmela & Suortti
(1984) and David & Matthewman (1985)]. A pulsed neutron
source gives an asymmetrical line shape arising from the fast
rise and slow decay of the neutron pulse: this shape can be
approximated by a pair of exponential functions convoluted
with a Gaussian (Albinati & Willis, 1982; Von Dreele,
Jorgensen & Windsor, 1982).

The pattern from an X-ray powder diffractometer gives
peak shapes that cannot be fitted by a simple analytical
function. Will, Parrish & Huang (1983) use the sum of
several Lorentzians to express the shape of each diffraction
peak, while Hepp & Baerlocher (1988) describe a numerical
method of determining the PSF. Pearson VII functions have
also been successfully used for X-ray data (Immirzi, 1980).
A modified Lorentzian function has been employed for
interpreting data from a Guinier focusing camera (Malmros
& Thomas, 1977). PSFs for instruments employing X-ray
synchrotron radiation can be represented by a Gaussian
(Parrish & Huang, 1980) or a pseudo-Voigt function
(Hastings, Thomlinson & Cox, 1984).

8.6.2.3. Background

The background may be determined by measuring regions
of the pattern that are free from Bragg peaks. This
procedure assumes that the background varies smoothly
with sin6/A, whereas this is not the case in the presence
of disorder or thermal diffuse scattering (TDS), which rises
to a maximum at the Bragg positions. An alternative
approach is to include a background function in the
refinement model (Richardson, 1993). If the background is
not accounted for satisfactorily, the temperature factors may
be incorrect or even negative. The various procedures for
estimating the background for X-ray, synchrotron, constant-
wavelength and TOF neutron powder patterns are reviewed
by McCusker et al. (1999).

In neutron diffraction, the main contribution to the back-
ground from hydrogen-containing samples is due to incoherent
scattering. Deuterating the sample is essential in order to
substantially reduce this background.
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9.1. SPHERE PACKINGS AND PACKINGS OF ELLIPSOIDS

Two other types of homogeneous sphere packings (15 and 16)
with contact number k = 10 also refer to densest layers of
spheres. In these cases, each sphere has three contacts to one
neighbouring layer and one contact to the other layer that is
stacked directly above or below the original layer.

Cubic closest packings may also be regarded as built up from
square layers 4* stacked in such a way that each sphere has
four neighbouring spheres in the same layer and four
neighbours each from the layers above and below (cf. Fig.
9.1.1.3). If square layers are stacked such that each sphere has
contact to four spheres of one neighbouring layer and to two
spheres of the other layer (c¢f. Fig. 9.1.1.4), sphere packings
with contact number 10 result. In total, two types of
homogeneous packings (17 and 18) with this kind of stacking
exist. Sphere packings of type 9 may also be decomposed into
4* layers parallel to (101) or (011) in a five-layer sequence.
These nets are made up from parallel rhombi and stacked such
that each sphere has contact with three other spheres from the
layer above and from the layer below. If such layers are
stacked in a two-layer sequence, sphere packings of type 13

\V

—O

Fig. 9.1.1.2. Two triangular nets representing two densest packed
layers of spheres. The layers are stacked in such a way that each
sphere is in contact with two spheres of the other layer.

T 7 el ?
- r —— —e

& & |9
*— ®

oo * - Q
. ‘ +
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o D

Fig. 9.1.1.3. Two square nets representing two layers of spheres
stacked in such a way that each sphere is in contact with four spheres
of the other layer.

with symmetry Cmcm result (O’Keeffe, 1998). Sphere packings
of type 14 are also build up from 4* layers, but here the rhombi
occur in two different orientations (O’Keeffe, 1998). Sphere
packings with high contact numbers may also be derived by
stacking of other layers. Type 20, for example, refers to 36
layers where each sphere is in contact with three spheres of one
neighbouring net and two spheres of the other one (Sowa &
Koch, 1999). Such a sphere packing may alternatively be
derived from the cubic closest packing by omitting system-
atically 1/7 of the spheres in each of the 3° nets.

Sphere packings of types 8 and 19 (c¢f. Figs. 9.1.1.5 and
9.1.1.6) cannot be built up from plane layers of spheres in
contact although their contact numbers are also high.

