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P. Boček: Institute of Information Theory and Automation,

Academy of Sciences of the Czech Republic, Pod vodárenskou

věžı́ 4, 182 08 Praha 8, Czech Republic. [3.1.6, GI?KoBo-1]

A. S. Borovik-Romanov†: P. L. Kapitza Institute for Physical

Problems, Russian Academy of Sciences, Kosygin Street 2,

119334 Moscow, Russia. [1.5]

B. Boulanger: Institut Néel CNRS Université Joseph Fourier, 25
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Case 069, Place Eugène Bataillon, 34095 Montpellier Cedex,

France. [2.4]

A. Zarembowitch: Laboratoire de Physique des Milieux
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1.4.2. Grüneisen relation .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 101

1.4.3. Experimental methods .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 102

1.4.4. Relation to crystal structure .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 104

1.4.5. Glossary .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 105

1.5. Magnetic properties (A. S. Borovik-Romanov, H. Grimmer and M. Kenzelmann) .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 106

1.5.1. Introduction .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 106

1.5.2. Magnetic symmetry .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 110

1.5.3. Phase transitions into a magnetically ordered state .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 117

1.5.4. Domain structure .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 126

1.5.5. Weakly non-collinear magnetic structures .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 128

1.5.6. Reorientation transitions .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 132

1.5.7. Piezomagnetism .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 133

1.5.8. Magnetoelectric effect .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 139

1.5.9. Magnetostriction .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 145



viii

CONTENTS

1.5.10. Connection between Gaussian and SI units .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 148

1.5.11. Glossary .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 149

1.6. Classical linear crystal optics (A. M. Glazer and K. G. Cox) .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 153

1.6.1. Introduction .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 153

1.6.2. Generalized optical, electro-optic and magneto-optic effects .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 153

1.6.3. Linear optics .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 155

1.6.4. Practical observation of crystals .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 157

1.6.5. Optical rotation .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 169

1.6.6. Linear electro-optic effect .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 175

1.6.7. The linear photoelastic effect .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 176

1.6.8. Glossary .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 179

1.7. Nonlinear optical properties (B. Boulanger and J. Zyss) .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 181

1.7.1. Introduction .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 181

1.7.2. Origin and symmetry of optical nonlinearities .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 181

1.7.3. Propagation phenomena .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 186

1.7.4. Determination of basic nonlinear parameters .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 215

1.7.5. The main nonlinear crystals .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 217

1.7.6. Glossary .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 219

1.8. Transport properties (G. D. Mahan) .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 223

1.8.1. Introduction .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 223

1.8.2. Macroscopic equations .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 223

1.8.3. Electrical resistivity .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 223

1.8.4. Thermal conductivity .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 227

1.8.5. Seebeck coefficient .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 229

1.8.6. Glossary .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 230

1.9. Atomic displacement parameters (W. F. Kuhs) .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 231

1.9.1. Introduction .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 231

1.9.2. The atomic displacement parameters (ADPs) .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 231

1.9.3. Site-symmetry restrictions .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 235

1.9.4. Graphical representation .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 235

1.9.5. Glossary .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 245

1.10. Tensors in quasiperiodic structures (T. Janssen) .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 246

1.10.1. Quasiperiodic structures .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 246

1.10.2. Symmetry .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 248

1.10.3. Action of the symmetry group .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 252

1.10.4. Tensors .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 253

1.10.5. Tables .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 262

1.11. Tensorial properties of local crystal susceptibilities (V. E. Dmitrienko, A. Kirfel and E. N. Ovchinnikova) .. .. .. .. .. .. .. 269

1.11.1. Introduction .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 269

1.11.2. Symmetry restrictions on local tensorial susceptibility and forbidden reflections .. .. .. .. .. .. .. .. .. .. .. .. .. 270

1.11.3. Polarization properties and azimuthal dependence .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 272

1.11.4. Physical mechanisms for the anisotropy of atomic X-ray susceptibility .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 274

1.11.5. Non-resonant magnetic scattering .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 275

1.11.6. Resonant atomic factors: multipole expansion .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 275

1.11.7. Glossary .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 281



ix

CONTENTS

PART 2. SYMMETRY ASPECTS OF EXCITATIONS

2.1. Phonons (G. Eckold) .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 286

2.1.1. Introduction .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 286

2.1.2. Fundamentals of lattice dynamics in the harmonic approximation .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 286

2.1.3. Symmetry of lattice vibrations .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 294

2.1.4. Conclusion .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 311

2.1.5. Glossary .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 311

2.2. Electrons (K. Schwarz) .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 314

2.2.1. Introduction .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 314

2.2.2. The lattice .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 314

2.2.3. Symmetry operators .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 314

2.2.4. The Bloch theorem .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 315

2.2.5. The free-electron (Sommerfeld) model .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 317

2.2.6. Space-group symmetry .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 317

2.2.7. The k vector and the Brillouin zone .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 318

2.2.8. Bloch functions .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 319

2.2.9. Quantum-mechanical treatment .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 319

2.2.10. Density functional theory .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 320

2.2.11. Band-theory methods .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 321

2.2.12. The linearized augmented plane wave method .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 323

2.2.13. The local coordinate system .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 324

2.2.14. Characterization of Bloch states .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 325

2.2.15. Electric field gradient tensor .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 327

2.2.16. Examples .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 330

2.2.17. Conclusion .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 332

2.3. Raman scattering (I. Gregora) .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 334

2.3.1. Introduction .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 334

2.3.2. Inelastic light scattering in crystals – basic notions .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 334

2.3.3. First-order scattering by phonons .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 335

2.3.4. Morphic effects in Raman scattering .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 342

2.3.5. Spatial-dispersion effects .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 345

2.3.6. Higher-order scattering .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 346

2.3.7. Conclusions .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 347

2.3.8. Glossary .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 348

2.4. Brillouin scattering (R. Vacher and E. Courtens) .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 349

2.4.1. Introduction .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 349

2.4.2. Elastic waves .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 349

2.4.3. Coupling of light with elastic waves .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 350

2.4.4. Brillouin scattering in crystals .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 350

2.4.5. Use of the tables .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 351

2.4.6. Techniques of Brillouin spectroscopy .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 351

PART 3. SYMMETRY ASPECTS OF PHASE TRANSITIONS, TWINNING AND DOMAIN STRUCTURES

3.1. Structural phase transitions (J.-C. Tolédano, V. Janovec, V. Kopský, J. F. Scott and P. Boček) .. .. .. .. .. .. .. .. .. .. .. 358
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Preface to the second edition

By André Authier

The first edition of Volume D appeared in 2003. This second

edition includes a new chapter and eight chapters have been

updated, three of them extensively, with entirely new sections

included.

Volume D deals with the influence of symmetry on the physical

and tensor properties of crystals and on their structural phase

transitions. It is an up-to-date account of the physical properties

of crystals, with many useful tables, aimed at a wide readership in

the fields of mineralogy, crystallography, solid-state physics and

materials science; it brings together various topics that are usually

to be found in quite different handbooks but that have in

common their tensor nature and the role of crystallographic

symmetry. The overall structure of the volume has remained

unchanged.

Part 1 introduces the mathematical properties of tensors and

group representations, and gives their independent components

for each of the crystallographic groups. Several examples of

tensor properties are described: elastic properties, thermal

expansion, magnetic properties, linear and nonlinear optical

properties, transport properties, atomic displacement parameters,

and local electric susceptibility. A new section presenting multi-

ferroics, a field which has seen big progress in recent years,

has been added to Chapter 1.5 on magnetic properties. A new

chapter (Chapter 1.11) deals with the tensor properties of local

crystal properties. It considers the impact of symmetry on local

physical properties. The symmetry and physical phenomena that

allow and restrict forbidden reflections excited at radiation

energies close to X-ray absorption edges of atoms are described;

reflections caused by magnetic scattering are also discussed.

Part 2 is devoted to the symmetry aspects of excitations in

reciprocal space: phonons, electrons, Raman scattering and

Brillouin scattering.

Part 3 deals with the symmetry aspects of structural phase

transitions and twinning. Chapter 3.3, Twinning of crystals, has

been considerably updated with a large new section on the effect

of twinning in reciprocal space, and a section on the relations

between twinning and domain structure, the topic of Chapter 3.4,

which has also been entirely updated, with new tables and new

figures.

It is a pleasure to thank all the authors who have updated their

contributions and the authors of the new chapter. I am particu-

larly grateful to the Technical Editor, Nicola Ashcroft, who

incorporated all the corrections, sometimes quite complicated, to

the existing chapters, and who edited the new chapter and the

new sections with speed, highly professional efficiency and good

humour.
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1.1. Introduction to the properties of tensors

By A. Authier

1.1.1. The matrix of physical properties

1.1.1.1. Notion of extensive and intensive quantities

Physical laws express in general the response of a medium to a
certain influence. Most physical properties may therefore be
defined by a relation coupling two or more measurable quantities.
For instance, the specific heat characterizes the relation between
a variation of temperature and a variation of entropy at a given
temperature in a given medium, the dielectric susceptibility the
relation between electric field and electric polarization, the
elastic constants the relation between an applied stress and the
resulting strain etc. These relations are between quantities of
the same nature: thermal, electrical and mechanical, respectively.
But there are also cross effects, for instance:

(a) thermal expansion and piezocalorific effect: mechanical
reaction to a thermal impetus or the reverse;

(b) pyroelectricity and electrocaloric effect: electrical response
to a thermal impetus or the reverse;

(c) piezoelectricity and electrostriction: electric response to a
mechanical impetus;

(d) piezomagnetism and magnetostriction: magnetic response
to a mechanical impetus;

(e) photoelasticity: birefringence produced by stress;
(f) acousto-optic effect: birefringence produced by an acoustic

wave;
(g) electro-optic effect: birefringence produced by an electric

field;
(h) magneto-optic effect: appearance of a rotatory polarization

under the influence of a magnetic field.
The physical quantities that are involved in these relations can

be divided into two categories:
(i) extensive quantities, which are proportional to the volume of

matter or to the mass, that is to the number of molecules in the
medium, for instance entropy, energy, quantity of electricity etc.
One uses frequently specific extensive parameters, which are
given per unit mass or per unit volume, such as the specific mass,
the electric polarization (dipole moment per unit volume) etc.

(ii) intensive parameters, quantities whose product with an
extensive quantity is homogeneous to an energy. For instance,
volume is an extensive quantity; the energy stored by a gas
undergoing a change of volume dV under pressure p is p dV.
Pressure is therefore the intensive parameter associated with
volume. Table 1.1.1.1 gives examples of extensive quantities and
of the related intensive parameters.

1.1.1.2. Notion of tensor in physics

Each of the quantities mentioned in the preceding section is
represented by a mathematical expression. Some are direction
independent and are represented by scalars: specific mass,
specific heat, volume, pressure, entropy, temperature, quantity of
electricity, electric potential. Others are direction dependent and
are represented by vectors: force, electric field, electric displa-
cement, the gradient of a scalar quantity. Still others cannot be
represented by scalars or vectors and are represented by more
complicated mathematical expressions. Magnetic quantities are
represented by axial vectors (or pseudovectors), which are a
particular kind of tensor (see Section 1.1.4.5.3). A few examples
will show the necessity of using tensors in physics and Section
1.1.3 will present elementary mathematical properties of tensors.

(i) Thermal expansion. In an isotropic medium, thermal
expansion is represented by a single number, a scalar, but this is

not the case in an anisotropic medium: a sphere cut in an
anisotropic medium becomes an ellipsoid when the temperature
is varied and thermal expansion can no longer be represented by
a single number. It is actually represented by a tensor of rank 2.

(ii) Dielectric constant. In an isotropic medium of a perfect
dielectric we can write, in SI units,

P ¼ "0�eE

D ¼ "0Eþ P ¼ "0ð1þ �eÞE ¼ "E;

where P is the electric polarization (= dipole moment per unit
volume), "0 the permittivity of vacuum, �e the dielectric
susceptibility, D the electric displacement and " the dielectric
constant, also called dielectric permittivity. These expressions
indicate that the electric field, on the one hand, and polarization
and displacement, on the other hand, are linearly related. In the
general case of an anisotropic medium, this is no longer true and
one must write expressions indicating that the components of the
displacement are linearly related to the components of the field:

D1 ¼ "1
1E1 þ "2

1E2 þ "3
1E

D2 ¼ "2
1E1 þ "2

2E2 þ "3
2E

D3 ¼ "3
1E1 þ "3

2E2 þ "3
3E:

8
<

:
ð1:1:1:1Þ

The dielectric constant is now characterized by a set of nine
components " j

i; they are the components of a tensor of rank 2. It
will be seen in Section 1.1.4.5.2.1 that this tensor is symmetric
(" j

i ¼ "
i
j) and that the number of independent components is

equal to six.
(iii) Stressed rod (Hooke’s law). If one pulls a rod of length ‘

and cross section A with a force F, its length is increased by a
quantity �‘ given by �‘=‘ ¼ ð1=EÞF=A; where E is Young’s
modulus, or elastic stiffness (see Section 1.3.3.1). But, at the same
time, the radius, r, decreases by �r given by �r=r ¼ �ð�=EÞF=A,
where � is Poisson’s ratio (Section 1.3.3.4.3). It can be seen that a
scalar is not sufficient to describe the elastic deformation of a
material, even if it is isotropic. The number of independent
components depends on the symmetry of the medium and it will
be seen that they are the components of a tensor of rank 4. It was
precisely to describe the properties of elasticity by a mathema-
tical expression that the notion of a tensor was introduced in
physics by W. Voigt in the 19th century (Voigt, 1910) and by L.
Brillouin in the first half of the 20th century (Brillouin, 1949).

3

Table 1.1.1.1. Extensive quantities and associated intensive parameters

The last four lines of the table refer to properties that are time dependent.

Extensive quantities Intensive parameters

Volume Pressure
Strain Stress
Displacement Force
Entropy Temperature
Quantity of electricity Electric potential
Electric polarization Electric field
Electric displacement Electric field
Magnetization Magnetic field
Magnetic induction Magnetic field
Reaction rate Chemical potential
Heat flow Temperature gradient
Diffusion of matter Concentration gradient
Electric current Potential gradient



1.1. INTRODUCTION TO THE PROPERTIES OF TENSORS

1.1.4.1. Introduction – Neumann’s principle

We saw in Section 1.1.1 that physical properties express in
general the response of a medium to an impetus. It has been
known for a long time that symmetry considerations play an
important role in the study of physical phenomena. These
considerations are often very fruitful and have led, for instance,
to the discovery of piezoelectricity by the Curie brothers in 1880
(Curie & Curie, 1880, 1881). It is not unusual for physical prop-
erties to be related to asymmetries. This is the case in electrical
polarization, optical activity etc. The first to codify this role was
the German physicist and crystallographer F. E. Neumann (1795–
1898). In a series of papers (Neumann, 1832, 1833, 1834) he had
studied the relations between the orientations of the mechanical,
thermal and optical axes on the one hand and that of the crys-
talline axes on the other. His principle of symmetry was first
stated in his course at the University of Königsberg (1873/1874)
and was published in the printed version of his lecture notes
(Neumann, 1885). It is now called Neumann’s principle: if a
crystal is invariant with respect to certain symmetry elements, any
of its physical properties must also be invariant with respect to the
same symmetry elements.

This principle may be illustrated by considering the optical
properties of a crystal. In an anisotropic medium, the index of
refraction depends on direction. For a given wave normal, two
waves may propagate, with different velocities; this is the double
refraction effect. The indices of refraction of the two waves vary
with direction and can be found by using the index ellipsoid
known as the optical indicatrix (see Section 1.6.3.2). Consider the
central section of the ellipsoid perpendicular to the direction of
propagation of the wave. It is an ellipse. The indices of the two
waves that may propagate along this direction are equal to the
semi-axes of that ellipse. There are two directions for which the
central section is circular, and therefore two wave directions for
which there is no double refraction. These directions are called
optic axes, and the medium is said to be biaxial. If the medium is
invariant with respect to a threefold, a fourfold or a sixfold axis
(as in a trigonal, tetragonal or hexagonal crystal, for instance), its
ellipsoid must also be invariant with respect to the same axis,
according to Neumann’s principle. As an ellipsoid can only be
ordinary or of revolution, the indicatrix of a trigonal, tetragonal
or hexagonal crystal is necessarily an ellipsoid of revolution that
has only one circular central section and one optic axis. These
crystals are said to be uniaxial. In a cubic crystal that has four
threefold axes, the indicatrix must have several axes of revolu-
tion, it is therefore a sphere, and cubic media behave as isotropic
media for properties represented by a tensor of rank 2.

1.1.4.2. Curie laws

The example given above shows that the symmetry of the
property may possess a higher symmetry than the medium. The
property is represented in that case by the indicatrix. The
symmetry of an ellipsoid is

A2

M

A02
M0

A002
M00

C ¼ mmm for any ellipsoid

(orthorhombic symmetry)

A1
M

1A2

1M
C ¼
1

m
m for an ellipsoid of revolution

(cylindrical symmetry)

1
A1
M

C ¼ 1
1

m
for a sphere

(spherical symmetry):

[Axes A1 are axes of revolution, or axes of isotropy, introduced
by Curie (1884, 1894), cf. International Tables for Crystallography
(2005), Vol. A, Table 10.1.4.2.]

The symmetry of the indicatrix is identical to that of the
medium if the crystal belongs to the orthorhombic holohedry and
is higher in all other cases.

This remark is the basis of the generalization of the symmetry
principle by P. Curie (1859–1906). He stated that (Curie, 1894):

(i) the symmetry characteristic of a phenomenon is the highest
compatible with the existence of the phenomenon;

(ii) the phenomenon may exist in a medium that possesses that
symmetry or that of a subgroup of that symmetry;
and concludes that some symmetry elements may coexist with the
phenomenon but that their presence is not necessary. On the
contrary, what is necessary is the absence of certain symmetry
elements: ‘asymmetry creates the phenomenon’ (‘C’est la dissy-
métrie qui crée le phénomène’; Curie, 1894, p. 400). Noting that
physical phenomena usually express relations between a cause
and an effect (an influence and a response), P. Curie restated the
two above propositions in the following way, now known as Curie
laws, although they are not, properly speaking, laws:

(i) the asymmetry of the effects must pre-exist in the causes;
(ii) the effects may be more symmetric than the causes.
The application of the Curie laws enable one to determine the

symmetry characteristic of a phenomenon. Let us consider
the phenomenon first as an effect. If � is the symmetry of the
phenomenon and C the symmetry of the cause that produces it,

C � �:

Let us now consider the phenomenon as a cause producing a
certain effect with symmetry E:

� � E:

We can therefore conclude that

C � � � E:

If we choose among the various possible causes the most
symmetric one, and among the various possible effects the one
with the lowest symmetry, we can then determine the symmetry
that characterizes the phenomenon.

As an example, let us determine the symmetry associated with
a mechanical force. A force can be considered as the result of a
traction effort, the symmetry of which is A11M. If considered as
a cause, its effect may be the motion of a sphere in a given
direction (for example, a spherical ball falling under its own
weight). Again, the symmetry is A11M. The symmetries asso-
ciated with the force considered as a cause and as an effect being
the same, we may conclude that A11M is its characteristic
symmetry.

1.1.4.3. Symmetries associated with an electric field and with
magnetic induction (flux density)

1.1.4.3.1. Symmetry of an electric field

Considered as an effect, an electric field may have been
produced by two circular coaxial electrodes, the first one carrying
positive electric charges, the other one negative charges (Fig.
1.1.4.1). The cause possesses an axis of revolution and an infinity

11

Fig. 1.1.4.1. Symmetry of an electric field.



1.2. Representations of crystallographic groups

By T. Janssen

1.2.1. Introduction

Symmetry arguments play an important role in science. Often
one can use them in a heuristic way, but the correct formulation is
in terms of group theory. This remark is in fact superfluous for
crystallographers, who are used to point groups and space groups
as they occur in the description of structures. However, besides
these structural problems there are many others where group
theory may play a role. A central role in this context is played by
representation theory, which treats the action of a group on
physical quantities, and usually this is done in terms of linear
transformations, although nonlinear representations may also
occur.

To start with an example, consider a spin system, an arrange-
ment of spins on sites with a certain symmetry, for example space-
group symmetry. The elements of the space group map the sites
onto other sites, but at the same time the spins are rotated or
transformed otherwise in a well defined fashion. The spins can be
seen as elements of a vector space (spin space) and the trans-
formation in this space is an image of the space-group element. In
a similar way, all symmetric tensors of rank 2 form a vector space,
because one can add them and multiply them by a real factor. A
linear change of coordinates changes the vectors, and the trans-
formations in the space of tensors are the image of the coordinate
transformations. Probably the most important use of such
representations is in quantum mechanics, where transformations
in coordinate space are mapped onto linear transformations in
the quantum mechanical space of state vectors.

