

Tutorial A

Objective Measurement of User-Perceived Audio and Video Quality

Objective Measurement of User-Perceived Audio and Video Quality

Lectures:

Measurement of Audio Quality, Steve Voran, (≈30 min) Measurement of Video Quality, Steve Wolf, (≈30 min)

Demonstration:

Real-Time, In-Service Video Quality Measurement, Margaret Pinson, (≈20 min)

All Presenters are with:

Institute for Telecommunication Sciences, Boulder Colorado www.its.bldrdoc.gov/audio www.its.bldrdoc.gov/n3/video {svoran, swolf, mpinson} @its.bldrdoc.gov

Combined A/V (MM) Quality

- Perceived overall A/V quality depends on
 - Audio quality
 - Video quality
 - A/V synchronization
 - Importance audio and video in application

Measurement of Audio Quality

Motivation

 \Box)

- Subjective Measurement
 - Techniques
 - Issues
 - Open Questions

口)))

- Objective Estimation
 - Basic Concepts
 - Perception-based Approach
 - Standardized Algorithms
 - Moving Forward

One Major Motivation Telecommunications: Five-Way Trade-Off

- Complexity vs. delay vs. bit rate vs. robustness vs. speech quality
- The first four are fairly easily defined and measured
- Speech quality is more challenging
 - Constrained optimization of coders and/or channels
 - System monitoring and maintenance alerts
 - Picking "best" designs for standardization
 - Equipment evaluation for purchase

Demonstration: Speech Coding Algorithms

- All have nominal 3 dB bandwidth of 300-3400 Hz
- 4 Talkers: female, male, female, male
- Clear channel (no bit errors, lost packets or frames)

Demonstration: Speech Coding Algorithms

Original Speech		
• G.711	64 kbps	PCM
• G.726	32 kbps	ADPCM
• G.728	16 kbps	LD-CELP
■ GSM	13 kbps	RPE-LTP
• G.729	8 kbps	CS-ACELP
• G.723.1	5.3 kbps	ACELP
Fed. Standard	2.4 kbps	MELP
• FS-1015	2.4 kbps	LPC10e

Quality Assessment Challenges

- Signal dependent distortions
 - Male vs. female
 - Speech level
 - Language
 - Tones vs. speech
- Variety of distortion types
 - Buzz, robotic
 - Warble, shimmer
 - Muffled, flat
- Listener expectations
 - Fixed vs. wireless
 - Cost

Quality Assessment Challenges: Heterogeneous Network Paths

- Network is
 - Wired and wireless
 - Analog and digital
 - Circuit switched and packet switched

Quality Assessment Challenges

- Tandems, mixed tandems
- Channel issues:
 - Bit error rate, packet loss rate
 - Temporal distribution of errors
 - Delay variation
- Handset types and hands free
- Background noise demo follows

Background Noise Demo

Speech Coder 4800 bits/second

- on airplane
 - original after speech coder
- in laundry room
 - original after speech coder
- on the boat with the radio
 - original after speech coder

Subjective Measurement: Have People Listen and Respond

Example: Absolute
Catagory Pating Too

Category Rating Test

Subjective Measurement

Advantages:

- If done carefully, results are highly relevant (standards exist)
- Can select relevant population of listeners
- Can educate them about application
- Can ask the most relevant question(s)

Subjective Measurement

Disadvantages:

- Expensive and time consuming
- Controlled acoustic environment required
- Transparent playback equipment required
- Inherent spread of opinions depending on confidence intervals required, 20 to 60 listeners may be required
- Each listener may spend 30 to 120 minutes
- Results not absolute, reference conditions required

ITS Subjective Measurement Capabilities

- ITS has two acoustically isolated rooms and associated laboratory equipment (pictures follow)
- Loudspeaker, headphone, or handset playback is available
- ITS has conducted numerous listening and conversation tests in conformance with applicable ITU Recommendations

Control Station for Subjective Testing Lab

Inside a Subjective Testing Room

Subjective Listening Tests

Subjects hear and score recordings

- Quality
- Effort
- Intelligibility
- Diagnostics

Subjective Conversation Tests

- Subjects use system under test for actual conversation
- Subjects score system under test

Considerations in Subjective Testing

- Listening instrument, expectations
- Background noise
- Selection of listeners: demographics, hearing acuity, prior knowledge, expectations
- Listener fatigue
- Properly balanced test material
- Randomization to prevent order effects

Subjective Listening Test Example 1

- Single stimulus
- Absolute category rating (ACR)
- Mean opinion score (MOS) scale

Please rate the speech quality

5=Excellent

4=Good

3=Fair

2=Poor

1=Bad

Best suited for wide ranges of speech quality

Subjective Listening Test Example 2

- Dual stimulus (takes longer than single stimulus)
- Degradation category rating (DCR)
- Degradation mean opinion score (DMOS) scale
 Please rate the degradation of the second sample

5=Imperceptible

4=Perceptible but not annoying

3=Slightly annoying

2=Annoying,

1=Very annoying

- Scale mixes perception and opinion
- Able to resolve smaller quality differences

Issue - Time Varying Speech Quality

- Speech Quality in Telecom is no longer constant (e.g., wireless, VoIP)
- If quality varies moment by moment, what is the "overall quality"?

A Subjective Test

- A burst of higher quality in the middle of a ≈3 second recording
- Burst duration of 0 to 3 seconds
- Burst of lower quality also considered

A Key Result

 $Q_L \approx 2.25$

 $Q_H \approx 4.10$

Mathematical mean (blue line) is too optimistic!