Table 9.1.1.2 contains complete information on homogeneous
sphere packings with k =10, 11, and 12 and with cubic or
tetragonal symmetry.

The least dense (most open) homogeneous sphere packings
known so far have already been described by Heesch & Laves
(1933). Sphere packings of that type (24) cannot be stable
because their contact number is 3 (cf. Fig. 9.1.1.7). As discussed

o o o —
SEREER

o 4 - — 0
B!

N
— . —4

| S U S

Fig. 9.1.1.4. Two square nets representing two layers of spheres
stacked in such a way that each sphere is in contact with two spheres
of the other layer.

Fig. 9.1.1.5. Sphere packing of type 8 (Table 9.1.1.2) represented by a
graph: k = 11, P4,/mnm, 4(f), xx0.
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9.3. TYPICAL INTERATOMIC DISTANCES: METALS AND ALLOYS

25

!“ oo
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1 1.5 2 2.5
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(a)

Ic 1.5 Y
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()

o 1.5 274

1 1.5 2
dag/2
(c)

Fig. 9.3.2. (a) Plot of d,; versus R for the binary compounds
crystallizing in AP3 AlB,. (b) Plot of d,p versus R for the binary
compounds crystallizing in oP12 Co,Sb. (c) Plot of d,z versus R for
the binary compounds crystallizing in P6 Cu,Sb.

bond radius, and n = V/12, with V being the elemental valence,
to adjust the radii to coordination numbers other than 12. The
adjustment of the radii to the coordination numbers of the
structure type of concern is a first approximation adjustment to
the structure type. The broken lines in Figs. 9.3.2(a)-(c) are the
results of a least-squares analysis.

Much more information about the short-range atomic
arrangement, and a deeper insight into the geometry within a
structure type, is obtained by looking at the coordination
polyhedra (atomic environments AE) instead of looking only at
the interatomic distances. These coordination polyhedra or AE
not only give geometrical information about an atom and its
neighbours but also give the correct coordination number. An
AE is determined by using Brunner & Schwarzenbach’s (1971)
method, in which all interatomic distances between an atom and
its neighbours are plotted in a next-neighbour histogram (NNH),
as shown in Fig. 9.3.3(a). In most cases, a clear maximum gap is
revealed. All atoms to the left of the maximum gap belong to the
AE of the central atom; the coordination polyhedron constructed
with these atoms is depicted in Fig. 9.3.3(b).

In cases where no maximum gap is found, Daams, Villars &
van Vucht (1992) used the maximum convex rule. The maximum
convex volume is defined as the maximum volume around only
one central atom enclosed by convex faces with all the
coordinating atoms lying at the intersection of at least three
faces. Systematic studies of all intermetallic structure types

25
n
dmin = 0.243 nm
20 -
15 -
10
maximum
gap
5
0 L |
1.0 1.5 2.0 25
did min
(a)

(b)

Fig. 9.3.3. (a) A typical example of a next-neighbour histogram (NNH)
and (b) the atomic environment (AE) coordination polyhedron
belonging to this NNH.
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9.5. TYPICAL INTERATOMIC DISTANCES: ORGANIC COMPOUNDS
Table 9.5.1.1. Average lengths (cont.)