To see the relation between groups of transformations and the
use of their representations in physics, consider a tensor which
transforms under a certain point group. Let us take a symmetric
rank 2 tensor Tij in three dimensions. We take as example the
point group 222. From Section 1.1.3.2 one knows how such a
tensor transforms: it transforms into a tensor T 0ij according to

T 0ij ¼
P3

k¼1

P3

m¼1

RikRjmTkm ð1:2:1:1Þ

for all orthogonal transformations R in the group 222. This action
of the point group 222 is obviously a linear one:

c1T
ð1Þ
ij þ c2T

ð2Þ
ij


 �0
¼ c1T

ð1Þ0
ij þ c2T

ð2Þ0
ij :

The transformations on the tensors really form an image of the
group, because if one writes DðRÞT for T 0, one has for two
elements Rð1Þ and Rð2Þ the relation

DðRð1ÞRð2ÞÞ
� �

T ¼ DðRð1ÞÞ DðRð2ÞÞT
� �

or

DðRð1ÞRð2ÞÞ ¼ DðRð1ÞÞDðRð2ÞÞ: ð1:2:1:2Þ

This property is said to define a (linear) representation. Because
of the representation property, it is sufficient to know how the
tensor transforms under the generators of a group. In our
example, one could be interested in symmetric tensors that are
invariant under the group 222. Then it is sufficient to consider the
rotations over 180� along the x and y axes. If the point group is a
symmetry group of the system, a tensor describing the relation
between two physical quantities should remain the same. For
invariant tensors one has

a11 a12 a13

a12 a22 a23

a13 a23 a33

0

B
@

1

C
A

¼

1 0 0

0 �1 0

0 0 �1

0

B
@

1

C
A

a11 a12 a13

a12 a22 a23

a13 a23 a33

0

B
@

1

C
A

1 0 0

0 �1 0

0 0 �1

0

B
@

1

C
A;

a11 a12 a13

a12 a22 a23

a13 a23 a33

0

B
@

1

C
A

¼

�1 0 0

0 1 0

0 0 �1

0

B
@

1

C
A

a11 a12 a13

a12 a22 a23

a13 a23 a33

0

B
@

1

C
A

�1 0 0

0 1 0

0 0 �1

0

B
@

1

C
A

and the solution of these equations is

a11 a12 a13

a12 a22 a23

a13 a23 a33

0

@

1

A ¼

a11 0 0

0 a22 0

0 0 a33

0

@

1

A:

The matrices of rank 2 form a nine-dimensional vector space. The
rotation over 180� around the x axis can also be written as

R

a11

a12

a13

a21

a22

a23

a31

a32

a33

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

¼

1 0 0 0 0 0 0 0 0

0 �1 0 0 0 0 0 0 0

0 0 �1 0 0 0 0 0 0

0 0 0 �1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 �1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

a11

a12

a13

a21

a22

a23

a31

a32

a33

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

:

This nine-dimensional matrix together with the one corre-
sponding to a rotation along the y axis generate a representation
of the group 222 in the nine-dimensional space of three-dimen-
sional rank 2 tensors. The invariant tensors form the subspace
(a11; 0; 0; 0; a22; 0; 0; 0; a33). In this simple case, group theory is
barely needed. However, in more complex situations, the calcu-
lations may become quite cumbersome without group theory.
Moreover, group theory may give a wealth of other information,
such as selection rules and orthogonality relations, that can be
obtained only with much effort without group theory, or in
particular representation theory. Tables of tensor properties, and
irreducible representations of point and space groups, have been
in use for a long time. For point groups see, for example, Butler
(1981) and Altmann & Herzig (1994); for space groups, see Miller
& Love (1967), Kovalev (1987) and Stokes & Hatch (1988).

In the following, we shall discuss the representation theory
of crystallographic groups. We shall adopt a slightly abstract
language, which has the advantage of conciseness and generality,
but we shall consider examples of the most important notions.
Another point that could give rise to some problems is the fact
that we shall consider in part the theory for crystallographic
groups in arbitrary dimension. Of course, physics occurs in three-
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Table 1.2.6.5. Irreducible representations and character tables for the 32 crystallographic point groups in three dimensions

(a) C1

C1 "
n 1

Order 1

�1 1

1 �1 : A ¼ �1 x; y; z x2; y2; z2; yz; xz; xy
C1

(b) C2

C2 " �
n 1 1

Order 1 2

�1 1 1
�2 1 �1

2 � ¼ C2z �1 : A ¼ �1 z x2; y2; z2; xy
C2 �2 : B ¼ �3 x; y yz; xz

m � ¼ �z �1 : A0 ¼ �1 x; y x2; y2; z2; xy
Cs �2 : A00 ¼ �3 z yz; xz

�1 � ¼ I �1 : Ag ¼ �
þ
1 x2; y2; z2; yz; xz; xy

Ci �2 : Au ¼ �
�
1 x; y; z

(c) C3 [! ¼ expð2
i=3Þ].

C3 " � �2

n 1 1 1
Order 1 3 3

�1 1 1 1
�2 1 ! !2

�3 1 !2 !

Matrices of the real two-dimensional representation:

" � �2

�2 
 �3 1 0

0 1

� �
0 �1

1 �1

� �
�1 1

�1 0

� �

3 � ¼ C3z �1 : A ¼ �1 z x2 þ y2; z2

C3 �2 
 �3 : E ¼ �1c þ �
�
1c x; y x2 � y2; xz; yz; xy

(d) C4

C4 " � �2 �3

n 1 1 1 1
Order 1 4 2 4

�1 1 1 1 1
�2 1 i �1 �i
�3 1 �1 1 �1
�4 1 �i �1 i

Matrices of the real two-dimensional representation:

" � �2 �3

�2 
 �4 1 0

0 1

� �
0 �1

1 0

� �
�1 0

0 �1

� �
0 1

�1 0

� �

4 � ¼ C4z �1 : A ¼ �1 z x2 þ y2; z2

C4 �3 : B ¼ �3 x2 � y2; xy
�2 
 �4 : E ¼ �1c þ �

�
1c x; y yz; xz

�4 � ¼ S4 �1 : A ¼ �1 x2 þ y2; z2

S4 �3 : B ¼ �3 z x2 � y2; xy
�2 
 �4 : E ¼ �1c þ �

�
1c x; y yz; xz

(e) C6 [! ¼ expð
i=3Þ].

C6 " � �2 �3 �4 �5

n 1 1 1 1 1 1
Order 1 6 3 2 3 6

�1 1 1 1 1 1 1
�2 1 ! !2 �1 �! �!2

�3 1 !2 �! 1 !2 �!
�4 1 �1 1 �1 1 �1
�5 1 �! !2 1 �! !2

�6 1 �!2 �! �1 !2 !

Matrices of the real representations:

�2 
 �6 �3 
 �5

"
1 0

0 1

� �
1 0

0 1

� �

�
1 �1

1 0

� �
0 �1

1 �1

� �

�2

0 �1

1 �1

� �
�1 1

�1 0

� �

�3

�1 0

0 �1

� �
1 0

0 1

� �

�4

�1 1

�1 0

� �
0 �1

1 �1

� �

�5

0 1

�1 1

� �
�1 1

�1 0

� �

6 � ¼ C6z �1 : A ¼ �1 z x2 þ y2; z2

C6 �4 : B ¼ �3

�2 
 �6: E1 ¼ �1c þ �
�
1c x; y xz; yz

�3 
 �5: E2 ¼ �2c þ �
�
2c x2 � y2; xy

�3 � ¼ S3z �1 : Ag ¼ �
þ
1 x2 þ y2; z2

S6 �4 : Au ¼ �
�
1 z

�2 
 �6: Eu ¼ �
�
1c þ �

��
1c x; y

�3 
 �5: Eg ¼ �
þ
1c þ �

þ�
1c x2 � y2; xy; xz; yz

�6 � ¼ S6z �1 : A0 ¼ �1 x2 þ y2; z2

C3h �4 : A00 ¼ �3 z
�2 
 �6: E0 ¼ �2c þ �

�
2c xz; yz

�3 
 �5: E00 ¼ �1c þ �
�
1c x; y x2 � y2; xy

(f) D2

D2 " � � ��
n 1 1 1 1

Order 1 2 2 2

�1 1 1 1 1

�2
1 1 �1 �1

�3
1 �1 1 �1

�4 1 �1 �1 1

222 � ¼ C2x �1 : A1 ¼ �1 x2; y2; z2

D2 � ¼ C2y �2 : B3 ¼ �3 x yz
�� ¼ C2z �3 : B2 ¼ �4 y xz

�4 : B1 ¼ �2 z xz

mm2 � ¼ C2z �1 : A1 ¼ �1 z x2; y2; z2

C2v � ¼ �x �2 : A2 ¼ �2 xy
�� ¼ �y �3 : B2 ¼ �3 y yz

�4 : B1 ¼ �4 x xz

2=m � ¼ C2z �1 : Ag ¼ �
þ
1 x2; y2; z2; xy

C2h � ¼ �z �2 : Au ¼ �
�
1 z z

�� ¼ I �3 : Bu ¼ �
�
3 x; y

�4 : Bg ¼ �
þ
3
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T1 ¼ c11S1 þ c12ðS2 þ S3Þ

T2 ¼ c12S1 þ c11S2 þ c12S3

T3 ¼ c12ðS1 þ S2Þ þ c11S3:

These relations can equally well be written in the symmetrical
form

T1 ¼ ðc11 � c12ÞS1 þ c12ðS1 þ S2 þ S3Þ

T2 ¼ ðc11 � c12ÞS2 þ c12ðS1 þ S2 þ S3Þ

T3 ¼ ðc11 � c12ÞS3 þ c12ðS1 þ S2 þ S3Þ:

If one introduces the Lamé constants,

� ¼ ð1=2Þðc11 � c12Þ ¼ c44

� ¼ c12;

the equations may be written in the form often used in mechanics:

T1 ¼ 2�S1 þ �ðS1 þ S2 þ S3Þ

T2 ¼ 2�S2 þ �ðS1 þ S2 þ S3Þ

T3 ¼ 2�S3 þ �ðS1 þ S2 þ S3Þ:

ð1:3:3:16Þ

Two coefficients suffice to define the elastic properties of an
isotropic material, s11 and s12, c11 and c12, � and �, � and �, etc.
Table 1.3.3.3 gives the relations between the more common
elastic coefficients.

1.3.3.6. Equilibrium conditions of elasticity for isotropic media

We saw in Section 1.3.2.3 that the condition of equilibrium is

@Tij=@xi þ 
Fj ¼ 0:

If we use the relations of elasticity, equation (1.3.3.2), this
condition can be rewritten as a condition on the components of
the strain tensor:

cijkl

@Skl

@xj

þ 
Fi ¼ 0:

Recalling that

Skl ¼
1
2

@uk

@xl

þ
@ul

@xk

� 	

;

the condition becomes a condition on the displacement
vector, uðrÞ:
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Fig. 1.3.3.4. Representation surface of the inverse of Young’s modulus. (a) Al, cubic, anisotropy factor> 1; (b) W, cubic, anisotropy factor¼ 1; (c) NaCl, cubic,
anisotropy factor < 1; (d) Zn, hexagonal; (e) Sn, tetragonal; (f) calcite, trigonal.

Table 1.3.3.3. Relations between elastic coefficients in isotropic media

Coefficient In terms of � and � In terms of � and � In terms of c11 and c12

c11 2�þ � 2�ð1� �Þð1� 2�Þ c11

c12 � 2��ð1� 2�Þ c12

c44 ¼ 1=s44 � � ðc11 � c12Þ=2
E ¼ 1=s11 �ð2�þ 3�Þ=ð�þ �Þ 2�ð1þ �Þ See Section 1.3.3.2.3
s12 ��= 2�ð2�þ 3�Þ½ � ��= 2�ð1þ �Þ½ � See Section 1.3.3.2.3
� 3=ð2�þ 3�Þ 3ð1� 2�Þ= 2�ð1þ �Þ½ � 3=ðc11 þ 2c12Þ

� ¼ �s12=s11 �= 2ð2�þ 3�Þ½ � � c11=ðc11 þ c12Þ
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temperature when this constant is the order parameter or is
strongly coupled to the order parameter of the transformation;
for instance, in the cooperative Jahn–Teller phase transition in
DyVO4, ðc11 � c12Þ=2 is the soft acoustic phonon mode leading to
the phase transition and this parameter anticipates the phase
transition 300 K before it occurs (Fig. 1.3.5.5).

1.3.5.3. Pressure dependence of the elastic constants

As mentioned above, anharmonic potentials are needed to
explain the stress dependence of the elastic constants of a crystal.
Thus, if the strain-energy density is developed in a polynomial in
terms of the strain, only the first and the second elastic constants
are used in linear elasticity (harmonic potentials), whereas
higher-order elastic constants are also needed for nonlinear
elasticity (anharmonic potentials).

Concerning the pressure dependence of the elastic constants
(nonlinear elastic effect), considerable attention has been paid to

their experimental determination since they are a unique source
of significant information in many fields:

(i) In geophysics, a large part of the knowledge we have on the
interior of the earth comes from the measurement of the transit
time of elastic bursts propagating in the mantle and in the core (in
the upper mantle, the average pressure is estimated to be about a
few hundred GPa, a value which is comparable to that of the
elastic stiffnesses of many materials).

(ii) In solid-state physics, the pressure dependence of the
elastic constants gives significant indications concerning the
stability of crystals. For example, Fig. 1.3.5.2 shows the pressure
dependence of the elastic constants of KZnF3, a cubic crystal
belonging to the perovskite family. As mentioned previously, this
crystal is known to be stable over a wide range of temperature
and the elastic stiffnesses cij depend linearly on pressure. It may
be noted that, consequently, the third-order elastic constants
(TOECs) are constant. On the contrary, we observe in Fig. 1.3.5.6
that the pressure dependence of the elastic constants of TlCdF3, a
cubic crystal belonging to the same family but which is known to
become unstable when the temperature is decreased to 191 K
(Fischer, 1982), is nonlinear even at low pressures. In this case,
the development of the strain-energy density in terms of strains
cannot be stopped after the terms containing the third-order
elastic constants; the contributions of the fourth- and fifth-order
elastic constants are not negligible.

(iii) For practical use in the case of technical materials such
as concrete or worked metals, the pressure dependence of the
elastic moduli is also required for examining the effect of applied
stresses or of an applied hydrostatic pressure, and for studying
residual stresses resulting from loading (heating) and unloading
(cooling) the materials.
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Table 1.3.5.2. Order of magnitude of the temperature dependence of the elastic
stiffnesses for different types of crystals

Type of crystal ð@ ln c11=@�Þp (K�1) ð@ ln c44=@�Þp (K�1)

Ionic �10�3 �3� 10�4

Covalent �10�4 �8� 10�5

Metallic �2� 10�4 �3� 10�4

Fig. 1.3.5.4. Temperature dependence of the elastic constant c11 in KNiF3,
which undergoes a para–antiferromagnetic phase transition. Reprinted with
permission from Appl. Phys. Lett. (Nouet et al., 1972). Copyright (1972)
American Institute of Physics.

Fig. 1.3.5.5. Temperature dependence of ðc11 � c12Þ=2 in DyVO4, which
undergoes a cooperative Jahn–Teller phase transition (after Melcher & Scott,
1972).

Fig. 1.3.5.6. Pressure dependence of the elastic constants ðc11 � c12Þ=2 in
TlCdF3. Reproduced with permission from Ultrasonics Symposium Proc.
IEEE (Fischer et al., 1980). Copyright (1980) IEEE.

Fig. 1.3.5.3. Temperature dependence of the elastic constant c44 in RbCdF3,
CsCdF3 and TlCdF3 crystals; the crystals of RbCdF3 and TlCdF3 undergo
structural phase transitions (after Rousseau et al., 1975).



1.4. THERMAL EXPANSION

It should be mentioned that the true
situation is more complicated. The grain
boundaries of anisotropic polycrystalline
solids are subject to considerable stresses
because the neighbouring grains have
different amounts of expansion or
contraction. These stresses may cause
local plastic deformation and cracks may
open up between or within the grains.
These phenomena can lead to a hyster-
esis behaviour when the sample is heated
up or cooled down. Of course, in poly-
crystals of a cubic crystal species, these
problems do not occur.

If the polycrystalline sample exhibits a
texture, the orientation distribution
function (ODF) has to be considered in
the averaging process. The resulting
overall symmetry of a textured poly-
crystal is usually 1

m m (see Section
1.1.4.7.4.2), showing the same tensor
form as hexagonal crystals (Table 1.4.1.1),
or mmm.

1.4.2. Grüneisen relation

Thermal expansion of a solid is a conse-
quence of the anharmonicity of inter-
atomic forces (see also Section 2.1.2.8). If
the potentials were harmonic, the atoms
would oscillate (even with large ampli-
tudes) symmetrically about their equili-
brium positions and their mean central
position would remain unchanged. In
order to describe thermal expansion,
the anharmonicity is most conveniently
accounted for by means of the so-
called ‘quasiharmonic approximation’,
assuming the lattice vibration frequencies ! to be independent of
temperature but dependent on volume ½ð@!=@VÞ 6¼ 0�. Anhar-
monicity is taken into account by letting the crystal expand, but it
is assumed that the atoms vibrate about their new equilibrium
positions harmonically, i.e. lattice dynamics are still treated in the
harmonic approximation. The assumption ð@!=@VÞ ¼ 0, which is
made for the harmonic oscillator, is a generalization of the
postulate that the frequency of a harmonic oscillator does not
depend on the amplitude of vibration.

This approach leads, as demonstrated below, to the Grüneisen
relation, which combines thermal expansion with other material
constants and, additionally, gives an approximate description of
the temperature dependence of thermal expansion (cf. Krishnan
et al., 1979; Barron, 1998).

For isotropic media, the volume expansion � ½¼ 3�
¼ �11 þ �22 þ �33�, cf. (1.4.1.2), can be expressed by the ther-
modynamic relation

� ¼
1

V

@V

@T

� �

p

¼ �
1

V

@V

@p

� �

T

@p

@T

� �

V

¼ �
@p

@T

� �

V

; ð1:4:2:1Þ

� being the isothermal compressibility. To obtain the quantity
ð@p=@TÞV , the pressure p is deduced from the free energy F,
whose differential is dF ¼ �S dT � p dV, i.e. from

p ¼ �ð@F=@VÞT : ð1:4:2:2Þ

In a crystal consisting of N unit cells with p atoms in each unit
cell, there are 3p normal modes with frequencies !s (denoted by
an index s running from 1 to 3p) and with N allowed wavevectors

qt (denoted by an index t running from 1 to N). Each normal
mode !sðqtÞ contributes to the free energy by the amount

fs;t ¼
h-

2
!sðqtÞ þ kT ln 1� exp �

h- !sðqtÞ

kT

� �� 	

: ð1:4:2:3Þ

The total free energy amounts, therefore, to

F ¼
X3p

s¼1

XN

t¼1

fs;t

¼
X3p

s¼1

XN

t¼1

h-

2
!sðqtÞ þ kT ln 1� exp �

h- !sðqtÞ

kT

� �� 	� �

: ð1:4:2:4Þ

From (1.4.2.2)

p ¼ �
@F

@V

� �

T

¼ �
X3p

s¼1

XN

t¼1

h-

2

@!s

@V
þ

expð�h- !s=kTÞh- ð@!s=@VÞ

1� expð�h- !s=kTÞ

� �

: ð1:4:2:5Þ

The last term can be written as

h- ð@!s=@VÞ

expðh- !s=kTÞ � 1
¼ h- nð!sðqtÞ;TÞ

@!s

@V
; ð1:4:2:6Þ

where nð!s;TÞ is the Bose–Einstein distribution

101

Table 1.4.1.1. Shape of the quadric and symmetry restrictions

System

Quadric No. of
independent
components

Nonzero
componentsShape Direction of principal axes

Triclinic General
ellipsoid or
hyperboloid

No restrictions 6

Monoclinic One axis parallel to twofold
axis (b)

4

Orthorhombic Parallel to crystallographic
axes

3

Trigonal,
tetragonal,
hexagonal

Revolution
ellipsoid or
hyperboloid

c axis is revolution axis 2

Cubic,
isotropic media

Sphere Arbitrary, not defined 1
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the magnetic moments (mostly exchange interaction) and to the
effect of the splitting of electron levels of the paramagnetic ion
in the crystalline electric field. Many paramagnets that obey
the Curie–Weiss law transform into magnetically ordered mate-
rials at a temperature Tc, which is of the order of j�j. The sign of
� depends on the sign of the exchange constant Jex [see relation
(1.5.1.7)]. For the substances that at low temperatures become
ferromagnets, we have �> 0, for antiferromagnets �< 0, and for
ferrimagnets the temperature dependence of � is more compli-
cated (see Fig. 1.5.1.1). For those paramagnets that do not go over
into an ordered state, � is close to zero and equation (1.5.1.4)
changes to the Curie law.

The value of the effective number of Bohr magnetons p
depends strongly on the type of the magnetic ions and their
environment. For most rare-earth compounds at room tempera-
ture, the number p has the same value as for free ions:

p ¼ g½JðJ þ 1Þ�1=2; ð1:5:1:5Þ

where g is the Landé g-factor or the spectroscopic splitting factor
(1 � g � 2) and J is the quantum number of the total angular
momentum. In this case, the paramagnetic susceptibility is
practically isotropic. Some anisotropy can arise from the aniso-
tropy of the Weiss constant �.

The behaviour of the transition-metal ions is very different. In
contrast to the rare-earth ions, the electrons of the partly filled
shell in transition metals interact strongly with the electric field of
the crystal. As a result, their energy levels are split and the orbital
moments can be ‘quenched’. This means that relation (1.5.1.5)
transforms to

pij ¼ ðgeffÞij½SðSþ 1Þ�1=2: ð1:5:1:6Þ

Here the value of the effective spin S represents the degeneration
of the lowest electronic energy level produced by the splitting in
the crystalline field; ðgeffÞij differs from the usual Landé g-factor.
The values of its components lie between 0 and 10–20. The tensor
ðgeffÞij becomes diagonal with respect to the principal axes.
According to relation (1.5.1.6), the magnetic susceptibility also
becomes a tensor. The anisotropy of ðgeffÞij can be studied using
electron paramagnetic resonance (EPR) techniques.

The Curie–Weiss law describes the behaviour of those para-
magnets in which the magnetization results from the competition
of two forces. One is connected with the reduction of the
magnetic energy by orientation of the magnetic moments of ions
in the applied magnetic field; the other arises from thermal
fluctuations, which resist the tendency of the field to orient these
moments. At low temperatures and in strong magnetic fields,
the linear dependence of the magnetization versus magnetic
field breaks down and the magnetization can be saturated in a
sufficiently strong magnetic field. Most of the paramagnetic
substances that obey the Curie–Weiss law ultimately develop
magnetic order as the temperature is decreased.

