Extensible Software for Automated Testing of Public Safety P25 Land Mobile Radios

Presented by:

Eric D. Nelson and Julie Kub

Institute for Telecommunication Sciences

Public Safety Land Mobile Radio (LMR)

Project 25 Digital LMR

- ➤ About Project 25
 - Formed in 1989 by APCO in conjunction with the Telecommunications Industry association (TIA)
 - ➤ Response to FCC mandate to narrow bands from 25 kHz to 12.5 kHz and 6.25 kHz BW
 - ➤ Not the only digital LMR technology, but it's the only open standard in the United States
 - ➤ Attempt to overcome shortcomings of Project 16 analog trunking standard
 - ➤ But it's not without its own problems...

Project 25 Digital LMR

- ➤ Issues of non-interoperability and nonconformance pester Project 25
- ➤ Congress mandates a P25 compliance program; manufacturers say it should include:
 - ➤ Interoperability testing (functional testing between manufacturers and models)
 - ➤ Conformance testing (to required message format and protocol standards)
 - ➤ Performance testing

Three federal systems

Common Air Interface Testing

- ➤ Subscriber unit performance testing in accordance with TIA-102.CAAA
 - ➤ ITS developing reference implementation of P25 Radio Performance Measurements (RPM)
 - ➤ Consists of a series of automated procedures to test both transmitter and receiver performance
 - ➤ ITS will seek acceptance from manufacturers on RPM implementation—then to be used to accredit labs
 - ➤ Accredited laboratories will test radios and produce reports. Manufacturers will publish results.
 - > Testing slated to begin this year

P25 Receiver Measurements

- 2.1.4 Reference Sensitivity
- 2.1.5 Faded Reference Sensitivity
- 2.1.6 Signal Delay Spread Capability
- > 2.1.7 Adjacent Channel Rejection
- 2.1.8 Co-Channel Rejection
- > 2.1.9 Spurious Response Rejection
- > 2.1.10 Intermodulation Rejection
- 2.1.11 Signal Displacement Bandwidth
- 2.1.17 Late Entry Unsquelch Delay
- 2.1.18 Receiver Throughput Delay

P25 Transmitter Measurements

- 2.2.5 Modulation Emission Spectrum
- 2.2.8 Unwanted Emissions: Adjacent Channel Power Ratio
- > 2.2.9 Intermodulation Attenuation
- 2.2.12 TX Power & Encoder Attack Time
- 2.2.14 Transmitter Throughput Delay
- 2.2.15 Frequency Deviation for C4FM
- 2.2.16 Modulation Fidelity
- 2.2.18 Transient Frequency Behavior

Test Suite

- > RF Shielded Enclosure
- ➤ Desired Signal Source
- Undesired Signal Source
- > Combiner
- Automated Test Computer

Spurious Response Equip Diagram

Software Flowchart

Software Requirements

- ➤ Documentation: requirements, design documents, test plans, and bug-tracking
- ➤ Database storage of instrument commands, measurement parameters, and results
- ➤ Code Templates for creating new instrument drivers and new measurements
- Object oriented design, event loops, and state machines for clarity, code-reuse, and modularity
- ➤ Core RPM structure easily extensible

Spurious Response Algorithm

- ➤ Find Reference Sensitivity power (Pref) with desired signal generator at carrier freq., add 3 dBm.
- ➤ Set the interferer signal generator to: Pref + SRR + 6 dBm
- ➤ Loop through interf. freq.: 0.22 MHz 1 GHz, 10 kHz step, exclude carrier freq. +- 50 kHz
- ➤ If BER > 5%, step interf. freq. from -0.05kHz to +0.05kHz, 1 kHz steps, find max BER freq.
- ➤ Set to max BER freq., find interf. power (Pspur) for BER = 5%, find spurious rej. = Pspur Pref

Sample Meas. - Spurious Response

Spurious Response Results

Sponsor Acknowledgements

- ➤ Department of Homeland Security's SAFECOM Program
- ➤ Federal Partnership for Interoperable Communications
- ➤ Department of Justice CommTech Program
- ➤ NIST's Office of Law Enforcement Standards (OLES)

ITS Staff Acknowledgements

- ➤ Eric Nelson, RPM Project Leader
- ➤ Julie Kub, RPM Software Leader
- ➤ Irena Stange, William Ingram, John Tyler, Raian Kaiser, Automated Test Engineering
- > John Vanderau, RF Engineering
- ▶ Dr. Robert Stafford, RF Metrology
- > Joel Dumke, Engineering Intern
- ➤ Ken Tilley, Technical Writer

Contact Information:

Eric D. Nelson and Julie E. Kub Electronics Engineers

Institute for Telecommunication Sciences

National Telecommunications and Information Administration

US Department of Commerce

NTIA/ITS, 325 Broadway, Boulder, CO 80305

enelson@its.bldrdoc.gov (Eric), jkub@its.bldrdoc.gov (Julie)