Bond Substructure d m o q, q, n Note
B4)—I see TMPBTI (2.220, 2.253)
B4)—NQ@3) X;—B—N(=C)(X) 1.611 1.617 | 0.013 | 1.601 1.625 8
in pyrazaboles 1.549 | 1.552 | 0.015 1.536 | 1.560 10
B(3)—N@3) X, —B—N—C,: all coplanar 1.404 | 1.404 | 0.014 | 1.389 | 1.408 40 2
for 7(BN) > 30° see BOGSUL, BUSHAY,
CILRUK (1.434-1.530)
S,—B—N—X, 1.447 | 1.443 | 0.013 | 1.435 | 1.470 14
B4)—O B—O in BO; 1.468 | 1.468 | 0.022 | 1.453 | 1.479 24
for neutral B—O see Note 3 3
B(3)—O0(Q) X,—B—0—X 1.367 | 1.367 | 0.024 | 1.349 | 1.382 35
B(n)—P n=4:. B—P 1.922 | 1.927 | 0.027 | 1.900 | 1.954 10
n = 3: see BUPSIB10 (1.892, 1.893)
B4)—S B(4)—S@3) 1.930 | 1.927 | 0.009 | 1.925 | 1.934 10
B(4)—S(2) 1.896 | 1.896 | 0.004 | 1.893 1.899 6
B3)—S N—B—S, 1.806 | 1.806 | 0.010 | 1.799 | 1.816 28
(=X—)(N—)B—S 1.851 1.854 | 0.013 | 1.842 | 1.859 10
Br—Br see BEPZEB, TPASTB 2.542 | 2.548 | 0.015 | 2.526 | 2.551 4
Br—C Br—C* 1.966 | 1.967 | 0.029 | 1.951 1.983 100 4
Br—Csp?® (cyclopropane) 1.910 | 1.910 | 0.010 | 1.900 | 1.914 8
Br—Csp? 1.883 1.881 | 0.015 | 1.874 | 1.894 31 4
Br—C,, (mono-Br + m,p-Br,) 1.899 | 1.899 | 0.012 | 1.892 | 1.906 119 4
Br—C,, (0-Br,) 1.875 | 1.872 | 0.011 1.864 | 1.884 8 4
“Br(2)—Cl see TEACBR (2.362-2.402) T
Br—I see DTHIBR10 (2.646), TPHOSI (2.695)
Br—N see NBBZAM (1.843)
Br—O see CIYFOF 1.581 1.581 | 0.007 | 1.574 | 1.587 4
Br—P see CISTED (2.366)
Br—S(Q2) see BEMLIO (2.206) T
Br—S(@3) see CIWYIQ (2.435, 2.453) T
Br—S@3)* see THINBR (2.321) T
Br—Se see CIFZUM (2.508, 2.619)
Br—Si see BIZJAV (2.284)
Br—Te In BryTe’~ see CUGBAH (2.692-2.716)
Br—Te(4) see BETUTEI1O (3.079, 3.015)
Br—Te(3) see BTUPTE (2.835)
Csp*—Csp? C?—CH,—CH, 1.513 1.514 | 0.014 | 1.507 | 1.523 192
(C*), —CH—CH, 1.524 | 1.526 | 0.015 | 1.518 | 1.534 226
(C*);—C—CH, 1.534 | 1.534 | 0.011 1.527 | 1.541 825
¢*—CH,—CH,—C* 1.524 | 1.524 | 0.014 | 1.516 | 1.532 2459
(c*),—CH—CH,—C* 1.531 1.531 | 0.012 | 1.524 | 1.538 1217
(C*);—C—CH,—C* 1.538 | 1.539 | 0.010 | 1.533 | 1.544 330
(C*),—CH—CH—(C?), 1.542 | 1.542 | 0.011 1.536 | 1.549 321
(C*);—C—CH—(C%), 1.556 | 1.556 | 0.011 1.549 | 1.562 215
(C"; —C—C—(CH), 1.588 | 1.580 | 0.025 | 1.566 | 1.610 21
C*—C* (overall) 1.530 | 1.530 | 0.015 | 1.521 1.539 5777 5,6
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9. BASIC STRUCTURAL FEATURES
Table 9.8.3.5. (3 + 1)-Dimensional superspace groups

The number labelling the superspace group is denoted by n.m, where n is the number attached to the three-dimensional basic space group and m
numbers the various superspace groups having the same basic space group. The symbol of the basic space group, the symbol for the four-
dimensional point group K|, the number of the four-dimensional Bravais class to which the superspace group belongs (Table 9.8.3.2a), and the
superspace-group symbol are also given. The superspace-group symbol is indicated in the short notation, i.e. for the basic group one uses the short
symbol from International Tables for Crystallography, Volume A, and then the values of 7 are given for each of the generators in this symbol, unless
all these values are zero. Then, instead of writing a number of zeros, one omits them all. Finally, the special reflection conditions due to non-
primitive translations are given, for hkim if " = 0 and for HKLm otherwise. Recall the HKLm are the indices with respect to a conventional basis
a’, b}, ¢, q as in Table 9.8.3.2(a). The reflection conditions due to centring translations are given in Table 9.8.3.6.