The conduction electrons in metals possess paramagnetism in
addition to diamagnetism. The paramagnetic susceptibility of
the conduction electrons is small (of the same order of magnitude
as the diamagnetic susceptibility) and does not depend on
temperature. This is due to the fact that the conduction electrons
are governed by Fermi–Dirac statistics.

1.5.1.2. Magnetically ordered materials

1.5.1.2.1. Ferromagnets (including ferrimagnets)

As stated above, all magnetically ordered materials that
possess a spontaneous magnetization Ms different from zero (a
magnetization even in zero magnetic field) are called ferro-
magnets. The simplest type of ferromagnet is shown in Fig.
1.5.1.2(a). This type possesses only one kind of magnetic ion or
atom. All their magnetic moments are aligned parallel to each
other in the same direction. This magnetic structure is char-
acterized by one vector M. It turns out that there are very few
ferromagnets of this type in which only atoms or ions are
responsible for the ferromagnetic magnetization (CrBr3, EuO
etc.). The overwhelming majority of ferromagnets of this simplest
type are metals, in which the magnetization is the sum of the
magnetic moments of the localized ions and of the conduction
electrons, which are partly polarized.

More complicated is the type of ferromagnet which is called a
ferrimagnet. This name is derived from the name of the oxides of
the elements of the iron group. As an example, Fig. 1.5.1.2(b)
schematically represents the magnetic structure of magnetite
(Fe3O4). It contains two types of magnetic ions and the number of
Fe3+ ions (l1 and l2) is twice the number of Fe2+ ions (l3). The
values of the magnetic moments of these two types of ions differ.
The magnetic moments of all Fe2+ ions are aligned in one
direction. The Fe3+ ions are divided into two parts: the magnetic
moments of one half of these ions are aligned parallel to the
magnetic moments of Fe2+ and the magnetic moments of the
other half are aligned antiparallel. The array of all magnetic
moments of identical ions oriented in one direction is called a
magnetic sublattice. The magnetization vector of a given sublat-
tice will be denoted by Mi. Hence the magnetic structure of Fe3O4

consists of three magnetic sublattices. The magnetizations of two
of them are aligned in one direction, the magnetization of the
third one is oriented in the opposite direction. The net ferro-
magnetic magnetization is Ms ¼ M1 �M2 þM3 ¼ M3.

The special feature of ferrimagnets, as well as of many
antiferromagnets, is that they consist of sublattices aligned anti-
parallel to each other. Such a structure is governed by the
nature of the main interaction responsible for the formation of
the ordered magnetic structures, the exchange interaction. The
energy of the exchange interaction does not depend on
the direction of the interacting magnetic moments (or spins S)
relative to the crystallographic axes and is represented by the
following relation:

Uex ¼ �
P

m;n

Jex
mnSmSn: ð1:5:1:7Þ

Here Sm, Sn are the spins of magnetic atoms (ions) and Jex
mn is

the exchange constant, which usually decreases fast when the
distance between the atoms rises. Therefore, usually only the
nearest-neighbour interaction needs to be taken into account.
Hence, according to (1.5.1.7), the exchange energy is a minimum
for the state in which neighbouring spins are parallel (if Jex > 0)
or antiparallel (if Jex < 0). If the nearest-neighbour exchange
interaction were the only interaction responsible for the magnetic
ordering, only collinear magnetic structures would exist (except
in triangle lattices). Together with the exchange interaction, there
is also a magnetic dipole interaction between the magnetic
moments of the atoms as well as an interaction of the atomic
magnetic electrons with the crystalline electric field. These
interactions are much smaller than the exchange interaction.
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Fig. 1.5.1.1. Temperature dependence of 1=� at high temperatures for
different types of materials: (1) ferromagnet; (2) antiferromagnet; (3)
ferrimagnet.
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in Table 1.5.8.3. Bloembergen (1962) pointed out that all these
paramagnets are piezoelectric crystals. He called the ME effect in
these substances the paramagnetoelectric (PME) effect. It is
defined by the nonzero components of the tensor �ijk:

Pi ¼
1
2 �ijkHjHk; ð1:5:8:11Þ

��0Mi ¼ �jikEjHk: ð1:5:8:12Þ

The PME effect was discovered by Hou & Bloembergen (1965) in
NiSO4�6H2O, which belongs to the crystallographic point group
D4 ¼ 422. The only nonvanishing components of the third-rank
tensor are �xyz ¼ �xzy ¼ ��yzx ¼ ��yxz ¼ � (�14 ¼ ��25 ¼ 2�
in matrix notation), so that P ¼ �ðHyHz;�HxHz; 0Þ and
��0M ¼ �(�EyHz, ExHz, ExHy � EyHx). Both effects were
observed: the polarization P by applying static (Hz) and alter-
nating (Hx or Hy) magnetic fields and the magnetization M by
applying a static magnetic field Hz and an alternating electric field
in the plane xy. As a function of temperature, the PME effect
shows a peak at 3.0 K and changes sign at 1.38 K. The coefficient
of the PME effect at 4.2 K is

�ð4:2 KÞ ¼ 2:2� 10�9 cgs units

¼ 1:16� 10�18 s A�1: ð1:5:8:13Þ

The theory developed by Hou and Bloembergen explains the
PME effect by linear variation with the applied electric field of
the crystal-field-splitting parameter D of the spin Hamiltonian.

Most white and black–white magnetic point groups that do not
contain the inversion (Ci ¼

�1), either by itself or multiplied by
R ¼ 10, admit all three types of ME effect: the linear (EH) and
two higher-order (EHH and HEE) effects. There are many
magnetically ordered compounds in which the nonlinear ME
effect has been observed. Some of them are listed by Schmid
(1973); more recent references are given in Schmid (1994a).

In principle, many ME effects of higher order may exist. As an
example, let us consider the piezomagnetoelectric effect. This is a
combination of piezomagnetism (or piezoelectricity) and the ME
effect. The thermodynamic potential � must contain invariants
of the form

� ¼ �0 � 
ijk‘EiHjTk‘: ð1:5:8:14Þ

The problem of the piezomagnetoelectric effect was consid-
ered by Rado (1962), Lyubimov (1965) and in detail by Grimmer
(1992). All 69 white and black–white magnetic point groups
that possess neither Ci ¼

�1 nor R ¼ 10 admit the piezo-
magnetoelectric effect. (These are the groups of types 2–6, 8–12,
14 and 16 in Table 1.5.8.3.) The tensor 
ijk‘, which describes the
piezomagnetoelectric effect, is a tensor of rank 4, symmetric in
the last two indices and invariant under space-time inversion.
This effect has not been observed so far (Rivera & Schmid, 1994).
Grimmer (1992) analysed in which antiferromagnets it could be
observed.

1.5.8.3. Multiferroics4

Initially, Schmid defined multiferroics as materials with two or
three primary ferroics coexisting in the same phase, such as
ferromagnetism, ferroelectricity or ferroelasticity (Schmid,
1994b). The term primary ferroics was defined in a thermo-
dynamic classification, distinguishing primary, secondary and
tertiary ferroics (Newnham, 1974; Newnham & Cross, 1976). For
magnetoelectric multiferroics, however, it has become customary
to loosen this definition. Magnetoelectric multiferroics are now
considered materials with coexisting magnetic (ferro- or anti-
ferromagnetic) and ferroelectric order. They can be divided into
two classes: multiferroics where the origins of ferroelectricity

and magnetic order are independent, and multiferroics where
ferroelectricity is induced by magnetic or orbital order.

For the case of magnetically commensurate ferromagnetic
ferroelectrics, Neronova & Belov (1959) pointed out that there
are ten magnetic point groups that admit the simultaneous
existence of spontaneous ferroelectric polarization P and
magnetic polarization M, which they called ferromagneto-
electrics. Neronova and Belov considered only structures with
parallel alignment of P and M (or L). There are three more
groups that allow the coexistence of ferroelectric and ferromag-
netic order, in which P and M are perpendicular to each other.
Shuvalov & Belov (1962) published a list of the 13 magnetic
groups that admit the coexistence of ferromagnetic and ferro-
electric order. These are the groups of type 4 in Table 1.5.8.3; they
are given with more details in Table 1.5.8.4.

Notice that P and M must be parallel in eight point groups,
they may be parallel in 1 and m0, and they must be perpendicular
in 20, m and m0m20 (see also Ascher, 1970). The magnetic point
groups listed in Table 1.5.8.4 admit not only ferromagnetism
(and ferrimagnetism) but the first seven also admit antiferro-
magnetism with weak ferromagnetism. Ferroelectric pure anti-
ferromagnets of type IIIa may also exist. They must belong to one
of the following eight magnetic point groups (types 2 and 3 in
Table 1.5.8.3): C2v = mm2; C4v = 4mm; C4(C2) = 40; C4v(C2v) =
40mm0; C3v = 3m; C6v = 6mm; C6(C3) = 60; C6v(C3v) = 60mm0. Table
1.5.8.3 shows that the linear magnetoelectric effect is admitted by
all ferroelectric ferromagnets and all ferroelectric antiferro-
magnets of type IIIa except 60 and 60mm0.

The first experimental evidence to indicate that complex
perovskites may become ferromagnetoelectric was observed by
the Smolenskii group (see Smolenskii et al., 1958). They inves-
tigated the temperature dependence of the magnetic suscept-
ibility of the ferroelectric perovskites Pb(Mn1/2Nb1/2)O3 and
Pb(Fe1/2Nb1/2)O3. The temperature dependence at T > 77 K
followed the Curie–Weiss law with a very large antiferromagnetic
Weiss constant. Later, Astrov et al. (1968) proved that these
compounds undergo a transition into a weakly ferromagnetic
state at Néel temperatures TN = 11 and 9 K, respectively.

The single crystals of boracites synthesized by Schmid (1965)
raised wide interest as examples of ferromagnetic ferroelectrics.
The boracites have the chemical formula M3B7O13X (where M =
Cu2+, Ni2+, Co2+, Fe2+, Mn2+, Cr2+ and X = F�, Cl�, Br�, I�, OH�,
NO�3 ). Many of them are ferroelectrics and weak ferromagnets at
low temperatures. This was first shown for Ni3B7O13I (see Ascher
et al., 1966). The symmetries of all the boracites are cubic at high
temperatures and their magnetic point group is �43m10. As the
temperature is lowered, most become ferroelectrics with the
magnetic point group mm210. At still lower temperatures, the
spins of the magnetic ions in the boracites go into an anti-
ferromagnetic state with weak ferromagnetism. For some of the
boracites the ferromagnetic/ferroelectric phase belongs to the
group m0m20, and for others to m0m02, m0, m or 1. In accordance
with Table 1.5.8.4, the spontaneous polarization P is oriented
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Table 1.5.8.4. List of the magnetic point groups of the ferromagnetoelectrics

Symbol of symmetry group Allowed direction of

Schoenflies Hermann–Mauguin P M

C1 1 Any Any
C2 2 k 2 k 2
C2ðC1Þ 20 k 20 ? 20

Cs ¼ C1h m k m ? m
CsðC1Þ m0 k m0 k m0

C2vðC2Þ m0m02 k 2 k 2
C2vðCsÞ m0m20 k 20 ? m
C4 4 k 4 k 4
C4vðC4Þ 4m0m0 k 4 k 4
C3 3 k 3 k 3
C3vðC3Þ 3m0 k 3 k 3
C6 6 k 6 k 6
C6vðC6Þ 6m0m0 k 6 k 6

4 Updated by M. Kenzelmann.



1.6. Classical linear crystal optics

By A. M. Glazer and K. G. Cox†

1.6.1. Introduction

The field of classical crystal optics is an old one, and in the last
century, in particular, it was the main subject of interest in the
study of crystallography. Since the advent of X-ray diffraction,
however, crystal optics tended to fall out of widespread use,
except perhaps in mineralogy, where it has persisted as an
important technique for the classification and identification of
mineral specimens. In more recent times, however, with the
growth in optical communications technologies, there has been a
revival of interest in the optical properties of crystals, both linear
and nonlinear. There are many good books dealing with classical
crystal optics, which the reader is urged to consult (Hartshorne &
Stuart, 1970; Wahlstrom, 1959; Bloss, 1961). In addition, large
collections of optical data on crystals exist (Groth, 1906–1919;
Winchell, 1931, 1939, 1951, 1954, 1965; Kerr, 1959). In this
chapter, both linear and nonlinear optical effects will be intro-
duced briefly in a generalized way. Then the classical derivation
of the refractive index surface for a crystal will be derived. This
leads on to a discussion on the practical means by which
conventional crystal optics can be used in the study of crystalline
materials, particularly in connection with mineralogical study,
although the techniques described apply equally well to other
types of crystals. Finally, some detailed explanations of certain
linear optical tensors will be given.

1.6.2. Generalized optical, electro-optic and magneto-optic
effects

When light of a particular cyclic frequency ! is incident on a
crystal of the appropriate symmetry, in general an electrical
polarization P may be generated within the crystal. This can be
expressed in terms of a power series with respect to the electric
vector of the light wave (Nussbaum & Phillips, 1976; Butcher &
Cotter, 1990; Kaminow, 1974):

P ¼
P
"o�
ðiÞEi ¼ "o �

ð1ÞEþ �ð2ÞE2 þ �ð3ÞE3 þ . . .
� �

; ð1:6:2:1Þ

where the �ðiÞ are susceptibilities of order i. Those working in the
field of electro-optics tend to use this notation as a matter of
course. The susceptibility �ð1Þ is a linear term, whereas the higher-
order susceptibilities describe nonlinear behaviour.

However, it is convenient to generalize this concept to take
into account other fields (e.g. electrical, magnetic and stress
fields) that can be imposed on the crystal, not necessarily due to
the incident light. The resulting polarization can be considered to
arise from many different so-called electro-optic, magneto-optic
and photoelastic (elasto-optic) effects, expressed as a series
expansion of Pi in terms of susceptibilities �ijk‘... and the
applied fields E, B and T. This can be written in the following
way:

Pi ¼ P0
i þ "o�ijE

!
j þ "o�ij‘r‘E

!
j þ "o�ijkE

!1
j E

!2
k

þ "o�ijk‘E
!1
j E

!2
k E

!3

‘ þ "o�ijkE
!1
j B

!2
k

þ "o�ijk‘E
!1
j B

!2
k B

!3

‘ þ "o�ijk‘E
!1
j T

!2

k‘ þ . . . :

ð1:6:2:2Þ

Here, the superscripts refer to the frequencies of the relevant
field terms and the susceptibilities are expressed as tensor
components. Each term in this expansion gives rise to a specific
effect that may or may not be observed, depending on the crystal
symmetry and the size of the susceptibility coefficients. Note a
possible confusion: in the notation �ðiÞ, i is equal to one less than
its rank. It is important to understand that these terms describe
various properties, both linear and nonlinear. Those terms that
describe the effect purely of optical frequencies propagating
through the crystal give rise to linear and nonlinear optics. In the
former case, the input and output frequencies are the same,
whereas in the latter case, the output frequency results from sums
or differences of the input frequencies. Furthermore, it is
apparent that nonlinear optics depends on the intensity of the
input field, and so is an effect that is induced by the strong optical
field.

If the input electrical fields are static (the term ‘static’ is used
here to mean zero or low frequency compared with that of light),
the resulting effects are either linear or nonlinear electrical
effects, in which case they are of no interest here. There is,
however, an important class of effects in which both static and
optical fields are involved: linear and nonlinear electro-optic
effects. Here, the use of the terms linear and nonlinear is open to
confusion, depending on whether it is the electrical part or the
optical part to which reference is made (see for example below in
the discussion of the linear electro-optic effect). Similar consid-
erations apply to applied magnetic fields to give linear and
nonlinear magneto-optic effects and to applied stresses, the
photoelastic effects. Table 1.6.2.1 lists the most important effects
according to the terms in this series. The susceptibilities are
written in the form �ð!1;!2; !3; . . .Þ to indicate the frequency !1

of the output electric field, followed after the semicolon by the
input frequencies !1; !2; . . ..
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Table 1.6.2.1. Summary of linear and nonlinear optical properties

Type of
polarization
term Susceptibility Effect

P0
i �ð0; 0Þ Spontaneous polarization
"o�ijE

!
j �ð!;!Þ Dielectric polarization,

refractive index, linear
birefringence

"o�ij‘r‘E
!
j �ð!;!Þ Optical rotation (gyration)

"o�ijkE
!1
j E

!2

k �ð0; 0; 0Þ Quadratic electric effect
�ð!;!; 0Þ Linear electro-optic effect or

Pockels effect
�ð!1 � !2;!1; !2Þ Sum/difference frequency

generation, two-wave mixing
�ð!;!=2; !=2Þ Second harmonic generation

(SHG)
�ð0;!=2; !=2Þ Optical rectification
�ð!3;!1; !2Þ Parametric amplification

"o�ijk‘E
!1
j E

!2
k E

!3

‘ �ð!; 0; 0Þ Quadratic electro-optic effect
or Kerr effect

�ð!;!=2; !=2; 0Þ Electric-field induced second
harmonic generation
(EFISH)

�ð�!1;!2; !3;�!4Þ Four-wave mixing

"o�ijkE
!1
j B

!2
k �ð!;!; 0Þ Faraday rotation

"o�ijk‘E
!1
j B

!2
k B

!3

‘ �ð!;!; 0; 0Þ Quadratic magneto-optic effect
or Cotton–Mouton effect

"o�ijk‘E
!1
j T

!2

k‘ �ð!;!; 0Þ Linear elasto-optic effect or
photoelastic effect

�ð!1 � !2;!1; !2Þ Linear acousto-optic effect
† The sudden death of Keith Cox is deeply regretted. He died in a sailing accident
on 27 August 1998 in Scotland at the age of 65.



1. TENSORIAL ASPECTS OF PHYSICAL PROPERTIES

images observed in plane-polarized light rely on scattering from
point sources within the specimen, and do not depend strictly on
whether the configuration is conoscopic or orthoscopic. Never-
theless, relief and the Becke line are much more clearly obser-
vable in orthoscopic use.

The principle of conoscopic use is quite different. Here, the
image is formed in the back focal plane of the objective. Any
group of parallel rays passing through the specimen is brought to
a focus in this plane, at a specific point depending on the direction
of transmission. Hence every point in the image corresponds to a
different transmission direction (see Fig. 1.6.4.8). Moreover, the
visible effects are entirely caused by interference, and there is no
image of the details of the specimen itself. That image is of course
also present, towards the top of the tube at or near the cross
wires, but the two are not simultaneously visible. The conoscopic
image may be viewed simply by removing the eyepiece and
looking down the tube, where it appears as a small but bright
circle. More commonly however, the Bertrand lens is inserted in
the tube, which has the effect of transferring the conoscopic
image from the back focal plane of the objective to the front focal
plane of the eyepiece, where it coincides with the cross wires and
may be examined as usual.

It is useful to think of the conoscopic image as analogous to the
gnomonic projection as used in crystallography. The geometrical
principles are the same, as each direction through the crystal is
projected directly through the centre of the lens into the back
focal plane.

1.6.4.12. Uniaxial figures

To understand the formation of an interference figure, consider
a simple example, a specimen of calcite cut at right angles to the c
crystallographic axis. Calcite is uniaxial negative, with the optic
axis parallel to c. The rays that have passed most obliquely
through the specimen are focused around the edge of the figure,
while the centre is occupied by rays that have travelled parallel to
the optic axis (see Fig. 1.6.4.8). The birefringence within the
image clearly must increase from nil in the centre to some higher
value at the edges, because the rays here have had longer path
lengths through the crystal. Furthermore, the image must have
radial symmetry, so that the first most obvious feature of the
figure is a series of coloured rings, corresponding in outward
sequence to the successive orders. The number of rings visible
will of course depend on the thickness of the sample, and when
birefringence is low enough no rings will be obvious because all
colours lie well within the first order (Figs. 1.6.4.9a and b). Fig.
1.6.4.10(a) illustrates, by reference to the indicatrix, the way in
which the vibration directions of the o and e rays are disposed.
Fig. 1.6.4.10(b) shows the disposition of vibration directions in
the figure. Note that o rays always vibrate tangentially and e rays
radially. The o-ray vibration directions lie in the plane of the
figure, but e-ray vibration directions become progressively more
inclined to the plane of the figure towards the edge.

The shaded cross on the figure illustrates the position of dark
‘brushes’ known as isogyres (Fig. 1.6.4.10b). These develop
wherever vibration directions lie N–S or E–W, hence corre-
sponding to the vibration directions of the analyser and polarizer.
As the stage is rotated, as long as the optic axis is truly parallel to
the microscope axis, the figure will not change. This is an example
of a centred uniaxial optic axis figure, and such a figure identifies
the crystal as belonging to the tetragonal, trigonal or hexagonal
systems (see Fig. 1.6.4.11a).

From the point of crystal identification, one can also determine
whether the figure coincides with the uniaxial positive ðne > no)
or uniaxial negative (ne < no) cases. Inserting the sensitive-tint
plate will move the coloured ring up or down the birefringence
scale by a complete order. Fig. 1.6.4.11(c) shows the centred optic
axis figure for calcite, which is optically negative. The insertion of
a tint plate with its slow vibration direction lying NE–SW lowers
the colours in the NE and SW quadrants of the figure, and raises
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Fig. 1.6.4.7. Three birefringence images of industrial diamond viewed along [111] taken with the rotating analyser system. (a) I0; (b) j sin �j; (c) orientation ’ of
slow axis with respect to horizontal.

Fig. 1.6.4.8. Formation of the interference figure. The microscope axis lies
vertically in the plane of the paper. A bundle of rays travelling through the
crystal parallel to the microscope axis (dashed lines) is brought to a focus at
A in the back focal plane of the objective. This is the centre of the
interference figure. A bundle of oblique rays (solid lines) is brought to a
focus at B, towards the edge of the figure.



1.7. Nonlinear optical properties

By B. Boulanger and J. Zyss

1.7.1. Introduction

The first nonlinear optical phenomenon was observed by
Franken et al. (1961): ultraviolet radiation at 0.3471 mm was
detected at the exit of a quartz crystal illuminated with a ruby
laser beam at 0.6942 mm. This was the first demonstration of
second harmonic generation at optical wavelengths. A coherent
light of a few W cm�2 is necessary for the observation of
nonlinear optical interactions, which thus requires the use of laser
beams.

The basis of nonlinear optics, including quantum-mechanical
perturbation theory and Maxwell equations, is given in the paper
published by Armstrong et al. (1962).

It would take too long here to give a complete historical
account of nonlinear optics, because it involves an impressive
range of different aspects, from theory to applications, from
physics to chemistry, from microscopic to macroscopic aspects,
from quantum mechanics of materials to classical and quantum
electrodynamics, from gases to solids, from mineral to organic
compounds, from bulk to surface, from waveguides to fibres and
so on.

Among the main nonlinear optical effects are harmonic
generation, parametric wave mixing, stimulated Raman scat-
tering, self-focusing, multiphoton absorption, optical bistability,
phase conjugation and optical solitons.

This chapter deals mainly with harmonic generation and
parametric interactions in anisotropic crystals, which stand out as
one of the most important fields in nonlinear optics and certainly
one of its oldest and most rigorously treated topics. Indeed, there
is a great deal of interest in the development of solid-state laser
sources, be they tunable or not, in the ultraviolet, visible and
infrared ranges. Spectroscopy, telecommunications, telemetry
and optical storage are some of the numerous applications.

The electric field of light interacts with the electric field of
matter by inducing a dipole due to the displacement of the
electron density away from its equilibrium position. The induced
dipole moment is termed polarization and is a vector: it is related
to the applied electric field via the dielectric susceptibility tensor.
For fields with small to moderate amplitude, the polarization
remains linearly proportional to the field magnitude and defines
the linear optical properties. For increasing field amplitudes, the
polarization is a nonlinear function of the applied electric field
and gives rise to nonlinear optical effects. The polarization is
properly modelled by a Taylor power series of the applied electric
field if its strength does not exceed the atomic electric field (108–
109 V cm�1) and if the frequency of the electric field is far away
from the resonance frequencies of matter. Our purpose lies
within this framework because it encompasses the most
frequently encountered cases, in which laser intensities remain in
the kW to MW per cm2 range, that is to say with electric fields
from 103 to 104 V cm�1. The electric field products appearing in
the Taylor series express the interactions of different optical
waves. Indeed, a wave at the circular frequency ! can be radiated
by the second-order polarization induced by two waves at !a and
!b such as ! ¼ !a � !b: these interactions correspond to sum-
frequency generation (! ¼ !a þ !b), with the particular cases of
second harmonic generation (2!a ¼ !a þ !a) and indirect third
harmonic generation (3!a ¼ !a þ 2!a); the other three-wave
process is difference-frequency generation, including optical
parametric amplification and optical parametric oscillation. In
the same way, the third-order polarization. governs four-wave
mixing: direct third harmonic generation (3!a ¼ !a þ !a þ !a)

and more generally sum- and difference-frequency generations
(! ¼ !a � !b � !c).

Here, we do not consider optical interactions at the micro-
scopic level, and we ignore the way in which the atomic or
molecular dielectric susceptibility determines the macroscopic
optical properties. Microscopic solid-state considerations and the
relations between microscopic and macroscopic optical proper-
ties, particularly successful in the realm of organic crystals, play a
considerable role in materials engineering and optimization. This
important topic, known as molecular and crystalline engineering,
lies beyond the scope of this chapter. Therefore, all the
phenomena studied here are connected to the macroscopic first-,
second- and third-order dielectric susceptibility tensors �(1), �(2)

and �(3), respectively; we give these tensors for all the crystal
point groups.

We shall mainly emphasize propagation aspects, on the basis of
Maxwell equations which are expressed for each Fourier
component of the optical field in the nonlinear crystal. The
reader will then follow how the linear optical properties come to
play a pivotal role in the nonlinear optical interactions. Indeed,
an efficient quadratic or cubic interaction requires not only a high
magnitude of �(2) or �(3), respectively, but also specific conditions
governed by �(1): existence of phase matching between the
induced nonlinear polarization and the radiated wave; suitable
symmetry of the field tensor, which is defined by the tensor
product of the electric field vectors of the interacting waves; and
small or nil double refraction angles. Quadratic and cubic
processes cannot be considered as fully independent in the
context of cascading. Significant phase shifts driven by a sequence
of sum- and difference-frequency generation processes attached
to a �ð2Þ � �ð2Þ contracted tensor expression have been reported
(Bosshard, 2000). These results point out the relevance of polar
structures to cubic phenomena in both inorganic and organic
structures, thus somewhat blurring the borders between quad-
ratic and cubic NLO.

We analyse in detail second harmonic generation, which is the
prototypical interaction of frequency conversion. We also present
indirect and direct third harmonic generations, sum-frequency
generation and difference-frequency generation, with the specific
cases of optical parametric amplification and optical parametric
oscillation.

An overview of the methods of measurement of the nonlinear
optical properties is provided, and the chapter concludes with a
comparison of the main mineral and organic crystals showing
nonlinear optical properties.

1.7.2. Origin and symmetry of optical nonlinearities

1.7.2.1. Induced polarization and susceptibility

The macroscopic electronic polarization of a unit volume of
the material system is classically expanded in a Taylor power
series of the applied electric field E, according to Bloembergen
(1965):

P ¼ P0 þ "oð�
ð1Þ � Eþ �ð2Þ � E2 þ . . .þ �ðnÞ � En þ . . .Þ;

ð1:7:2:1Þ

where �(n) is a tensor of rank nþ 1, En is a shorthand abbre-
viation for the nth order tensor product E� E� . . .� E¼ �n E
and the dot stands for the contraction of the last n indices of the
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1.7. NONLINEAR OPTICAL PROPERTIES

and configurations of polarization: D4 and D6 for 2o.e, C4v and
C6v for 2e.o, D6, D6h, D3h and C6v for 3o.e and 3e.o. Thus, even if
phase-matching directions exist, the effective coefficient in these
situations is nil, which forbids the interactions considered
(Boulanger & Marnier, 1991; Boulanger et al., 1993). The number
of forbidden crystal classes is greater under the Kleinman
approximation. The forbidden crystal classes have been deter-
mined for the particular case of third harmonic generation
assuming Kleinman conjecture and without consideration of the
field tensor (Midwinter & Warner, 1965).

1.7.3.2.4.3. Biaxial class

The symmetry of the biaxial field tensors is the same as for the
uniaxial class, though only for a propagation in the principal
planes xz and yz; the associated matrix representations are given
in Tables 1.7.3.7 and 1.7.3.8, and the nil components are listed in
Table 1.7.3.9. Because of the change of optic sign from either side
of the optic axis, the field tensors of the interactions for which the
phase-matching cone joins areas b and a or a and c, given in Fig.
1.7.3.5, change from one area to another: for example, the field
tensor (eoee) becomes an (oeoo) and so the solicited components
of the electric susceptibility tensor are not the same.

The nonzero field-tensor components for a propagation in the
xy plane of a biaxial crystal are: Fzxx, Fzyy, Fzxy 6¼ Fzyx for (eoo);
Fxzz, Fyzz for (oee); Fzxxx, Fzyyy, Fzxyy 6¼ Fzyxy 6¼ Fzyyx,
Fzxxy 6¼ Fzxyx 6¼ Fzyxx for (eooo); Fxzzz, Fyzzz for (oeee);
Fxyzz 6¼ Fyxzz, Fxxzz, Fyyzz for (ooee). The nonzero components for
the other configurations of polarization are obtained by the
associated permutations of the Cartesian indices and the corre-
sponding polarizations.

The field tensors are not symmetric for a propagation out of
the principal planes in the general case where all the frequencies
are different: in this case there are 27 independent components
for the three-wave interactions and 81 for the four-wave inter-
actions, and so all the electric susceptibility tensor components
are solicited.

As phase matching imposes the directions of the electric fields
of the interacting waves, it also determines the field tensor and
hence the effective coefficient. Thus there is no possibility of
choice of the �ð2Þ coefficients, since a given type of phase
matching is considered. In general, the largest coefficients of
polar crystals, i.e. �zzz, are implicated at a very low level when
phase matching is achieved, because the corresponding field
tensor, i.e. Fzzz, is often weak (Boulanger et al., 1997). In contrast,
QPM authorizes the coupling between three waves polarized
along the z axis, which leads to an effective coefficient which is
purely �zzz, i.e. �eff ¼ ð2=
Þ�zzz, where the numerical factor
comes from the periodic character of the rectangular function of
modulation (Fejer et al., 1992).

1.7.3.3. Integration of the propagation equations

1.7.3.3.1. Spatial and temporal profiles

The resolution of the coupled equations (1.7.3.22) or (1.7.3.24)
over the crystal length L leads to the electric field amplitude
EiðX;Y;LÞ of each interacting wave. The general solutions are
Jacobian elliptic functions (Armstrong et al., 1962; Fève,
Boulanger & Douady, 2002). The integration of the systems is
simplified for cases where one or several beams are held constant,
which is called the undepleted pump approximation. We consider
mainly this kind of situation here. The power of each interacting
wave is calculated by integrating the intensity over the cross
section of each beam according to (1.7.3.8). For our main
purpose, we consider the simple case of plane-wave beams with
two kinds of transverse profile:

EðX;Y;ZÞ ¼ eEoðZÞ for ðX;YÞ 2 ½�wo;þwo�

EðX;Y;ZÞ ¼ 0 elsewhere ð1:7:3:36Þ

for a flat distribution over a radius wo;

EðX;Y;ZÞ ¼ eEoðZÞ exp½�ðX2 þ Y2Þ=w2
o� ð1:7:3:37Þ

for a Gaussian distribution, where wo is the radius at (1=e) of the
electric field and so at (1=e2) of the intensity.
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Table 1.7.3.9. Field-tensor components specifically nil in the principal planes of uniaxial and biaxial crystals for three-wave and four-wave interactions

ði; j; kÞ ¼ x; y or z.

Configurations
of polarization

Nil field-tensor components

(xy) plane (xz) plane (yz) plane

eoo Fxjk ¼ 0; Fyjk ¼ 0 Fixk ¼ Fijx ¼ 0 Fiyk ¼ Fijy ¼ 0
Fyjk ¼ 0 Fxjk ¼ 0

oee Fixk ¼ Fijx ¼ 0 Fiyk ¼ Fijy ¼ 0 Fixk ¼ Fijx ¼ 0
Fiyk ¼ Fijy ¼ 0 Fxik ¼ 0 Fyjk ¼ 0

eooo Fxjkl ¼ 0; Fyjkl ¼ 0 Fixkl ¼ Fijxl ¼ Fijkx ¼ 0 Fiykl ¼ Fijyl ¼ Fijky ¼ 0
Fyjkl ¼ 0 Fxjkl ¼ 0

oeee Fixkl ¼ Fijxl ¼ Fijkx ¼ 0 Fiykl ¼ Fijyl ¼ Fijky ¼ 0 Fixkl ¼ Fijxl ¼ Fijkx ¼ 0
Fiykl ¼ Fijyl ¼ Fijky ¼ 0 Fxjkl ¼ 0 Fyjkl ¼ 0

ooee Fijxl ¼ Fijkx ¼ 0 Fxjkl ¼ Fixkl ¼ 0 Fyjkl ¼ Fiykl ¼ 0
Fijyl ¼ Fijky ¼ 0 Fijyl ¼ Fijky ¼ 0 Fijxl ¼ Fijkx ¼ 0

Fig. 1.7.3.6. Schematic configurations for second harmonic generation. (a)
Non-resonant SHG; (b) external resonant SHG: the resonant wave may
either be the fundamental or the harmonic one; (c) internal resonant SHG.
P!;2! are the fundamental and harmonic powers; HT! and HR!;2! are the
high-transmission and high-reflection mirrors at ! or 2! and T!;2! are the
transmission coefficients of the output mirror at ! or 2!. NLC is the
nonlinear crystal with a nonzero �(2).



1.8. TRANSPORT PROPERTIES


ðTÞ ¼ 
ið1þ BT2Þ þ AT2: ð1:8:3:14Þ

The term 
i is the constant due to the impurity scattering. There
is also a term proportional to BT2, which is proportional to the
impurity resistance. This factor is due to the Koshino–Taylor
effect (Koshino, 1960; Taylor, 1964), which has been treated
rigorously by Mahan & Wang (1989). It is the inelastic scattering
of electrons by impurities. The impurity is part of the lattice and
phonons can be excited when the impurity scatters the electrons.
The term AT2 is due to electron–electron interactions. The
Coulomb interaction between electrons is highly screened and
makes only a small contribution to A. The largest contribution to
A is caused by phonons. MacDonald et al. (1981) showed that
electrons can interact by exchanging phonons. There are also
terms due to boundary scattering, which is important in thin films:
see Bruls et al. (1985).

Note that (1.8.3.14) has no term from phonons of OðT5Þ. Such a
term is lacking in simple metals, contrary to the assertion in most
textbooks. Its absence is due to phonon drag. For a review and
explanation of this behaviour, see Wiser (1984). The T5 term is
found in the noble metals, where phonon drag is less important
owing to the complexities of the Fermi surface.

1.8.3.2. Metal alloys

Alloys are solids composed of a mixture of two or more
elements that do not form a stoichiometric compound. An
example is CuxNi1�x, in which x can have any value. For small
values of x, or of ð1� xÞ, the atoms of one element just serve as
impurities in the other element. This results in the type of
behaviour described above. However, in the range 0:2< x< 0:8, a
different type of resistivity is found. This was first summarized by
Mooij (1973), who found a remarkable range of behaviours. He
measured the resistivity of hundreds of alloys and also surveyed
the published literature for additional results. He represented the
resistivity at T ¼ 300 K by two values: the resistivity itself,

ðT ¼ 300Þ, and its logarithmic derivative, � ¼ d lnð
Þ=dT. He
produced the graph shown in Fig. 1.8.3.2, where these two values
are plotted against each other. Each point is one sample as
represented by these two numbers. He found that all of the
results fit within a band of numbers, in which larger values of

ðT ¼ 300Þ are accompanied by negative values of �. Alloys with
very high values of resistivity generally have a resistivity 
ðTÞ
that decreases with increasing temperature. The region where
� ¼ 0 corresponds to a resistivity of 
� ¼ 150 m	 cm, which
appears to be a fixed point. As the temperature is increased, the
resisitivities of alloys with 
>
� decrease to this value, while the
resisitivities of alloys with 
<
� increase to this value.

Mooij’s observations are obviously important, but the reason
for this behaviour is not certain. Several different explanations
have been proposed and all are plausible: see Jonson & Girvin
(1979), Allen & Chakraborty (1981) or Tsuei (1986).

Recently, another group of alloys have been found that are
called bad metals. The ruthenates (see Allen et al., 1996; Klein et
al., 1996) have a resistivity 
>
� that increases at high
temperatures. Their values are outliers on Mooij’s plot.

1.8.3.3. Semiconductors

The resistivity of semiconductors varies from sample to
sample, even of the same material. The conductivity can be
written as � ¼ n0e�, where e is the charge on the electron,
� ¼ e�=m� is the mobility and n0 is the density of conducting
particles (electrons or holes). It is the density of particles n0 that
varies from sample to sample. It depends upon the impurity
content of the semiconductor as well as upon temperature. Since
no two samples have exactly the same number of impurities, they
do not have the same values of n0. In semiconductors and insu-
lators, the conducting particles are extrinsic – they come from
defects, impurities or thermal excitation – in contrast to metals,
where the density of the conducting electrons is usually an
intrinsic property.

In semiconductors, instead of talking about the conductivity,
the more fundamental transport quantity (Rode, 1975) is the
mobility �. It is the same for each sample at high temperature if
the density of impurities and defects is low. There is an intrinsic
mobility, which can be calculated assuming there are no impu-
rities and can be measured in samples with a very low density of
impurities. We shall discuss the intrinsic mobility first.

Fig. 1.8.3.3 shows the intrinsic mobility of electrons in silicon,
from Rode (1972), as a function of temperature. The mobility
generally decreases with increasing temperature. This behaviour
is found in all common semiconductors. The mobility also
decreases with an increasing concentration of impurities: see
Jacoboni et al. (1977).

The intrinsic mobility of semiconductors is due to the scat-
tering of electrons and holes by phonons. The phonons come in
various branches called TA, LA, TO and LO, where T is trans-
verse, L is longitudinal, A is acoustic and O is optical. At long
wavelengths, the acoustic modes are just the sound waves, which
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Fig. 1.8.3.2. The temperature coefficient of resistance versus resistivity for
alloys according to Mooij (1973). Data are shown for bulk alloys (þ), thin
films (�) and amorphous alloys (�).

Fig. 1.8.3.3. The intrinsic mobility of electrons in silicon. Solid line: theory;
points: experimental. After Rode (1972).



1.9. Atomic displacement parameters

By W. F. Kuhs

1.9.1. Introduction

Atomic thermal motion and positional disorder is at the origin of
a systematic intensity reduction of Bragg reflections as a function
of scattering vector Q. The intensity reduction is given as the well
known Debye–Waller factor (DWF); the DWF may be of purely
thermal origin (thermal DWF or temperature factor) or it may
contain contributions of static atomic disorder (static DWF). As
atoms of chemically or isotopically different elements behave
differently, the individual atomic contributions to the global
DWF (describing the weakening of Bragg intensities) vary.
Formally, one may split the global DWF into the individual
atomic contributions. Crystallographic experiments usually
measure the global weakening of Bragg intensities and the
individual contributions have to be assessed by adjusting indivi-
dual atomic parameters in a least-squares refinement.

The theory of lattice dynamics (see e.g. Willis & Pryor, 1975)
shows that the atomic thermal DWF T� is given by an exponential
of the form

T�ðQÞ ¼ hexpðiQu�Þi; ð1:9:1:1Þ

where u� are the individual atomic displacement vectors and the
brackets symbolize the thermodynamic (time–space) average
over all contributions u�. In the harmonic (Gaussian) approx-
imation, (1.9.1.1) reduces to

T�ðQÞ ¼ exp½ð�1=2ÞhðQu�Þ
2
i�: ð1:9:1:2Þ

The thermodynamically averaged atomic mean-square displa-
cements (of thermal origin) are given as Uij ¼ huiuji, i.e. they are
the thermodynamic average of the product of the displacements
along the i and j coordinate directions. Thus (1.9.1.2) may be
expressed with Q ¼ 4
hjaj in a form more familiar to the crys-
tallographer as

T�ðhÞ ¼ expð�2
2hija
ijhjja

jjUij
�Þ; ð1:9:1:3Þ

where hi are the covariant Miller indices, ai are the reciprocal-cell
basis vectors and 1 � �; ’ � 3. Here and in the following, tensor
notation is employed; implicit summation over repeated indices is
assumed unless stated otherwise. For computational convenience
one often writes

T�ðhÞ ¼ expð�hihj�
ij
�Þ ð1:9:1:4Þ

with �ij
� ¼ 2
2jaijjajjUij

� (no summation). Both h and b are
dimensionless tensorial quantities; h transforms as a covariant
tensor of rank 1, b as a contravariant tensor of rank 2 (for details
of the mathematical notion of a tensor, see Chapter 1.1).

Similar formulations are found for the static atomic DWF S� ,
where the average of the atomic static displacements �u� may
also be approximated [though with weaker theoretical justifica-
tion, see Kuhs (1992)] by a Gaussian distribution:

S�ðQÞ ¼ exp½ð�1=2ÞhðQ�u�Þ
2
i�: ð1:9:1:5Þ

As in equation (1.9.1.3), the static atomic DWF may be
formulated with the mean-square disorder displacements
�Uij ¼ h�ui�uji as

S�ðhÞ ¼ expð�2
2hija
ijhjja

jj�Uij
�Þ: ð1:9:1:6Þ

It is usually difficult to separate thermal and static contribu-
tions, and it is often wise to use the sum of both and call them
simply (mean-square) atomic displacements. A separation may
however be achieved by a temperature-dependent study of
atomic displacements. A harmonic diagonal tensor component of
purely thermal origin extrapolates linearly to zero at 0 K; zero-
point motion causes a deviation from this linear behaviour at low
temperatures, but an extrapolation from higher temperatures
(where the contribution from zero-point motion becomes negli-
gibly small) still yields a zero intercept. Any positive intercept in
such extrapolations is then due to a (temperature-independent)
static contribution to the total atomic displacements. Care has to
be taken in such extrapolations, as pronounced anharmonicity
(frequently encountered at temperatures higher than the Debye
temperature) will change the slope, thus invalidating the linear
extrapolation (see e.g. Willis & Pryor, 1975). Owing to the diffi-
culty in separating thermal and static displacements in a standard
crystallographic structure analysis, a subcommittee of the IUCr
Commission on Crystallographic Nomenclature has recom-
mended the use of the term atomic displacement parameters
(ADPs) for Uij and �ij (Trueblood et al., 1996).

1.9.2. The atomic displacement parameters (ADPs)

One notes that in the Gaussian approximation, the mean-square
atomic displacements (composed of thermal and static contri-
butions) are fully described by six coefficients �ij, which trans-
form on a change of the direct-lattice base (according to
ak ¼ Akiai) as

�kl ¼ AkiAlj�
ij: ð1:9:2:1Þ

This is the transformation law of a tensor (see Section 1.1.3.2);
the mean-square atomic displacements are thus tensorial prop-
erties of an atom �. As the tensor is contravariant and in general
is described in a (non-Cartesian) crystallographic basis system, its
indices are written as superscripts. It is convenient for compar-
ison purposes to quote the dimensionless coefficients �ij as their
dimensioned representations Uij.