Basic Point Bravais
space group class Group
No. group s No. symbol Special reflection conditions
1.1 P1 1,1) 1 P1(aBy)
2.1 P1 (1,1) 1 P1(aBy)
3.1 P2 (2,1 2 P2(ap0)
3.2 2,1) 3 P2(apd)
3.3 (2,1) 5 P2(007)
34 2,1) 5 P2(00y)s 00lm: m=2n
3.5 (2,1) 6 P2(20v)
4.1 P2, (2,1) 2 P2,(aB0) 0010: I=2n
4.2 (2,1) 5 P2,(007y) 00Im: 1=2n
43 2,1) 6 P2,(X0y) 00Lm: L=2n
5.1 B2 (2,1) 4 B2(aB0)
5.2 2,1) 7 B2(00)
53 2,1) 7 B2(007y)s 00lm: m=2n
5.4 (2,1) 8 B2(0y)
6.1 Pm (m,1) 2 Pm(apB0)
6.2 (m, 1) 2 Pm(ap0)s hkOm: m=2n
6.3 (m, 1) 3 Pm(ap3)
6.4 (m, 1) 5 Pm(00y)
6.5 (m,1) 6 Pm(20y)
7.1 Pb (m, 1) 2 Pb(ap0) hkOm: k=2n
7.2 (m, 1) 3 Pb(aB?) HKOm: K =2n
7.3 (m, 1) 5 Pb(00y) hk00: k=2n
7.4 (m,1) 6 Pb(20y) HKO00: K =2n
8.1 Bm (m, 1) 4 Bm(aB0)
8.2 (m,1) 4 Bm(aB0)s hkOm: m=2n
8.3 (m, 1) 7 Bm(007y)
8.4 (m,1) 8 Bm(0}y)
9.1 Bb (m,1) 4 Bb(aB0) hkOm: k=2n
9.2 (m,1) 7 Bb(00y) hk00: k=2n
10.1 P2/m (2/m,11) 2 P2/ m(aB0)
10.2 2/m,11) 2 P2/ m(aB0)0s hkOm: m =2n
10.3 (2/m,11) 3 P2/m(apl)
10.4 2/m,11) 5 P2/m(00y)
10.5 (2/m, 11) 5 P2/m(Q0y)s0 00Im: m=2n
10.6 (2/m, 11) 6 P2/m(30y)
11.1 P2,/m (2/m,11) 2 P2,/ m(«B0) 0010: I=2n
11.2 2/m,11) 2 P2,/m(aB0)0s 0010: I=2n; hkOm: m=2n
11.3 (2/m, 11) 5 P2,/m(00y) 00Im: 1=2n
11.4 (2/m, 11) 6 P2,/m(30y) 00Lm: L=2n
12.1 B2/m (2/m,11) 4 B2/ m(ap0)
12.2 (2/m, 11) 4 B2/ m(apB0)0s hkOm: m=2n
12.3 (2/m,11) 7 B2/ m(00y)
12.4 (2/m, 11) 7 B2/ m(00)s0 00Im: m=2n
12.5 (2/m, 11) 8 B2/m(30y)
13.1 P2/b (2/m,11) 2 P2/b(aB0) hkOm: k=2n
13.2 2/m,11) 3 P2/b(aB) HKOm: m=2n
13.3 (2/m,11) 5 P2/b(007) hk00: k=2n
13.4 (2/m,11) 5 P2/b(00y)s0 00lm: m =2n; hk00: k=2n
13.5 (2/m, 11) 6 P2/b(207) HKO00: K =2n
14.1 P2,/b (2/m,11) 2 P2,/b(aB0) 0010: 1=2n; hkOm: k=2n
14.2 (2/m,11) 5 P2,/b(00y) 00Im: 1=2n; hk00: k=2n
14.3 (2/m,11) 6 P2,/b(0y) 00Lm: L=2n; HK00: K =2n
15.1 B2/b (2/m,11) 4 B2/b(ap0) hkOm: k=2n
15.2 (2/m,11) 7 B2/b(00y) hk00: k=2n
15.3 (2/m,11) 7 B2/b(00y)s0 00lm: m=2n; hk00: k=2n
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