In the harmonic approximation, the atomic displacements are
fully described by the fully symmetric second-order tensor given
in (1.9.2.1). Anharmonicity and disorder, however, cause devia-
tions from a Gaussian distribution of the atomic displacements
around the atomic position. In fact, anharmonicity in the thermal
motion also provokes a shift of the atomic position as a function
of temperature. A generalized description of atomic displace-
ments therefore also involves first-, third-, fourth- and even
higher-order displacement terms. These terms are defined by a
moment-generating function M(Q) which expresses hðexpðiQu�Þi
in terms of an infinite number of moments; for a Gaussian
distribution of displacement vectors, all moments of order> 2 are
identically equal to zero. Thus

MðQÞ ¼ hexpðiQu�Þi ¼
P1

N¼0

ðiN=N!ÞhðQu�Þ
N
i: ð1:9:2:2Þ

The moments hðQu�Þ
N
i of order N may be expressed in terms

of cumulants hðQu�Þ
N
icum by the identity

P1

N¼0

ð1=N!ÞhðQu�Þ
N
i � exp

P1

N¼1

ð1=N!ÞhðQu�Þ
N
icum: ð1:9:2:3Þ
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Fig. 1.9.4.1. A selection of graphical representations of density modulations due to higher-order terms in the Gram–Charlier series expansion of a Gaussian
atomic probability density function. All figures are drawn on a common scale and have a common orientation. All terms within any given order of expansion
are numerically identical and refer to the same underlying isotropic second-order term; the higher-order terms of different order of expansion differ by one
order of magnitude, but refer again to the same underlying isotropic second-order term. The orthonormal crystallographic axes are oriented as follows: x
oblique out of the plane of the paper towards the observer, y in the plane of the paper and to the right, and z in the plane of the paper and upwards. All
surfaces are scaled to 1% of the absolute value of the maximum modulation within each density distribution. Positive modulations (i.e. an increase of density)
are shown in red, negative modulations are shown in blue. The source of illumination is located approximately on the [111] axis. The following graphs are
shown (with typical point groups for specific cases given in parentheses). Third-order terms: (a) b222; (b) b223; (c) b113 = �b223 (point group �4); (d) b123 (point
group �43m). Fourth-order terms: (e) b2222; (f) b1111 = b2222; (g) b1111 = b2222 = b3333 (point group m�3m); (h) b1222; (i) b1112 = b1222; (j) b1122; (k) b1133 = b2233; (l)
b1122 = b1133 = b2233 (point group m�3m). Fifth-order terms: (m) b22222; (n) b12223; (o) b11123 = b12223; (p) b11123 = b12223 = b12333 (point group �43m). Sixth-order
terms: (q) b222222; (r) b111111 = b222222; (s) b111111 = b222222 = b333333 (point group m�3m); (t) b112222; (u) b111133 = b222233; (v) b113333 = b223333; (w) b111122 = b112222 =
b111133 = b113333 = b222233 = b223333 (point group m�3m); (x) b112233 (point group m�3m).

Fig. 1.9.4.1. A selection of graphical representations of density modulations due to higher-order terms in the Gram–Charlier series expansion of a Gaussian
atomic probability density function. All figures are drawn on a common scale and have a common orientation. All terms within any given order of expansion
are numerically identical and refer to the same underlying isotropic second-order term; the higher-order terms of different order of expansion differ by one
order of magnitude, but refer again to the same underlying isotropic second-order term. The orthonormal crystallographic axes are oriented as follows: x
oblique out of the plane of the paper towards the observer, y in the plane of the paper and to the right, and z in the plane of the paper and upwards. All
surfaces are scaled to 1% of the absolute value of the maximum modulation within each density distribution. Positive modulations (i.e. an increase of density)
are shown in red, negative modulations are shown in blue. The source of illumination is located approximately on the [111] axis. The following graphs are
shown (with typical point groups for specific cases given in parentheses). Third-order terms: (a) b222; (b) b223; (c) b113 = �b223 (point group �4); (d) b123 (point
group �43m). Fourth-order terms: (e) b2222; (f) b1111 = b2222; (g) b1111 = b2222 = b3333 (point group m�3m); (h) b1222; (i) b1112 = b1222; (j) b1122; (k) b1133 = b2233; (l)
b1122 = b1133 = b2233 (point group m�3m).



1.10. Tensors in quasiperiodic structures

By T. Janssen

1.10.1. Quasiperiodic structures

1.10.1.1. Introduction

Many materials are known which show a well ordered state
without lattice translation symmetry, often in a restricted
temperature or composition range. This can be seen in the
diffraction pattern from the appearance of sharp spots that
cannot be labelled in the usual way with three integer indices. The
widths of the peaks are comparable with those of perfect lattice
periodic crystals, and this is a sign that the coherence length is
comparable as well.

A typical example is K2SeO4, which has a normal lattice
periodic structure above 128 K with space group Pcmn, but
below this temperature shows satellites at positions �c�, where �
is an irrational number, which in addition depends on tempera-
ture. These satellites cannot be labelled with integer indices with
respect to the reciprocal basis a�, b�, c� of the structure above the
transition temperature. Therefore, the corresponding structure
cannot be lattice periodic.

The diffraction pattern of K2SeO4 arises because the original
lattice periodic basic structure is deformed below 128 K. The
atoms are displaced from their positions in the basic structure
such that the displacement itself is again periodic, but with a
period that is incommensurate with respect to the lattice of the
basic structure.

Such a modulated structure is just a special case of a more
general type of structure. These structures are characterized by
the fact that the diffraction pattern has sharp Bragg peaks at
positions H that are linear combinations of a finite number of
basic vectors:

H ¼
Pn

i¼1

hia
�
i ðinteger hiÞ: ð1:10:1:1Þ

Structures that have this property are called quasiperiodic. The
minimal number n of basis vectors such that all hi are integers is
called the rank of the structure. If the rank is three and the
vectors ai do not all fall on a line or in a plane, the structure is just
lattice periodic. Lattice periodic structures form special cases of
quasiperiodic structures. The collection of vectors H forms the
Fourier module of the structure. For rank three, this is just the
reciprocal lattice of the lattice periodic structure.

The definition given above results in some important practical
difficulties. In the first place, it is not possible to show experi-
mentally that a wavevector has irrational components instead of
rational ones, because an irrational number can be approximated
by a rational number arbitrarily well. Very often the wavevector
of the satellite changes with temperature. It has been reported
that in some compounds the variation shows plateaux, but even
when the change seems to be continuous and smooth one can not
be sure about the irrationality. On the other hand, if the wave-
vector jumps from one rational position to another, the structure
would always be lattice periodic, but the unit cell of this structure
would vary wildly with temperature. This means that, if one
wishes to describe the incommensurate phases in a unified
fashion, it is more convenient to treat the wavevector as gener-
ically irrational. This experimental situation is by no means
dramatic. It is similar to the way in which one can never be sure
that the angles between the basis vectors of an orthorhombic
lattice are really 90�, although this is a concept that no-one has
problems in understanding.

A second problem stems from the fact that the wavevectors of
the Fourier module are dense. For example, in the case of K2SeO4

the linear combinations of c� and �c� cover the c axis uniformly.
To pick out a basis here could be problematic, but the intensity of
the spots is usually such that choosing a basis is not a problem. In
fact, one only observes peaks with an intensity above a certain
threshold, and these form a discrete set. At most, the occurrence
of scale symmetry may make the choice less obvious.

1.10.1.2. Types of quasiperiodic crystals

One may distinguish various families of quasiperiodic systems.
[Sometimes these are also called incommensurate systems if
they are not lattice periodic (Janssen & Janner, 1987).] It is not a
strict classification, because one may have intermediate cases
belonging to more than one family as well. Here we shall consider
a number of pure cases.

An incommensurately modulated structure or incommensurate
crystal (IC) phase is a periodically modified structure that without
the modification would be lattice periodic. Hence there is a basic
structure with space-group symmetry. The periodicity of the
modification should be incommensurate with respect to the basic
structure. The position of the jth atom in the unit cell with origin
at the lattice point n is nþ rj ( j ¼ 1; 2; . . . ; s).

For a displacive modulation, the positions of the atoms are
shifted from a lattice periodic basic structure. A simple example
is a structure that can be derived from the positions of the basic
structure with a simple displacement wave. The positions of the
atoms in the IC phase are then

nþ rj þ f jðQ � nÞ ½f jðxÞ ¼ f jðxþ 1Þ�: ð1:10:1:2Þ

Here the modulation wavevector Q has irrational components
with respect to the reciprocal lattice of the basic structure. One
has

Q ¼ �a� þ �b� þ �c�; ð1:10:1:3Þ

where at least one of �, � or � is irrational. A simple example is
the function f jðxÞ ¼ Aj cosð2
xþ ’jÞ, where Aj is the polarization
vector and ’j is the phase of the modulation. The diffraction
pattern of the structure (1.10.1.2) shows spots at positions

H ¼ h1a� þ h2b� þ h3c� þ h4Q: ð1:10:1:4Þ

Therefore, the rank is four and a�4 ¼ Q. In a more general
situation, the components of the atom positions in the IC phase
are given by

n� þ r�j þ
P

m

A�
j ðQmÞ cosð2
Qm � nþ ’jm�Þ; � ¼ x; y; z:

ð1:10:1:5Þ

Here the vectors Qm belong to the Fourier module of the struc-
ture. Then there are vectors Qj such that any spot in the
diffraction pattern can be written as

H ¼
P3

i¼1

hia
�
i þ

Pd

j¼1

h3þjQj ð1:10:1:6Þ

and the rank is 3þ d. The peaks corresponding to the basic
structure [the combinations of the three reciprocal-lattice vectors
a�i (i ¼ 1; 2; 3)] are called the main reflections, the other peaks are
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1.11. Tensorial properties of local crystal susceptibilities

By V. E. Dmitrienko, A. Kirfel and E. N. Ovchinnikova

1.11.1. Introduction

The tensorial characteristics of macroscopic physical properties

(as described in Chapters 1.3, 1.4 and 1.6–1.8 of this volume) are

determined by the crystal point group, whereas the symmetry of

local crystal properties, such as atomic displacement parameters

(Chapter 1.9) or electric field gradient tensors (Section 2.2.15) are

regulated by the crystal space group. In the present chapter, we

consider further examples of the impact of symmetry on local

physical properties, particularly both symmetry and physical

phenomena that allow and restrict forbidden reflections excited

at radiation energies close to X-ray absorption edges of atoms,

and reflections caused by magnetic scattering.

We begin with the X-ray dielectric susceptibility, which

expresses the response of crystalline matter to an incident X-ray

wave characterized by its energy (frequency), polarization and

wavevector. The response is a polarization of the medium, finally

resulting in a scattered wave with properties generally different

from the initial ones. Thus, the dielectric susceptibility plays

the role of a scattering amplitude, which relates the scattered

wave to the incident wave. This is the basis of the different

approaches to X-ray diffraction theories presented in Chapters

1.2 and 5.1 of International Tables for Crystallography Volume B

(2008). Here, we consider only elastic scattering, i.e. the energies

of the incident and scattered waves are identical, and the X-ray

susceptibility is assumed to comply with the periodicity of the

crystalline matter.

It is important that the dielectric susceptibility is (i) a local

crystal property and (ii) a tensor physical property, because it

relates the polarization vectors of the incident and scattered

radiation. Consequently, the symmetry of the tensor is deter-

mined by the symmetry of the crystal space group, rather than by

that of the point group as in conventional optics. In the vast

majority of X-ray applications, this tensor can reasonably be

assumed to be given by the product of the unit tensor and a scalar

susceptibility, which is proportional to the electron density plus

exclusively energy-dependent dispersion corrections as consid-

ered in Section 4.2.6 of International Tables for Crystallography

Volume C (2004). As a result of atomic wavefunction distortions

caused by neighbouring atoms, these scalar dispersion correc-

tions can also become anisotropic tensors, namely in the close

vicinity (usually less than about 50 eV) of absorption edges of

elements. For heavy elements, the anisotropy of the tensor

atomic factor can exceed 20 e atom�1. Appropriate references to

detailed descriptions of the phenomenon can be found in

Brouder (1990), Materlik et al. (1994) and in Section 4.2.6 of

Volume C (2004).

However, even if the anisotropy of the atomic factor is small, it

can be crucial for some effects, for instance the excitation of so-

called ‘forbidden’ reflections, which vanish in absence of aniso-

tropy. Indeed, the crystal symmetry imposes strong restrictions

on the indices of possible (‘allowed’) reflections. The systematic

reflection conditions for the different space groups and for

special atomic sites in the unit cell are listed in International

Tables for Crystallography Volume A (Hahn, 2005). The resulting

extinctions are due to (i) the translation symmetry of the non-

primitive Bravais lattices, (ii) the symmetry elements of the space

group (glide planes and/or screw axes) and (iii) special sites. The

first kind cannot be violated. The other extinctions are obtained if

the atomic scattering factor (as the Fourier transform of an

independent atom/ion with spherically symmetric electron-

density distribution) is an element-specific scalar that depends

only on the scattering-vector length and the dispersion correc-

tions. Then the intensities of extinct reflections generally vanish.

These reflections are ‘forbidden’, but for different physical

reasons not all of their intensities are necessarily strictly zero.

Such reflections can appear owing to an asphericity of (i) an

atomic electron-density distribution caused by chemical bonding

and/or (ii) atomic vibrations (Dawson, 1975) if the atom in

question occupies a special site.

In contrast, an anisotropy of the atomic factor affects all

reflections and can therefore violate general extinction rules

related to glide planes and/or screw axes, i.e. symmetry elements

with translation components, in nonsymmorphic space groups.

Even a very small X-ray anisotropy can be quantitatively studied

with this type of forbidden reflections, and yield information

about electronic states of crystals or partial structures of resonant

scatterers. This was first recognized by Templeton & Templeton

(1980), and a detailed theory was developed only a few years

later (Dmitrienko, 1983, 1984). The excitation of forbidden

reflections caused by anisotropic anomalous scattering was first

observed in an NaBrO3 crystal (Templeton & Templeton, 1985,

1986) and then studied for Cu2O (Eichhorn & Kirfel, 1988), TiO2

and MnF2 (Kirfel & Petcov, 1991), and for many other

compounds with different crystal symmetries. Within the dipole

approximation, a systematic compilation of ‘forbidden’ reflection

properties for all relevant space groups up to tetragonal

symmetry and an application to partial-structure analysis

followed (Kirfel et al., 1991; Kirfel & Petcov, 1992; Kirfel &

Morgenroth, 1993; Morgenroth et al., 1994). Today, there are

numerous surveys devoted to this well developed subject, and

further details, applications and references can be found therein

(Belyakov & Dmitrienko, 1989; Carra & Thole, 1994; Hodeau et

al., 2001; Lovesey et al., 2005; Dmitrienko et al., 2005; Altarelli,

2006; Collins et al., 2007; Collins & Bombardi, 2010; Finkelstein &

Dmitrienko, 2012). Forbidden reflections of the last type have

also been observed (well before corresponding X-ray studies) in

diffraction of Mössbauer radiation (Belyakov & Aivazyan, 1969;

Belyakov, 1975; Champeney, 1979) and, at optical wavelengths, in

the blue phases of chiral liquid crystals (Belyakov & Dmitrienko,

1985; Wright & Mermin, 1989; Seideman, 1990; Crooker, 2001).

Similar phenomena have also been reported to exist in chiral

smectic liquid crystals (Gleeson & Hirst, 2006; Barois et al., 2012)

and, considering neutron diffraction, in crystals with local

anisotropy of the magnetic susceptibility (Gukasov & Brown,

2010). All these latter findings are, however, beyond the scope of

this chapter.

X-ray polarization phenomena similar to those in visible optics

and spectroscopy (birefringence, linear and circular dichroism,

the Faraday rotation) have been discussed since the beginning

of the 20th century (Hart & Rodriques, 1981; Templeton &

Templeton, 1980, 1982). Experimental studies and applications
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1.11.5. Non-resonant magnetic scattering

Far from resonance (h- !� Ec � Ea), the non-resonant parts of

the scattering factor, f0 and f
mag
ij , described by the first two terms

in (1.11.4.3) are the most important. In the classical approxima-

tion (Brunel & de Bergevin, 1981), there are four physical

mechanisms (electric or magnetic, dipolar or quadrupolar)

describing the interaction of an electron and its magnetic moment

with an electromagnetic wave, causing the re-emission of radia-

tion. The non-resonant magnetic term f magn is small compared to

the charge (Thomson) scattering owing (a) to small numbers of

unpaired (magnetic) electrons and (b) to the factor h- !=mc2 of

about 0.02 for a typical X-ray energy h- ! ¼ 10 keV. This is the

reason why it is so difficult to observe non-resonant magnetic

scattering with conventional X-ray sources (de Bergevin &

Brunel, 1972, 1981; Brunel & de Bergevin, 1981), in contrast to

the nowadays normal use of synchrotron radiation.

Non-resonant magnetic scattering yields polarization proper-

ties quite different from those obtained from charge scattering.

Moreover, it can be divided into two parts, which are associated

with the spin and orbital moments. In contrast to the case of

neutron magnetic scattering, the polarization properties of these

two parts are different, as described by the tensors (Blume, 1994)

Aijk ¼ �2ð1� k � k0=k2Þ�ijk; ð1:11:5:1Þ

Bijk ¼ �ijk �


�ilkk0lk

0
j � �jlkklki þ

1
2 �ijlðk

0
lkk þ klk

0
kÞ

� 1
2 ½k� k0�i�jk �

1
2 ½k� k0�j�ik

�
=k2; ð1:11:5:2Þ

where �ijk is a completely antisymmetric unit tensor (the Levi-

Civita symbol).

Being convoluted with polarization vectors (Blume, 1985;

Lovesey & Collins, 1996; Paolasini, 2012), the non-resonant

magnetic term can be rewritten as

f magn
nonresðGÞ

¼ �i
h- !

mc2

�
a
�
�
P

p

ðA � ½G� Pp�=h- k2 þ B � spÞ expðiG � rpÞ
�
�a
�
;

ð1:11:5:3Þ

with vectors A and B given by

A ¼ ½e0� � e�; ð1:11:5:4Þ

B ¼ ½e0� � e� � f½k� e�ðk � e0�Þ � ½k0 � e0��ðk0 � eÞ

þ ½k0 � e0�� � ½k� e�g=k2: ð1:11:5:5Þ

According to (1.11.5.4) and (1.11.5.5), the polarization depen-

dences of the spin and orbit contributions to the atomic scattering

factor are significantly different. Consequently, the two contri-

butions can be separated by analysing the polarization of the

scattered radiation with the help of an analyser crystal (Gibbs et

al., 1988). Usually the incident (synchrotron) radiation is

�-polarized, i.e. the polarization vector is perpendicular to the

scattering plane. If due to the orientation of the analysing crystal

only the �-polarized part of the scattered radiation is recorded,

we can see from (1.11.5.4) that the orbital contribution to the

scattering atomic factor vanishes, whereas it differs from zero

considering the �! 
 scattering channel.

1.11.6. Resonant atomic factors: multipole expansion

Strong enhancement of resonant scattering occurs when the

energy of the incident radiation gets close to the energy of an

electron transition from an inner shell to an empty state (be it

localized or not) above the Fermi level. There are two widely

used approaches for calculating resonant atomic amplitudes. One

uses Cartesian, the other spherical (polar) coordinates, and both

have their own advantages and disadvantages. Supposing in

(1.11.4.3)

expðik � rpÞ � 1þ ik � rp þ
1
2 ðik � rpÞ

2
þ . . . ð1:11:6:1Þ

and using the expression for the velocity matrix element �ac

(Berestetskii et al., 1982) �ac ¼ i!acrac, it is possible to present the

resonant part of the atomic factor (1.11.4.3) as

f res
jk ¼

X

c

pa

m!3
ca

!

�
hajRjjcihcjRkjai

Ea � Ec þ h- !� i�=2

þ
i

2

hajRjjcihcjRkRlkljai

Ea � Ec þ h- !� i�=2
�
hajRjRlk

0
ljcihcjRkjai

Ea � Ec þ h- !� i�=2

� 	

þ
1

4

hajRjRlk
0
ljcihcjRkRmkmjai

Ea � Ec þ h- !� i�=2

�

ð1:11:6:2Þ

¼ Djk þ
i

2
Ijklkl �

i

2
Ikjlk

0
l þ

1

4
Qjlkmkmk0l; ð1:11:6:3Þ

where h- !ca ¼ Ec � Ea, Djk is a dimensionless tensor corre-

sponding to the dipole–dipole ðE1E1Þ contribution, Ijkl is the

dipole–quadrupole ðE1E2Þ contribution and Qjklm is the quad-

rupole–quadrupole ðE2E2Þ term. All the tensors are complex and

depend on the energy and the local properties of the medium.

The expansion (1.11.6.1) over the wavevectors is possible near

X-ray absorption edges because the products k � rp are small for

the typical sizes of the inner shells involved. In resonant X-ray

absorption and scattering, the contribution of the magnetic

multipole ML transitions is usually much less than that of the

electric multipole EL transitions. Nevertheless, the scattering

amplitude corresponding to E1M1 events has also been consid-

ered (Collins et al., 2007). The tensors Ijkl and Qjklm describe the

spatial dispersion effects similar to those in visible optics.

1.11.6.1. Tensor atomic factors: internal symmetry

Different types of tensors transform under the action of the

extended orthogonal group (Sirotin & Shaskolskaya, 1982) as

Ai0
1
...i0n
¼ �ri0

1
k1

. . . ri0nkn
Ak1...kn

; ð1:11:6:4Þ

where the coefficients � ¼ �1 depend on the kind of tensor (see

Table 1.11.6.1) and ri0
1
k1

are coefficients describing proper rota-

tions.

Various parts of the resonant scattering factor (1.11.6.3)

possess different kinds of symmetry with respect to: (1) space

inversion �1 or parity, (2) rotations R and (3) time reversal 10. Both

dipole–dipole and quadrupole–quadrupole terms are parity-

even, whereas the dipole–quadrupole term is parity-odd. Thus,
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Table 1.11.6.1. Coefficients � corresponding to various kinds of tensor
symmetry with respect to space inversion �1, rotations R, and time reversal 10

Tensor type Example

Transformation type

R �1R 10R �10R

Even Strain 1 1 1 1
Electric Electric field 1 �1 1 �1
Magnetic Magnetic field 1 1 �1 �1
Magnetoelectric Toroidal moment 1 �1 �1 1
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and simultaneously the 3� 3 matrices F��0 ðqÞ to a 3N � 3N
matrix F(q)
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ð2:1:2:19Þ

equation (2.1.2.17) can be written in matrix notation and takes
the simple form

!2
q;j eðq; jÞ ¼ ½M FðqÞM� eðq; jÞ ¼ DðqÞ eðq; jÞ; ð2:1:2:20Þ

where the diagonal matrix

M ¼

1ffiffiffiffi
m1
p 0 0

0 1ffiffiffiffi
m1
p 0 s

0 0 1ffiffiffiffi
m1
p

..

. ..
.

1ffiffiffiffiffi
mN
p 0 0

s 0 1ffiffiffiffiffi
mN
p 0

0 0 1ffiffiffiffiffi
mN
p

0

B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
A

ð2:1:2:21Þ

contains the masses of all atoms. The 3N � 3N matrix

DðqÞ ¼ M FðqÞM ð2:1:2:22Þ

is called the dynamical matrix. It contains all the information
about the dynamical behaviour of the crystal and can be calcu-
lated on the basis of specific models for interatomic interactions.
In analogy to the 3� 3 matrices F��0 ðqÞ, we introduce the
submatrices of the dynamical matrix:

D��0 ðqÞ ¼
1
ffiffiffiffiffiffiffiffiffiffiffiffi
m�m�0
p F��0 ðqÞ: ð2:1:2:22aÞ

Owing to the symmetry of the force-constant matrix,

V��ð�l; �0l0Þ ¼ V��ð�
0l0; �lÞ; ð2:1:2:23Þ

the dynamical matrix is Hermitian:1

DTðqÞ ¼ D�ðqÞ ¼ Dð�qÞ ð2:1:2:24Þ

or more specifically

D
��
��0 ðqÞ ¼ D

���

�0� ðqÞ ¼ D
��
�0�ð�qÞ: ð2:1:2:24aÞ

Obviously, the squares of the vibrational frequency !q;j and the
polarization vectors eðq; jÞ are eigenvalues and corresponding
eigenvectors of the dynamical matrix. As a direct consequence of

equation (2.1.2.20), the eigenvalues !2
q;j are real quantities and

the following relations hold:

!2
q;j ¼ !

2
�q;j; ð2:1:2:25Þ

e�ðq; jÞ ¼ eð�q; jÞ: ð2:1:2:26Þ

Moreover, the eigenvectors are mutually orthogonal and can be
chosen to be normalized.

2.1.2.4. Eigenvalues and phonon dispersion, acoustic modes

The wavevector dependence of the vibrational frequencies is
called phonon dispersion. For each wavevector q there are 3N
fundamental frequencies yielding 3N phonon branches when !q;j

is plotted versus q. In most cases, the phonon dispersion is
displayed for wavevectors along high-symmetry directions. These
dispersion curves are, however, only special projections of the
dispersion hypersurface in the four-dimensional q–! space. As a
simple example, the phonon dispersion of b.c.c. hafnium is
displayed in Fig. 2.1.2.3. The wavevectors are restricted to the first
Brillouin zone (see Section 2.1.3.1) and the phonon dispersion for
different directions of the wavevector are combined in one single
diagram making use of the fact that different high-symmetry
directions meet at the Brillouin-zone boundary. Note that in Fig.
2.1.2.3, the moduli of the wavevectors are scaled by the Brillouin-
zone boundary values and represented by the reduced coordi-
nates �. Owing to the simple b.c.c. structure of hafnium with one
atom per primitive cell, there are only three phonon branches.
Moreover, for all wavevectors along the directions [00�] and
[���], two exhibit the same frequencies – they are said to be
degenerate. Hence in the corresponding parts of Fig. 2.1.2.3 only
two branches can be distinguished.

Whereas in this simple example the different branches can be
separated quite easily, this is no longer true for more complicated
crystal structures. For illustration, the phonon dispersion of the
high-Tc superconductor Nd2CuO4 is shown in Fig. 2.1.2.4 for the
main symmetry directions of the tetragonal structure (space
group I4=mmm, seven atoms per primitive cell). Note that in
many publications on lattice dynamics the frequency � ¼ !=2
 is
used rather than the angular frequency !.

The 21 phonon branches of Nd2CuO4 with their more
complicated dispersion reflect the details of the interatomic
interactions between all atoms of the structure. The phonon
frequencies � cover a range from 0 to 18 THz. In crystals with
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Fig. 2.1.2.3. Phonon dispersion of b.c.c. hafnium for wavevectors along the
main symmetry directions of the cubic structure. The symbols represent
experimental data obtained by inelastic neutron scattering and the full lines
are the results of the model. From Trampenau et al. (1991). Copyright (1991)
by the American Physical Society.

1 The superscripts T and * are used to denote the transposed and the complex
conjugate matrix, respectively.



2.2. ELECTRONS

2.2.5. The free-electron (Sommerfeld) model

The free-electron model corresponds to the special case of taking
a constant potential in the Schrödinger equation (2.2.4.1). The
physical picture relies on the assumption that the (metallic)
valence electrons can move freely in the field of the positively
charged nuclei and the tightly bound core electrons. Each valence
electron moves in a potential which is nearly constant due to the
screening of the remaining valence electrons. This situation can
be idealized by assuming the potential to be constant [VðrÞ ¼ 0].
This simple picture represents a crude model for simple metals
but has its importance mainly because the corresponding equa-
tion can be solved analytically. By rewriting equation (2.2.4.1), we
have

r2 kðrÞ ¼ �
2mE

h- 2
 kðrÞ ¼ �jkj

2 kðrÞ; ð2:2:5:1Þ

where in the last step the constants are abbreviated (for later
convenience) by jkj2. The solutions of this equation are plane
waves (PWs)

 kðrÞ ¼ C expðik � rÞ; ð2:2:5:2Þ

where C is a normalization constant which is defined from the
integral over one unit cell with volume 	. The PWs satisfy the
Bloch condition and can be written (using the bra–ket notation)
as

jki ¼  kðrÞ ¼ 	1=2 expðik � rÞ: ð2:2:5:3Þ

From (2.2.5.1) we see that the corresponding energy (labelled by
k) is given by

Ek ¼
h- 2

2m
jkj2: ð2:2:5:4Þ

In this context it is useful to consider the momentum of the
electron, which classically is the vector p ¼ mv, where m and v
are the mass and velocity, respectively. In quantum mechanics we
must replace p by the corresponding operator P.

Pjki ¼
h-

i

@

@r
jki ¼

h-

i
ikjki ¼h- kjki: ð2:2:5:5Þ

Thus a PW is an eigenfunction of the momentum operator with
eigenvalue h- k. Therefore the k vector is also called the
momentum vector. Note that this is strictly true for a vanishing
potential but is otherwise only approximately true (referred to as
pseudomomentum).

Another feature of a PW is that its phase is constant in a plane
perpendicular to the vector k (see Fig. 2.2.5.1). For this purpose,
consider a periodic function in space and time,

’kðr; tÞ ¼ exp½iðk � r�!tÞ�; ð2:2:5:6Þ

which has a constant phase factor expði!tÞ within such a plane.
We can characterize the spatial part by r within this plane. Taking
the nearest parallel plane (with vector r0) for which the same
phase factors occur again but at a distance � away (with the unit
vector e normal to the plane),

r0 ¼ rþ �e ¼ rþ �
k

jkj
; ð2:2:5:7Þ

then k � r0 must differ from k � r by 2
. This is easily obtained from
(2.2.5.7) by multiplication with k leading to

k � r0 ¼ k � rþ �
jkj2

jkj
¼ k � rþ �jkj ð2:2:5:8Þ

k � r0 � k � r ¼ �jkj ¼ 2
 ð2:2:5:9Þ

� ¼
2


jkj
or jkj ¼

2


�
: ð2:2:5:10Þ

Consequently � is the wavelength and thus the k vector is called
the wavevector or propagation vector.

2.2.6. Space-group symmetry

2.2.6.1. Representations and bases of the space group

The effect of a space-group operation fpjwg on a Bloch func-
tion, labelled by k, is to transform it into a Bloch function that
corresponds to a vector pk,

fpjwg k ¼  pk; ð2:2:6:1Þ

which can be proven by using the multiplication rule of Seitz
operators (2.2.3.12) and the definition of a Bloch state (2.2.4.17).

A special case is the inversion operator, which leads to

fijEg k ¼  �k: ð2:2:6:2Þ

The Bloch functions  k and  pk, where p is any operation of the
point group P, belong to the same basis for a representation of
the space group G.

h kj ¼ h pkj for all p 2 P for all pk 2 BZ: ð2:2:6:3Þ

The same pk cannot appear in two different bases, thus the two
bases  k and  k0 are either identical or have no k in common.

Irreducible representations of T are labelled by the N distinct k
vectors in the BZ, which separate in disjoint bases of G (with no k
vector in common). If a k vector falls on the BZ edge, application
of the point-group operation p can lead to an equivalent k0 vector
that differs from the original by K (a vector of the reciprocal
lattice). The set of all mutually inequivalent k vectors of pk
(p 2 P) define the star of the k vector (Sk) (see also Section 1.2.3.3
of the present volume).

The set of all operations that leave a k vector invariant (or
transform it into an equivalent kþ K) forms the group Gk of the
k vector. Application of q, an element of Gk, to a Bloch function
(Section 2.2.8) gives

q j
kðrÞ ¼  

j0

kðrÞ for q 2 Gk; ð2:2:6:4Þ
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Fig. 2.2.5.1. Plane waves. The wavevector k and the unit vector e are normal
to the two planes and the vectors r in plane 1 and r0 in plane 2.
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Therefore in the MTA one must make a compromise, whereas in
full-potential calculations this problem practically disappears.

2.2.13. The local coordinate system

The partition of a crystal into atoms (or molecules) is ambiguous
and thus the atomic contribution cannot be defined uniquely.
However, whatever the definition, it must follow the relevant site
symmetry for each atom. There are at least two reasons why one
would want to use a local coordinate system at each atomic site:
the concept of crystal harmonics and the interpretation of
bonding features.

2.2.13.1. Crystal harmonics

All spatial observables of the bound atom (e.g. the potential or
the charge density) must have the crystal symmetry, i.e. the point-
group symmetry around an atom. Therefore they must be
representable as an expansion in terms of site-symmetrized
spherical harmonics. Any point-symmetry operation transforms a
spherical harmonic into another of the same ‘. We start with the
usual complex spherical harmonics,

Y‘mð#; ’Þ ¼ N‘mPm
‘ ðcos#Þ expðim’Þ; ð2:2:13:1Þ

which satisfy Laplacian’s differential equation. The Pm
‘ ðcos#Þ are

the associated Legendre polynomials and the normalization N‘m

is according to the convention of Condon & Shortley (1953). For
the ’-dependent part one can use the real and imaginary part and
thus use cosðm’Þ and sinðm’Þ instead of the expðim’Þ functions,

but we must introduce a parity p to distinguish the functions with
the same mj j. For convenience we take real spherical harmonics,
since physical observables are real. The even and odd poly-
nomials are given by the combination of the complex spherical
harmonics with the parity p either þ or � by

y‘mp ¼
y‘mþ ¼ ð1=

ffiffiffi
2
p
ÞðY‘m þ Y‘ �mÞ þ parity

y‘m� ¼ �ði=
ffiffiffi
2
p
ÞðY‘m � Y �mÞ � parity

;

(

m ¼ 2n

y‘mp ¼
y‘mþ ¼ �ð1=

ffiffiffi
2
p
ÞðY‘m � Y‘ �mÞ þ parity

y‘m� ¼ ði=
ffiffiffi
2
p
ÞðY‘m þ Y‘ �mÞ � parity

;

(

m ¼ 2nþ 1:

ð2:2:13:2Þ

The expansion of – for example – the charge density 
ðrÞ
around an atomic site can be written using the LAPW method
[see the analogous equation (2.2.12.5) for the potential] in the
form


ðrÞ ¼
P

LM


LMðrÞKLMðr̂Þ inside an atomic sphere; ð2:2:13:3Þ

where we use capital letters LM for the indices (i) to distinguish
this expansion from that of the wavefunctions in which complex
spherical harmonics are used [see (2.2.12.1)] and (ii) to include
the parity p in the index M (which represents the combined index
mp). With these conventions, KLM can be written as a linear
combination of real spherical harmonics y‘mp which are
symmetry-adapted to the site symmetry,

KLMðr̂Þ ¼
y‘mp non-cubicP

j cLjy‘jp cubic

�

ð2:2:13:4Þ

i.e. they are either y‘mp [(2.2.13.2)] in the non-cubic cases (Table
2.2.13.1) or are well defined combinations of y‘mp’s in the five
cubic cases (Table 2.2.13.2), where the coefficients cLj depend on
the normalization of the spherical harmonics and can be found in
Kurki-Suonio (1977).

According to Kurki-Suonio, the number of (non-vanishing)
LM terms [e.g. in (2.2.13.3)] is minimized by choosing for each
atom a local Cartesian coordinate system adapted to its site
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Table 2.2.13.1. Picking rules for the local coordinate axes and the corresponding LM combinations (‘mp) of non-cubic groups taken from Kurki-Suonio (1977)

Symmetry Coordinate axes ‘;m; p of y‘mp Crystal system

1 Any All ð‘;m;�Þ Triclinic
1 Any ð2‘;m;�Þ

2 2 k z ð‘; 2m;�Þ Monoclinic
m m ? z ð‘; ‘� 2m;�Þ
2=m 2 k z;m ? z ð2‘; 2m;�Þ

222 2 k z; 2 k y ð2 k xÞ ð2‘; 2m;þÞ; ð2‘þ 1; 2m;�Þ Orthorhombic
mm2 2 k z;m ? y ð2 ? xÞ ð‘; 2m;þÞ
mmm 2 ? z;m ? y; 2 ? x ð2‘; 2m;þÞ

4 4 k z ð‘; 4m;�Þ Tetragonal
4 �4 k z ð2‘; 4m;�Þ; ð2‘þ 1; 4mþ 2;�Þ
4=m 4 k z;m ? z ð2‘; 4m;�Þ
422 4 k z; 2 k y ð2 k xÞ ð2‘; 4m;þÞ; ð2‘þ 1; 4m;�Þ
4mm 4 k z;m ? y ð2 ? xÞ ð‘; 4m;þÞ
42m �4 k z; 2 k x ðm ¼ xy! yxÞ ð2‘; 4m;þÞ; ð2‘þ 1; 4mþ 2;�Þ
4mmm 4 k z;m ? z;m ? x ð2‘; 4m;þÞ

3 3 k z ð‘; 3m;�Þ Rhombohedral
3 �3 k z ð2‘; 3m;�Þ
32 3 k z; 2 k y ð2‘; 3m;þÞ; ð2‘þ 1; 3m;�Þ
3m 3 k z;m ? y ð‘; 3m;þÞ
3m �3 k z;m ? y ð2‘; 3m;þÞ

6 6 k z ð‘; 6m;�Þ Hexagonal
6 �6 k z ð2‘; 6m;þÞ; ð2‘þ 1; 6mþ 3;�Þ
6=m 6 k z;m ? z ð2‘; 6m;�Þ
622 6 k z; 2 k y ð2 k xÞ ð2‘; 6m;þÞ; ð2‘þ 1; 6m;�Þ
6mm 6 k z;m k y ðm ? xÞ ð‘; 6m;þÞ
62m �6 k z;m ? y ð2 k xÞ ð2‘; 6m;þÞ; ð2l þ 1; 6mþ 3;þÞ
6mmm 6 k z;m ? z;m ? y ðm ? xÞ ð2‘; 6m;þÞ

Table 2.2.13.2. LM combinations of cubic groups as linear cominations of
y‘mp’s (given in parentheses)

The linear-combination coefficients can be found in Kurki-Suonio (1977).

Symmetry LM combinations

23 (0 0), (3 2�), (4 0, 4 4þ), (6 0, 6 4þ), (6 2þ, 6 6þ)
m3 (0 0), (4 0, 4 4þ), (6 0, 6 4þ) (6 2þ, 6 6þ)
432 (0 0), (4 0, 4 4þ), (6 0, 6 4þ)
43m (0 0), (3 2�), (4 0, 4 4þ), (6 0, 6 4þ),
m3m (0 0), (4 0, 4 4þ), (6 0, 6 4þ)



2.3. Raman scattering

By I. Gregora

2.3.1. Introduction

The term Raman scattering, traditionally used for light scattering
by molecular vibrations or optical lattice vibrations in crystals, is
often applied in a general sense to a vast variety of phenomena of
inelastic scattering of photons by various excitations in molecules,
solids or liquids. In crystals these excitations may be collective
(phonons, plasmons, polaritons, magnons) or single-particle
(electrons, electron–hole pairs, vibrational and electronic exci-
tation of impurities). Raman scattering provides an important
tool for the study of the properties of these excitations. In the
present chapter, we shall briefly review the general features of
Raman scattering in perfect crystals on a phenomenological basis,
paying special attention to the consequences of the crystal
symmetry. Our focus will be mainly on Raman scattering by
vibrational excitations of the crystal lattice – phonons. Never-
theless, most of the conclusions have general validity and may be
(with possible minor modifications) transferred also to inelastic
scattering by other excitations.

2.3.2. Inelastic light scattering in crystals – basic notions

Although quantum concepts must be used in any complete theory
of inelastic scattering, basic insight into the problem may be
obtained from a semiclassical treatment. In classical terms, the
origin of inelastically scattered light in solids should be seen in
the modulation of the dielectric susceptibility of a solid by
elementary excitations. The exciting light polarizes the solid and
the polarization induced via the modulated part of the suscept-
ibility is re-radiated at differently shifted frequencies. Thus
inelastic scattering of light by the temporal and spatial fluctua-
tions of the dielectric susceptibility that are induced by elemen-
tary excitations provides information about the symmetry and
wavevector-dependent frequencies of the excitations themselves
as well as about their interaction with electromagnetic waves.

2.3.2.1. Kinematics

Let us consider the incident electromagnetic radiation, the
scattered electromagnetic radiation and the elementary excita-
tion to be described by plane waves. The incident radiation is
characterized by frequency !I, wavevector kI and polarization
vector eI . Likewise, the scattered radiation is characterized by !S,
kS and eS:

EI;Sðr; tÞ ¼ EI;SeI;S expðikI;Sr� !tÞ: ð2:3:2:1Þ

The scattering process involves the annihilation of the incident
photon, the emission or annihilation of one or more quanta of
elementary excitations and the emission of a scattered photon.
The scattering is characterised by a scattering frequency ! (also
termed the Raman shift) corresponding to the energy transfer h- !
from the radiation field to the crystal, and by a scattering wave-
vector q corresponding to the respective momentum transfer h- q.
Since the energy and momentum must be conserved in the
scattering process, we have the conditions

!I � !S ¼ !;

kI � kS ¼ q: ð2:3:2:2Þ

Strictly speaking, the momentum conservation condition is valid
only for sufficiently large, perfectly periodic crystals. It is further
assumed that there is no significant absorption of the incident and

scattered light beams, so that the wavevectors may be considered
real quantities.

Since the photon wavevectors (kI , kS) and frequencies (!I , !S)
are related by the dispersion relation ! ¼ ck=n, where c is the
speed of light in free space and n is the refractive index of the
medium at the respective frequency, the energy and wavevector
conservation conditions imply for the magnitude of the scattering
wavevector q

c2q2 ¼ n2
I!

2
I þ n2

Sð!I � !Þ
2
� 2nInS!Ið!I � !Þ cos ’; ð2:3:2:3Þ

where ’ is the scattering angle (the angle between kI and kS). This
relation defines in the (!; q) plane the region of wavevectors and
frequencies accessible to the scattering. This relation is particu-
larly important for scattering by excitations whose frequencies
depend markedly on the scattering wavevector (e.g. acoustic
phonons, polaritons etc.).

2.3.2.2. Cross section

In the absence of any excitations, the incident field EI at
frequency !I induces in the crystal the polarization P, related to
the field by the linear dielectric susceptibility tensor � ("0 is the
permittivity of free space):

P ¼ "0�ð!IÞEI : ð2:3:2:4Þ

The linear susceptibility �ð!IÞ is understood to be independent of
position, depending on the crystal characteristics and on the
frequency of the radiation field only. In the realm of nonlinear
optics, additional terms of higher order in the fields may be
considered; they are expressed through the respective nonlinear
susceptibilities.

The effect of the excitations is to modulate the wavefunctions
and the energy levels of the medium, and can be represented
macroscopically as an additional contribution to the linear
susceptibility. Treating this modulation as a perturbation, the
resulting contribution to the susceptibility tensor, the so-called
transition susceptibility �� can be expressed as a Taylor expansion
in terms of normal coordinates Qj of the excitations:

�! �þ ��; where �� ¼
P

j

�ðjÞQj þ
P

j;j0
�ðj;j

0ÞQjQj0 þ . . .:

ð2:3:2:5Þ

The tensorial coefficients �ðjÞ; �ðj;j
0Þ; . . . in this expansion are, in a

sense, higher-order susceptibilities and are often referred to as
Raman tensors (of the first, second and higher orders). They are
obviously related to susceptibility derivatives with respect to the
normal coordinates of the excitations. The time-dependent
polarization induced by �� via time dependence of the normal
coordinates can be regarded as the source of the inelastically
scattered radiation.

The central quantity in the description of Raman scattering is
the spectral differential cross section, defined as the relative rate
of energy loss from the incident beam (frequency !I, polarization
eI) as a result of its scattering (frequency !S, polarization eS) in
volume V into a unit solid angle and unit frequency interval. The
corresponding formula may be concisely written as (see e.g.
Hayes & Loudon, 1978)

d2�

d	 d!S

¼
!3

S!IV2nS

ð4
Þ2c4nI

eI��eS

�
�

�
�2

D E

!
: ð2:3:2:6Þ
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dissipation theorem in the classical limit for h��� kBT (Hayes
& Loudon, 1978). The coupling coefficient M is given by

M ¼ jeme0n�mi�njp
0
ijk‘ûkQ̂‘j

2: ð2:4:4:8Þ

In practice, the incident intensity is defined outside the scattering
volume, Iout, and for normal incidence one can write

Iin ¼
4n

ðnþ 1Þ2
Iout: ð2:4:4:9aÞ

Similarly, the scattered power is observed outside as Pout, and

Pout ¼
4n0

ðn0 þ 1Þ2
Pin; ð2:4:4:9bÞ

again for normal incidence. Finally, the approximative relation
between the scattering solid angle 	out, outside the sample, and
the solid angle 	in, in the sample, is

	out ¼ ðn
0Þ

2	in: ð2:4:4:9cÞ

Substituting (2.4.4.9a,b,c) in (2.4.4.7), one obtains (Vacher &
Boyer, 1972)

dPout

d	out

¼
8
2kBT

�4
0

n4

ðnþ 1Þ2
ðn0Þ

4

ðn0 þ 1Þ2
�VIout; ð2:4:4:10Þ

where the coupling coefficient � is

� ¼
1

n4ðn0Þ
4

jeme0n�mi�njp
0
ijk‘ûkQ̂‘j

2

C
: ð2:4:4:11Þ

In the cases of interest here, the tensor j is diagonal, �ij ¼ n2
i �ij

without summation on i, and (2.4.4.11) can be written in the
simpler form

� ¼
1

n4ðn0Þ
4

jein
2
i p0ijk‘ûkQ̂‘e

0
jn

2
j j

2

C
: ð2:4:4:12Þ

2.4.5. Use of the tables

The tables in this chapter give information on modes and scat-
tering geometries that are in most common use in the study of
hypersound in single crystals. Just as in the case of X-rays, Bril-
louin scattering is not sensitive to the presence or absence of a
centre of symmetry (Friedel, 1913). Hence, the results are the
same for all crystalline classes belonging to the same centric
group, also called Laue class. The correspondence between the
point groups and the Laue classes analysed here is shown in Table
2.4.5.1. The monoclinic and triclinic cases, being too cumbersome,
will not be treated here.

For tensor components cijk‘ and pijk‘, the tables make use of the
usual contracted notation for index pairs running from 1 to 6.
However, as the tensor p0ijk‘ is not symmetric upon interchange of
ðk; ‘Þ, it is necessary to distinguish the order ðk; ‘Þ and ð‘; kÞ. This
is accomplished with the following correspondence:

1; 1! 1 2; 2! 2 3; 3! 3

1; 2! 6 2; 3! 4 3; 1! 5

2; 1! �6 3; 2! �4 1; 3! �5:

Geometries for longitudinal modes (LA) are listed in Tables
2.4.5.2 to 2.4.5.8. The first column gives the direction of the
scattering vector Q̂ that is parallel to the displacement û. The
second column gives the elastic coefficient according to (2.4.2.6).
In piezoelectric materials, effective elastic coefficients defined in
(2.4.2.11) must be used in this column. The third column gives the
direction of the light polarizations ê and ê0, and the last column

gives the corresponding coupling coefficient � [equation
(2.5.5.11)]. In general, the strongest scattering intensity is
obtained for polarized scattering (ê ¼ ê0), which is the only
situation listed in the tables. In this case, the coupling to light (�)
is independent of the scattering angle �, and thus the tables apply
to any � value.

Tables 2.4.5.9 to 2.4.5.15 list the geometries usually used for the
observation of TA modes in backscattering (� ¼ 180�). In this
case, û is always perpendicular to Q̂ (pure transverse modes), and
ê0 is not necessarily parallel to ê. Cases where pure TA modes
with û in the plane perpendicular to Q̂ are degenerate are indi-
cated by the symbol D in the column for û. For the Pockels tensor
components, the notation is p�� if the rotational term vanishes by
symmetry, and it is p0�� otherwise.

Tables 2.4.5.16 to 2.4.5.22 list the common geometries used for
the observation of TA modes in 90� scattering. In these tables, the
polarization vector ê is always perpendicular to the scattering
plane and ê0 is always parallel to the incident wavevector of light
q. Owing to birefringence, the scattering vector Q̂ does not
exactly bisect q and q0 [equation (2.4.4.4)]. The tables are written
for strict 90� scattering, q � q0 ¼ 0, and in the case of birefringence
the values of qðmÞ to be used are listed separately in Table 2.4.5.23.
The latter assumes that the birefringences are not large, so that
the values of qðmÞ are given only to first order in the birefringence.

2.4.6. Techniques of Brillouin spectroscopy

Brillouin spectroscopy with visible laser light requires observing
frequency shifts falling typically in the range�1 to�100 GHz, or
�0.03 to �3 cm�1. To achieve this with good resolution one
mostly employs interferometry. For experiments at very small
angles (near forward scattering), photocorrelation spectroscopy
can also be used. If the observed frequency shifts are 	 1 cm�1,
rough measurements of spectra can sometimes be obtained with
modern grating instruments. Recently, it has also become
possible to perform Brillouin scattering using other excitations, in
particular neutrons or X-rays. In these cases, the coupling does
not occur via the Pockels effect, and the frequency shifts that are
observed are much larger. The following discussion is restricted
to optical interferometry.

The most common interferometer that has been used for this
purpose is the single-pass planar Fabry–Perot (Born & Wolf,
1993). Upon illumination with monochromatic light, the
frequency response of this instrument is given by the Airy
function, which consists of a regular comb of maxima obtained as
the optical path separating the mirrors is increased. Successive
maxima are separated by �=2. The ratio of the maxima separation
to the width of a single peak is called the finesse F, which
increases as the mirror reflectivity increases. The finesse is also
limited by the planarity of the mirrors. A practical limit is
F � 100. The resolving power of such an instrument is R ¼ 2‘=�,
where ‘ is the optical thickness. Values of R around 106 to 107 can
be achieved. It is impractical to increase ‘ above �5 cm because
the luminosity of the instrument is proportional to 1=‘. If higher
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Table 2.4.5.1. Definition of Laue classes

Crystal
system

Laue
class Point groups

Cubic C1 432; �43m;m�3m
C2 23; �3m

Hexagonal H1 622; 6mm; �62m; 6=mm
H2 6; �6; 6=m

Tetragonal T1 422; 4mm; �42m; 4=mm
T2 4; �4; 4=m

Trigonal R1 32; 3m; �3m
R2 3; �3

Orthorhombic O mmm; 2mm; 222
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ðT0; p0Þ. Let us consider, for instance, the situation depicted in
Fig. 3.1.2.3. For p > p0, on lowering the temperature, �1 vanishes
at T 0 and �2 remains positive in the neighbourhood of T 0. Hence,
the equilibrium value of the set (dx; dy) remains equal to zero on
either side of T 0. A transition at this temperature will only
concern a possible change in d0

z.
Likewise for p below p0, a transition at T 00 will only concern a

possible change of the set of components (d0
x; d0

y), the third
component dz remaining equal to zero on either sides of T 00.
Hence an infinitesimal change of the pressure (for instance a
small fluctuation of the atmospheric pressure) from above p0 to
below p0 will modify qualitatively the nature of the phase trans-
formation with the direction of the displacement changing
abruptly from z to the (x; y) plane. As will be seen below, the
crystalline symmetries of the phases stable below T 0 and T 00 are
different. This is a singular situation, of instability, of the type of
phase transition, not encountered in real systems. Rather, the
standard situation corresponds to pressures away from p0, for
which a slight change of the pressure does not modify signifi-
cantly the direction of the displacement. In this case, one coef-
ficient �i only vanishes and changes sign at the transition
temperature, as stated above.

3.1.2.2.5. Stable state below Tc and physical anomalies induced
by the transition

We have seen that either dz or the couple (dx; dy) of compo-
nents of the displacement constitute the order parameter of the
transition and that the free energy needs only to be expanded as a
function of the components of the order parameter. Below the
transition, the corresponding coefficient �i is negative and,
accordingly, the free energy, limited to its second-degree terms,
has a maximum for d ¼ 0 and no minimum. Such a truncated
expansion is not sufficient to determine the equilibrium state of
the system. The stable state of the system must be determined by
positive terms of higher degrees. Let us examine first the simplest
case, for which the order parameter coincides with the dz

component.
The same symmetry argument used to establish the form

(3.1.2.1) of the Landau free energy allows one straightforwardly
to assert the absence of a third-degree term in the expansion of F
as a function of the order parameter dz, and to check the effective
occurrence of a fourth-degree term. If we assume that this
simplest form of expansion is sufficient to determine the equili-
brium state of the system, the coefficient of the fourth-degree
term must be positive in the neighbourhood of Tc. Up to the
latter degree, the form of the relevant contributions to the free
energy is therefore

F ¼ FoðT; pÞ þ
�ðT � TcÞ

2
d2

z þ
�

4
d4

z: ð3:1:2:2Þ

In this expression, �1, which is an odd function of ðT � TcÞ

since it vanishes and changes sign at Tc, has been expanded
linearly. Likewise, the lowest-degree expansion of the function
�ðT � TcÞ is a positive constant in the vicinity of Tc. The function
F0, which is the zeroth-degree term in the expansion, represents

the normal ‘background’ part of the free energy. It behaves
smoothly since it does not depend on the order parameter. A plot
of ½FðdzÞ � F0� for three characteristic temperatures is shown in
Fig. 3.1.2.4.

The minima of F, determined by the set of conditions

@F

@dz

¼ 0;
@2F

@2dz

> 0; ð3:1:2:3Þ

occur above Tc for dz ¼ 0, as expected. For T<Tc they occur for

d0
z ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�
ðTc � TÞ

�

s

: ð3:1:2:4Þ

This behaviour has a general validity: the order parameter of a
transition is expected, in the framework of Landau’s theory, to
possess a square-root dependence as a function of the deviation
of the temperature from Tc.

Note that one finds two minima corresponding to the same
value of the free energy and opposite values of d0

z. The corre-
sponding upward and downward displacements of the Mþ ion
(Fig. 3.1.2.1) are distinct states of the system possessing the same
stability.

Other physical consequences of the form (3.1.2.2) of the free
energy can be drawn: absence of latent heat associated with the
crossing of the transition, anomalous behaviour of the specific
heat, anomalous behaviour of the dielectric susceptibility related
to the order parameter.

The latent heat is L ¼ T�S, where �S is the difference in
entropy between the two phases at Tc. We can derive S in each
phase from the equilibrium free energy FðT; p; d0

zðT; pÞÞ using
the expression

S ¼ �
dF

dT

�
�
�
�d

0
z ¼ �

@F

@T
d0

z þ
@F

@dz

dðdzÞ

dT

�
�
�
�

�
�
�
�d

0
z

� 	

: ð3:1:2:5Þ

However, since F is a minimum for dz ¼ d0
z, the second contri-

bution vanishes. Hence

S ¼ �
�

2
d0

z

� �2
�
@F0

@T
: ð3:1:2:6Þ

Since both d0
z and (@F0=@T) are continuous at Tc, there is no

entropy jump �S ¼ 0, and no latent heat at the transition.
Several values of the specific heat can be considered for a

system, depending on the quantity that is maintained constant. In
the above example, the displacement d of a positive ion deter-
mines the occurrence of an electric dipole (or of a macroscopic
polarization P). The quantity ", which is thermodynamically
conjugated to dz, is therefore proportional to an electric field (the
conjugation between quantities 	 and � is expressed by the fact
that infinitesimal work on the system has the form � d	 – cf.
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Fig. 3.1.2.3. Plots representative of the equations �1ðp;TÞ ¼ 0 and
�2ðp;TÞ ¼ 0. The simultaneous vanishing of these coefficients occurs for a
single couple of temperature and pressure (p0,T0).

Fig. 3.1.2.4. Plots of the Landau free energy as a function of the order
parameter, for values of the temperature above or below Tc or coincident
with Tc. The shape of the plot changes qualitatively from a one-minimum
plot to a two-minimum plot.



3.1. STRUCTURAL PHASE TRANSITIONS

with ribbons of such octahedra rather widely separated by the
large ionic radius barium ions in the b direction. The resulting
structure is, both magnetically and mechanically, rather two-
dimensional, with easy cleavage perpendicular to the b axis and
highly anisotropic electrical (ionic) conduction.

Most members of the BaMF4 family (M = Mg, Zn, Mn, Co, Ni,
Fe) have the same structure, which is that of orthorhombic C2v

(2mm) point-group symmetry. These materials are all ferro-
electric (or at least pyroelectric; high conductivity of some makes
switching difficult to demonstrate) at all temperatures, with an
‘incipient’ ferroelectric Curie temperature extrapolated from
various physical parameters (dielectric constant, spontaneous
polarization etc.) to lie 100 K or more above the melting point
(ca. 1050 K). The Mn compound is unique in having a low-
temperature phase transition. The reason is that Mn+2 represents
(Shannon & Prewitt, 1969) an end point in ionic size (largest) for
the divalent transition metal ions Mn, Zn, Mg, Fe, Ni, Co; hence,
the Mn ion and the space for it in the lattice are not a good match.
This size mismatch can be accommodated by the r.m.s. thermal
motion above room temperature, but at lower temperatures a
structural distortion must occur.

This phase transition was first detected (Spencer et al., 1970)
via ultrasonic attenuation as an anomaly near 255 K. This
experimental technique is without question one of the most
sensitive in discovering phase transitions, but unfortunately it
gives no direct information about structure and often it signals
something that is not in fact a true phase transition (in BaMnF4

Spencer et al. emphasized that they could find no other evidence
that a phase transition occurred).

Raman spectroscopy was clearer (Fig. 3.1.5.11b), showing
unambiguously additional vibrational spectra that arise from a
doubling of the primitive unit cell. This was afterwards confirmed
directly by X-ray crystallography at the Clarendon Laboratory,
Oxford, by Wondre (1977), who observed superlattice lines
indicative of cell doubling in the bc plane.

The real structural distortion near 250 K in this material is
even more complicated, however. Inelastic neutron scattering at
Brookhaven by Shapiro et al. (1976) demonstrated convincingly
that the ‘soft’ optical phonon lies not at (0; 1=2; 1=2) in the
Brillouin zone, as would have been expected for the bc-plane cell
doubling suggested on the basis of Raman studies, but at
(0:39; 1=2; 1=2). This implies that the actual structural distortion
from the high-temperature C12

2v (Cmc21) symmetry does indeed
double the primitive cell along the bc diagonal but in addition
modulates the lattice along the a axis with a resulting repeat
length that is incommensurate with the original (high-tempera-
ture) lattice constant a. The structural distortion microscopically
approximates a rigid fluorine octahedra rotation, as might be
expected. Hence, the chronological history of developments for
this material is that X-ray crystallography gave the correct lattice
structure at room temperature; ultrasonic attenuation revealed a
possible phase transition near 250 K; Raman spectroscopy
confirmed the transition and implied that it involved primitive

cell doubling; X-ray crystallography confirmed directly the cell
doubling; and finally neutron scattering revealed an unexpected
incommensurate modulation as well. This interplay of experi-
mental techniques provides a rather good model as exemplary for
the field. For most materials, EPR would also play an important
role in the likely scenarios; however, the short relaxation times
for Mn ions made magnetic resonance of relatively little utility in
this example.

3.1.5.2.8. Barium sodium niobate

The tungsten bronzes represented by Ba2NaNb5O15 have
complicated sequences of structural phase transitions. The
structure is shown in Fig. 3.1.5.12 and, viewed along the polar
axis, consists of triangular, square and pentagonal spaces that
may or may not be filled with ions. In barium sodium niobate, the
pentagonal channels are filled with Ba ions, the square channels
are filled with sodium ions, and the triangular areas are empty.

The sequence of phases is shown in Fig. 3.1.5.13. At high
temperatures (above Tc ¼ 853 K) the crystal is tetragonal and
paraelectric (P4=mbm ¼ D5

4h). When cooled below 853 K it
becomes ferroelectric and of space group P4bm ¼ C2

4v (still
tetragonal). Between ca. 543 and 582 K it undergoes an incom-
mensurate distortion. From 543 to ca. 560 K it is orthorhombic
and has a ‘1q’ modulation along a single orthorhombic axis. From
560 to 582 K it has a ‘tweed’ structure reminiscent of metallic
lattices; it is still microscopically orthorhombic but has a short-
range modulated order along a second orthorhombic direction
and simultaneous short-range modulated order along an ortho-
gonal axis, giving it an incompletely developed ‘2q’ structure.

As the temperature is lowered still further, the lattice becomes
orthorhombic but not incommensurate from 105–546 K; below
105 K it is incommensurate again, but with a microstructure quite
different from that at 543–582 K. Finally, below ca. 40 K it
becomes macroscopically tetragonal again, with probable space-
group symmetry P4nc (C6

4v) and a primitive unit cell that is four
times that of the high-temperature tetragonal phases above
582 K.

This sequence of phase transitions involves rather subtle
distortions that are in most cases continuous or nearly contin-
uous. Their elucidation has required a combination of experi-
mental techniques, emphasizing optical birefringence (Schneck,
1982), Brillouin spectroscopy (Oliver, 1990; Schneck et al., 1977;
Tolédano et al., 1986; Errandonea et al., 1984), X-ray scattering,
electron microscopy and Raman spectroscopy (Shawabkeh &
Scott, 1991), among others. As with the other examples described
in this chapter, it would have been difficult and perhaps impos-
sible to establish the sequence of structures via X-ray techniques
alone. In most cases, the distortions are very small and involve
essentially only the oxygen ions.

3.1.5.2.9. Tris-sarcosine calcium chloride (TSCC)

Tris-sarcosine calcium chloride has the structure shown in Fig.
3.1.5.14. It consists of sarcosine molecules of formula
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Fig. 3.1.5.12. Structure of the tungsten bronze barium sodium niobate
Ba2NaNb5O15 in its highest-temperature P4=mbm phase above 853 K.

Fig. 3.1.5.13. Sequence of phases encountered with raising or lowering the
temperature in barium sodium niobate.



3.2. Twinning and domain structures

By V. Janovec, Th. Hahn and H. Klapper

3.2.1. Introduction and history

Twins have been known for as long as mankind has collected
minerals, admired their beauty and displayed them in museums
and mineral collections. In particular, large specimens of contact
and penetration twins with their characteristic re-entrant angles
and simulated higher symmetries have caught the attention of
mineral collectors, miners and scientists. Twinning as a special
feature of crystal morphology, therefore, is a ‘child’ of miner-
alogy, and the terms and symbols in use for twinned crystals have
developed during several centuries together with the develop-
ment of mineralogy.

The first scientific description of twinning, based on the
observation of re-entrant angles, goes back to Romé de l’Isle
(1783). Haüy (1801) introduced symmetry considerations into
twinning. He described hemitropes (twofold rotation twins) and
penetration twins, and stated that the twin face is parallel to a
possible crystal face. Much pioneering work was done by Weiss
(1809, 1814, 1817/1818) and Mohs (1822/1824, 1823), who
extended the symmetry laws of twinning and analysed the
symmetry relations of many twins occurring in minerals.
Naumann (1830) was the first to distinguish between twins with
parallel axes (Zwillinge mit parallelen Achsensystemen) and twins
with inclined (crossed) axes (Zwillinge mit gekreuzten Achsen-
systemen), and developed the mathematical theory of twins
(Naumann, 1856). A comprehensive survey of the development
of the concept and understanding of twinning up to 1869 is
presented by Klein (1869).

At the beginning of the 20th century, several important
mineralogical schools developed new and far-reaching ideas on
twinning. The French school of Mallard (1879) and Friedel (1904)
applied the lattice concept of Bravais to twinning. This culmi-
nated in the lattice classification of twins by Friedel (1904, 1926)
and his introduction of the terms macles par mériédrie (twinning
by merohedry), macles par pseudo-mériédrie (twinning by
pseudo-merohedry), macles par mériédrie réticulaire [twinning by
reticular (lattice) merohedry] and macles par pseudo-mériédrie
réticulaire (twinning by reticular pseudo-merohedry). This
concept of twinning was very soon taken up and further devel-
oped by Niggli in Zürich, especially in his textbooks (1919, 1920,
1924, 1941). The lattice theory of Mallard and Friedel was
subsequently extensively applied and further extended by J. D. H.
Donnay (1940), and in many later papers by Donnay & Donnay,
especially Donnay & Donnay (1974). The Viennese school of
Tschermak (1904, 1906), Tschermak & Becke (1915), and Tertsch
(1936) thoroughly analysed the morphology of twins, introduced
the Kantennormalengesetz and established the minimal condi-
tions for twinning. The structural and energy aspects of twins and
their boundaries were first accentuated and developed by
Buerger (1945). Presently, twinning plays an important (but
negative) role in crystal structure determination. Several
sophisticated computer programs have been developed that
correct for the presence of twinning in a small single crystal.

A comprehensive review of twinning is given by Cahn (1954);
an extensive treatment of mechanical twinning is presented in the
monograph by Klassen-Neklyudova (1964). A tensor classifica-
tion of twinning was recently presented by Wadhawan (1997,
2000). Brief modern surveys are contained in the textbooks by
Bloss (1971), Giacovazzo (1992) and Indenbom (see Vainshtein et
al., 1995), the latter mainly devoted to theoretical aspects. In
previous volumes of International Tables, two articles on twin-

ning have appeared: formulae for the calculation of characteristic
twin data, based on the work by Friedel (1926, pp. 245–252), are
collected by Donnay & Donnay in Section 3 of Volume II of the
previous series (Donnay & Donnay, 1972), and a more mathe-
matical survey is presented by Koch in Chapter 1.3 of Volume C
of the present series (Koch, 2004).

Independently from the development of the concept of twin-
ning in mineralogy and crystallography, summarized above, the
concept of domain structures was developed in physics at the
beginning of the 20th century. This started with the study of
ferromagnetism by Weiss (1907), who put forward the idea of a
molecular field and formulated the hypothesis of differently
magnetized regions, called ferromagnetic domains, that can be
switched by an external magnetic field. Much later, von Hámos &
Thiessen (1931) succeeded in visualizing magnetic domains by
means of colloidal magnetic powder. For more details about
magnetic domains see Section 1.6.4 of the present volume.

In 1921, Valasek (1921) observed unusual dielectric behaviour
in Rochelle salt and pointed out its similarity with anomalous
properties of ferromagnetic materials. This analogy led to a
prediction of ‘electric’ domains, i.e. regions with different direc-
tions of spontaneous polarization that can be switched by an
electric field. Materials with this property were called Seignette
electrics (derived from the French, ‘sel de Seignette’, denoting
Rochelle salt). The term seignettoelectrics is still used in Russian,
but in English has been replaced by the term ferroelectrics
(Mueller, 1935). Although many experimental and theoretical
results gave indirect evidence for ferroelectric domain structure
[for an early history see Cady (1946)], it was not until 1944 that
Zwicker & Scherrer (1944) reported the first direct optical
observation of the domain structure in ferroelectric potassium
dihydrogen phosphate (KDP). Four years later, Klassen-
Neklyudova et al. (1948) observed the domain structure of
Rochelle salt in a polarizing microscope (see Klassen-Neklyu-
dova, 1964, p. 27). In the same year, Blattner et al. (1948), Kay
(1948) and Matthias & von Hippel (1948) visualized domains and
domain walls in barium titanate crystals using the same tech-
nique.

These early studies also gave direct evidence of the influence
of mechanical stress and electric field on domain structure.
Further, it was disclosed that a domain structure exists only
below a certain temperature, called the Curie point, and that the
crystal structures below and above the Curie point have different
point-group symmetries. The Curie point thus marks a structural
phase transition between a paraelectric phase without a domain
structure and a ferroelectric phase with a ferroelectric domain
structure. Later, the term ‘Curie point’ was replaced by the more
suitable expression Curie temperature or transition temperature.

The fundamental achievement in understanding phase transi-
tions in crystals is the Landau theory of continuous phase tran-
sitions (Landau, 1937). Besides a thermodynamic explanation of
anomalies near phase transitions, it discloses that any continuous
phase transition is accompanied by a discontinuous decrease of
crystal symmetry. In consequence, a phase with lower symmetry
can always form a domain structure.

The basic role of symmetry was demonstrated in the
pioneering work of Zheludev & Shuvalov (1956), who derived by
simple crystallographic considerations the point groups of para-
electric and ferroelectric phases of all possible ferroelectric phase
transitions and gave a formula for the number of ferroelectric
domain states.
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3.3. Twinning of crystals

By Th. Hahn and H. Klapper

In this chapter, the basic concepts and definitions of twinning, as
well as the morphological, genetic and lattice classifications of
twins, are presented. Furthermore, twin boundaries are discussed
extensively. The effect of twinning in reciprocal space, i.e. on
diffraction and crystal-structure determinations, is treated in
Section 3.3.11. In the literature, the concept of twinning is very
often used in a non-precise or ambiguous way. In order to clarify
the terminology, this chapter begins with a section on the various
kinds of crystal aggregates and intergrowths; in this context
twinning appears as a special intergrowth of two or more crystals
with well defined crystallographic orientation relations.

3.3.1. Crystal aggregates and intergrowths

Minerals in nature and synthetic solid materials display different
kinds of aggregations, in mineralogy often called intergrowths. In
this chapter, we consider only aggregates of crystal grains of the
same species, i.e. of the same (or nearly the same) chemical
composition and crystal structure (homophase aggregates).
Intergrowths of grains of different species (heterophase aggre-
gates), e.g. heterophase bicrystals, epitaxy (two-dimensional
oriented intergrowth on a surface), topotaxy (three-dimensional
oriented precipitation or exsolution) or the paragenesis of
different minerals in a rock or in a technical product are not
treated in this chapter.

(i) Arbitrary intergrowth: Aggregation of two or more crystal
grains with arbitrary orientation, i.e. without any systematic
regularity. Examples are irregular aggregates of quartz crystals
(Bergkristall) in a geode and intergrown single crystals precipi-
tated from a solution. To this category also belong untextured
polycrystalline materials and ceramics, as well as sandstone and
quartzite.

(ii) Parallel intergrowth: Combination of two or more crystals
with parallel (or nearly parallel) orientation of all edges and
faces. Examples are dendritic intergrowths as well as parallel
intergrowths of spinel octahedra (Fig. 3.3.1.1a) and of quartz
prisms (Fig. 3.3.1.1b). Parallel intergrowths frequently exhibit re-
entrant angles and are, therefore, easily misinterpreted as twins.

Two possible reasons for the formation of parallel intergrowths
are mentioned:

(a) A smaller crystal has set down in parallel orientation on a
growth face of an already existing crystal of the same species and
has further grown together with its host. Fig. 3.3.1.1(a) suggests
such a mechanism.

(b) The growth of one or several faces of a crystal is inhibited
by a layer of impurities or by foreign particles. By a local
‘breaking down’ of these obstacles, several parallel individual
crystals may appear and grow together during further growth.
This mechanism is suggested for Fig. 3.3.1.1(b).

In this context the term mosaic crystal must be mentioned. It
was introduced in the early years of X-ray diffraction in order to
characterize the perfection of a crystal. A mosaic crystal consists
of small blocks (size typically in the micron range) with orien-
tations deviating only slightly from the average orientation of the
crystal; the term ‘lineage structure’ is also used for very small
scale parallel intergrowths (Buerger, 1934, 1960a, pp. 69–73).

(iii) Bicrystals: This term is mainly used in metallurgy. It refers
to the (usually synthetic) intergrowth of two single crystals with a
well defined orientation relation. A bicrystal contains a grain
boundary, which in general is also well defined. Usually, homo-
phase bicrystals are synthesized in order to study the structure
and properties of grain boundaries. An important tool for the
theoretical treatment of bicrystals and their interfaces is the
coincidence-site lattice (CSL). A brief survey of bicrystals is given
in Section 3.2.2; a comparison with twins and domain structures is
provided by Hahn et al. (1999).
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Fig. 3.3.1.1. Parallel intergrowth (a) of spinel octahedra and (b) of hexagonal
quartz prisms. Part (a) after Phillips (1971, p. 172), part (b) after Tschermak
& Becke (1915, p. 94).

Fig. 3.3.1.2. (a) Optical anomaly of a cubic mixed (K,NH4)-alum crystal
grown from aqueous solution, as revealed by polarized light between crossed
polarizers: (110) plate, 1 mm thick, horizontal dimension about 4 cm. (b)
Sketch of growth sectors and their boundaries of the crystal plate shown in
(a). The {111} growth sectors are optically negative and approximately
uniaxial with their optical axes parallel to their growth directions h111i
[birefringence �n up to 5� 10�5; Shtukenberg et al. (2001)]. The (001)
growth sector is nearly isotropic (�n< 10�6). Along the boundaries A
between {111} sectors a few small {110} growth sectors (resulting from small
{110} facets) have formed during growth. S: seed crystal.



3. SYMMETRY ASPECTS OF PHASE TRANSITIONS, TWINNING AND DOMAIN STRUCTURES

systems, hexagonal P and rhombohedral R lattices) are the
hexagonal equivalents of the tetragonal �5 twins treated above.
Hence, many features agree: the �7 twins are also parallel c-axes
twins, i.e. they preserve the hexagonal or trigonal axis and, thus,
the twinning is ‘two-dimensional’ (Fig. 3.3.11.5). Twins with
inclined main axes have been derived by Grimmer (1989a), but
real examples have not yet been observed.

The smallest possible lattice index is � = h2 + hk + k2 = 7 or � =
(h2 + hk + k2)/3 = 21/3 = 7 (similarly for � = u2

� uv + v2) for a
twin with twin symmetry (reduced oriented composite symmetry)
6/m 20/m0 20/m0 and the following four twin laws, represented
by:

m0f12�30g, 20h450i (second position of the twin point-group
symbol),

m0f�5410g, 20h2�10i (third position of the twin point-group
symbol).

In each of the two hexagonal centrosymmetric point groups
6/m and 6/m 2/m 2/m these four twin laws form one twin law,
whereas in the six noncentrosymmetric point groups (structural
settings) they combine in different ways into two twin laws.

In the three trigonal centrosymmetric point groups (structural
settings) �3, �32=m1 and �312=m, they combine into two twin laws
each, whereas in the remaining five trigonal structural settings all
four twin laws are different, leading to 14 hexagonal and 26
trigonal possible �7 twins. Details of these twin cases are
presented in Table 10 of Klapper & Hahn (2012).

The reciprocal lattice of the hexagonal �7 twins is shown in
Fig. 3.3.11.6. As for the �5 twins, it confirms the data in Table
3.3.11.1: the 7� 7 cell formed by the coincident lattice points 000,
700, 770, 070 contains one ‘doubly coincident’ point 000, six
‘single’ points of twin domains D(I) and D(II) each and, if
referred to aT* and bT*, 36 ‘doubly extinct’ points.

Section 6 and Appendix C2 of the paper by Klapper & Hahn
(2012) contains full details of the hexagonal �7 twins and their

treatment in diffraction and structure work. Twins of this kind
have not been found so far. This also applies to the �7 twins of
crystals with a rhombohedral R lattice [the frequent rhombohe-
dral �3 twins are treated above under (ii)]. Their (somewhat
complicated) twin phenomena are also described in the above-
mentioned paper.

Beyond the ‘starting type’ �7, the following twins also belong
to this family:

�13 with m0f31�40g or 20h140i (second position of the point-
group symbol),

�19 with m0f32�50g or 20h250i (second position of the point-
group symbol), similarly for higher � values.

Twins of this hexagonal/trigonal �m ‘family’ are not known.

3.3.11.5. Pseudo-merohedral twins

3.3.11.5.1. General remarks

This type of twins includes both pseudo-merohedral �1 and
�m > 1 twins. It refers to small deviations from strict full or
partial lattice coincidence of the twin partners. Pseudo-
merohedral twins occur if metrical (but not necessary structural)
pseudosymmetries occur in a crystal and, hence, the twin element
belongs to the symmetry of a higher crystal system. Frequently
occurring typical examples are monoclinic crystals with the angle
� very close to 90� (simulating an orthorhombic crystal) or with
approximately a = c (simulating a B-centred orthorhombic
crystal), orthorhombic crystals with nearly b/a ’

ffiffiffi
3
p

(simulating
a hexagonal crystal, cf. examples below), or a tetragonal crystal
with c/a ’ 1 (simulating a cubic crystal). In contrast to twins by
strict �1 merohedry the twin operation is not a symmetry
operation of the holohedry of the untwinned crystal. Thus the
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Fig. 3.3.11.5. Hexagonal lattices (a–b planes, common c axis pointing
upwards) of twin domain I (start domain, lattice points small circles, right-
handed green unit cell a1, b1, c1), of the �7 twin-related domain II (small
crosses, left-handed blue unit cell a2, b2, c2) and of the �7 coincidence lattice
(large black points, right-handed red unit cell aT, bT, cT). The six alternative
twin reflection planes m0ð12�30Þ, m0ð3120Þ, m0ð2310Þ, m0ð5410Þ, m0ð1540Þ and
m0ð4150Þ are indicated by dashed lines. The coordinate axes a2, b2, c2 of
domain II (blue) are defined by the reflection plane m0ð1230Þ. The right-
handed yellow unit cell a3, b3, c3 of domain II is obtained from a1, b1, c1 by a
clockwise rotation of ’ = 120� + 2 arcsin [(1/2)(3/7)1/2] = 120� + 38.2� = 158.2�

around the hexagonal c axis. This cell is commonly used in structure
determinations. (From Hahn & Klapper, 2012.)

Fig. 3.3.11.6. Reciprocal hexagonal lattices (hk0 lattice planes) of twin
domain I (start domain, lattice points small circles) and of the �7 twin-
related domain II (small crosses). The reciprocal lattice of the (direct-space)
�7 coincidence lattice is represented by the grid of small rhombuses. The unit
cells, their handedness and their colours correspond to those of the direct
lattices in Fig. 3.3.11.5. In the large cell formed by the four reciprocal
coincidence points 000, 310, 410, 120 (in terms of a1*, b1*) or 000, 700, 770,
070 (in terms of aT*, bT*) there are six ‘single’ points of twin domains I and II
each, one ‘coincident’ point 000 and, with reference to aT*, bT*, 36 ‘extinct’
reciprocal points (cf. Table 3.3.11.1). These strange ‘non-space-group
extinctions’ are characteristic of the �7 twin law. (From Hahn & Klapper,
2012.)



3.4. Domain structures

By V. Janovec and J. Přı́vratská

3.4.1. Introduction

3.4.1.1. Basic concepts

It was demonstrated in Section 3.1.2 that a characteristic
feature of structural phase transitions connected with a lowering
of crystal symmetry is an anomalous behaviour near the transi-
tion, namely unusually large values of certain physical properties
that vary strongly with temperature. In this chapter, we shall deal
with another fundamental feature of structural phase transitions
associated with symmetry lowering: the formation of a non-
homogeneous, textured low-symmetry phase called a domain
structure.

When a crystal homogeneous in the parent (prototypic, high-
symmetry) phase undergoes a phase transition into a ferroic low-
symmetry phase with lower point-group symmetry, then this
ferroic phase is almost always formed as a non-homogeneous
structure consisting of homogeneous regions called domains and
contact regions between domains called domain walls. All
domains have the same or the enantiomorphous crystal structure
of the ferroic phase, but this structure has in different domains a
different orientation, and sometimes also a different position in
space. When a domain structure is observed by a measuring
instrument, different domains can exhibit different tensor prop-
erties, different diffraction patterns and can differ in other
physical properties. The domain structure can be visualized
optically (see Fig. 3.4.1.1) or by other experimental techniques.
Powerful high-resolution electron microscopy (HREM) techni-
ques have made it possible to visualize atomic arrangements in
domain structures (see Fig. 3.4.1.2). The appearance of a domain
structure, detected by any reliable technique, provides the
simplest unambiguous experimental proof of a structural phase
transition.

Under the influence of external fields (mechanical stress,
electric or magnetic fields, or combinations thereof), the domain
structure can change; usually some domains grow while others
decrease in size or eventually vanish. This process is called
domain switching. After removing or decreasing the field a
domain structure might not change considerably, i.e. the form of a
domain pattern depends upon the field history: the domain
structure exhibits hysteresis (see Fig. 3.4.1.3). In large enough
fields, switching results in a reduction of the number of domains.
Such a procedure is called detwinning. In rare cases, the crystal
may consist of one domain only. Then we speak of a single-
domain crystal.

There are two basic types of domain structures:
(i) Domain structures with one or several systems of parallel

plane domain walls that can be observed in an optical or electron
microscope. Two systems of perpendicular domain walls are often
visible (see Fig. 3.4.1.4). In polarized light, domains exhibit
different colours (see Fig. 3.4.1.1) and in diffraction experiments
splitting of reflections can be observed (see Fig. 3.4.3.9). Domains
can be switched by external mechanical stress. These features are
typical for a ferroelastic domain structure in which neighbouring
domains differ in mechanical strain (deformation). Ferroelastic
domain structures can appear only in ferroelastic phases, i.e. as a
result of a phase transition characterized by a decrease in the
number of independent strain components (see Table 3.4.2.2).

(ii) Domain structures that are not visible using a polarized-
light microscope and in whose diffraction patterns no splitting of
reflections is observed. Special methods [e.g. etching, deposition
of liquid crystals (see Fig. 3.4.1.5), electron or atomic force
microscopy, or higher-rank optical effects (see Fig. 3.4.3.3)] are
needed to visualize domains. Domains have the same strain and
cannot usually be switched by an external mechanical stress. Such
domain structures are called non-ferroelastic domain structures.
They appear in all non-ferroelastic phases resulting from sym-
metry lowering that preserves the number of independent strain
components (see Table 3.4.2.2).

Another important kind of domain structure is a ferroelectric
domain structure, in which domains differ in the direction of the
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Fig. 3.4.1.1. Domain structure of tetragonal barium titanate (BaTiO3). A thin
section of barium titanate ceramic observed at room temperature in a
polarized-light microscope (transmitted light, crossed polarizers). Courtesy
of U. Täffner, Max-Planck-Institut für Metallforschung, Stuttgart. Different
colours correspond to different ferroelastic domain states, connected areas of
the same colour are ferroelastic domains and sharp boundaries between
these areas are domain walls. Areas of continuously changing colour
correspond to gradually changing thickness of wedge-shaped domains. An
average distance between parallel ferroelastic domain walls is of the order of
1–10 mm.

Fig. 3.4.1.2. Domain structure of a BaGa2O4 crystal seen by high-resolution
transmission electron microscopy. Parallel rows are atomic layers. Different
directions correspond to different ferroelastic domain states of domains,
connected areas with parallel layers are different ferroelastic domains and
boundaries between these areas are ferroelastic domain walls. Courtesy of H.
Lemmens, EMAT, University of Antwerp.
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angle between these planes equals 2!, where ! is the shear angle
(obliquity) of the ferroelastic twin.

Disorientations of domain states in a ferroelastic twin bring
about a deviation of the optical indicatrix from a strictly
perpendicular position. Owing to this effect, ferroelastic domains
exhibit different colours in polarized light and can be easily
visualized. This is illustrated for a domain structure of
YBa2Cu3O7�� in Fig. 3.4.3.7. The symmetry descent G =
4z=mzmxmxy � mxmymz ¼ F1 ¼ F2 gives rise to two ferroelastic
domain states R1 and R2. The twinning group K12 of the non-
trivial domain pair ðR1;R2Þ is

K12½mxmymz� ¼ J?12 ¼ mxmymz [ 4?zf2xmymzg ¼ 4?z=mzmxm?
xy:

ð3:4:3:61Þ

The colour of a domain state observed in a polarized-light
microscope depends on the orientation of the index ellipsoid
(indicatrix) with respect to a fixed polarizer and analyser. This
index ellipsoid transforms in the same way as the tensor of
spontaneous strain, i.e. it has different orientations in ferroelastic
domain states. Therefore, different ferroelastic domain states
exhibit different colours: in Fig. 3.4.3.7, the blue and pink areas
(with different orientations of the ellipse representing the spon-
taneous strain in the plane of of figure) correspond to two
different ferroelastic domain states. A rotation of the crystal that
does not change the orientation of ellipses (e.g. a 180� rotation
about an axis parallel to the fourfold rotation axis) does not
change the colours (ferroelastic domain states). If one neglects
disorientations of ferroelastic domain states (see Section 3.4.3.6)
– which are too small to be detected by polarized-light micro-
scopy – then none of the operations of the group F1 ¼

F2 ¼ mxmymz change the single-domain ferroelastic domain
states R1, R2, hence there is no change in the colours of domain
regions of the crystal. On the other hand, all operations with a
star symbol (operations lost at the transition) exchange domain
states R1 and R2, i.e. also exchange the two colours in the domain
regions. The corresponding permutation is a transposition of two
colours and this attribute is represented by a star attached to the
symbol of the operation. This exchange of colours is nicely
demonstrated in Fig. 3.4.3.7 where a �90� rotation is accom-
panied by an exchange of the pink and blue colours in the domain
regions (Schmid, 1991, 1993).

It can be shown (Shuvalov et al., 1985; Dudnik & Shuvalov,
1989) that for small spontaneous strains the amount of shear s
and the angle ! can be calculated from the second invariant �2 of
the differential tensor �uik:

s ¼ 2
ffiffiffiffiffiffiffiffiffiffi
��2

p
; ð3:4:3:62Þ

! ¼
ffiffiffiffiffiffiffiffiffiffi
��2

p
; ð3:4:3:63Þ

where
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ð3:4:3:64Þ

In our example, where there are only two nonzero
components of the differential spontaneous strain tensor [see
equation (3.4.3.58)], the second invariant �2 = �ð�u11�u22Þ =
� ðu22 � u11Þ

2 and the angle ! is

! ¼ �ju22 � u11j: ð3:4:3:65Þ

In this case, the angle ! can also be expressed as ! ¼

=2� 2 arctan a=b, where a and b are lattice parameters of the
orthorhombic phase (Schmid et al., 1988).

The shear angle ! ranges in ferroelastic crystals from minutes
to degrees (see e.g. Schmid et al., 1988; Dudnik & Shuvalov,
1989).

Each equally deformed plane gives rise to two compatible
domain walls of the same orientation but with opposite sequence
of domain states on each side of the plane. We shall use for a
simple domain twin with a planar wall a symbol ðRþ1 jnjR

�
2 Þ in

which n denotes the normal to the wall. The bra–ket symbol ð j
and j Þ represents the half-space domain regions on the negative
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Fig. 3.4.3.7. Ferroelastic twins in a very thin YBa2Cu3O7�� crystal observed in
a polarized-light microscope. Courtesy of H. Schmid, Université de Geneve.

Fig. 3.4.3.6. High-resolution electron microscopy image of a ferroelastic twin
in the orthorhombic phase of WO3. Courtesy of H. Lemmens, EMAT,
University of Antwerp.