Issue – Fixed vs. Free Timing

- Most subjective tests force timing:
 - Hear 5-9 second recording
 - Rate its quality
 - Repeat
- Efficient implementation, control
- When do subjects naturally form opinions?
- ITS did pass/fail speech quality test, subjects could vote at any time after recording started

A Key Result

Green: listening times before "pass"

Red: Listening times before "fail"

Subjects are quick to criticize, slow to approve

Subjects speed up

Objective Estimation of Audio Quality

- 3 Main Approaches
- Telecom network element based (E-model)
- Measured network parameter based
- Audio signal based: DSP analysis of (sent) and received audio signals

Objective Estimation vs. Subjective Measurement

- + Fast, inexpensive and repeatable
- + Just need software and some common hardware (e.g. off the shelf PC)
- + Listener variable and all associated issues are removed
- + Results are absolute, reference conditions not required
- Can only estimate perceived audio quality

DSP Analysis of Audio Signals

Details on Speech or Audio Quality Estimation

Nomenclature

- Algorithms that require input and output are sometimes called
 - Input/output
 - Two-ended
 - Full Reference
 - Intrusive
- Algorithms that require just output are sometimes called
 - Output only
 - Output based
 - Single-ended
 - Zero Reference
 - Non-intrusive
- Trade-off
 - Simplicity (output only) vs. Accuracy (input/output)

Use Waveforms to Estimate Quality?

e.g., Segmental SNR

$$SNRseg_{j} = \frac{1}{N} \sum_{i=0}^{N-1} 10 \cdot \log_{10} \left(\frac{x_{j \cdot N+i}^{2}}{(x_{j \cdot N+i} - y_{j \cdot N+i})^{2}} \right) SNRseg = \frac{1}{M} \sum_{j=0}^{M-1} SNRseg_{j}$$

- Can measure coding noise or quantization distortion, each of which is related to audio quality
- Does not measure perceived audio quality in general
- Waveform fidelity is sufficient but not necessary for good audio quality

Example: Speech Coding

Example: Music Coding

Perceptual Coding

(not Waveform Coding)

What to Do?

- Waveforms are all we have, yet waveforms do not tell the whole story
- Emulate what humans do
- Perception-based approach

Perception-Based Approach, Input/Output

Perception-Based Approach, Output-Only

Perceptual Transformation (Hearing Model)

- Frequency resolution not uniform on Hz scale ⇒
 Use psychoacoustic frequency scale
 (Bark or Critical Band Scale)
- Loudness growth ⇒
 Transform signal power to perceived loudness
- Sensitivity vs. frequency ⇒Apply equal loudness weightings
- Hearing thresholds ⇒
 Discard signals below threshold
- Frequency and time domain masking ⇒
 Simulate by spreading signals in frequency and time

ITS Results (4 KHz Speech)

Based on experiments involving objective-subjective comparisons

- Distance measure (judgment model) is at least as important as perceptual transformation (hearing model)
- Some perception-based objective assessments may overemphasize perceptual transformations (hearing model) and under-emphasize distance measure (judgment model)
- Hearing properties for noise and tone have been well-established through decades of research
- Judgment is relatively open question
- ITS contribution to problem involves more insightful and effective distance measures.
 - Measure and remove spectral deviations at one time or frequency scale then proceed to the next scale
 - Work from larger to smaller scales, because this is most likely to emulate listeners' patterns of adaptation and reaction

Standardized Algorithms

- Telephone Band Speech (300-3400 Hz), one talker, limited background noise
 - Input/Output
 - ITU-T P.862 (PESQ)
 - ANSI T1.518 (MNB)
 - Output only
 - ITU-T P.563
 - ANSI T1.??? (almost finished) (ANIQUE+)
- Wideband Speech (50-7000 Hz), one talker, limited background noise (input/output)
 - P.862.2 (Wideband PESQ)
- Full Bandwidth Music (20-20,000 Hz), Small Distortions (input/output)
 - ITU-R BS.1387 (PEAQ)

How Well Do They Work?

- Use subjective test results as "truth data"
- Look at objective-subjective correlation
- Look at objective-subjective RMS error

Example Results r.e. 20 Subjective Tests

Objective-Subjective Correlations (per condition)

Telephone bandwidth (4 kHz) speech, single talker, limited background noise

Moving Forward

- Reduced estimation error (esp. in output only algorithms)
- Increased applicability
 - Tandems of coders
 - Signal content (multiple speakers, speech + background noise, sound effects, music)
 - Signal bandwidth (7 kHz, 15 or 20 kHz)
- ITU-T SG12, Q9, P.OLQA
 - Wideband speech (50-7000 Hz)
 - Handsets & Handsfree
 - Music on hold
- ITU-R WP6Q, extend BS.1387
 - Add channels
 - Lower quality music coding

Objective Measurement of User-Perceived Video Quality

Stephen Wolf and Margaret Pinson
National Telecommunications and Information
Administration (NTIA)

Institute for Telecommunication Sciences (ITS)

Boulder, CO

Outline of Presentation

- New Measurements Required
- Subjective Video Performance
- Objective Video Performance
- Video Standardization Efforts
- Extensions of Technology
- Demonstration of Tools

- Two Automated Methods
 - Indirect Method Measure Network
 Performance => Relate to User Experience
 - Difficult to Map to User Experience
 - Map is Dependent on Coder/Decoder
 - Direct Method Measure Data Received by User => Relate to User Experience
- This Presentation Direct Method

Advantages of Direct Method

- Measurement System "Sees" Exactly What User Sees
 - Important Because User QoS is User-Data Dependent
 - Scene Complexities (e.g., Spatial, Temporal) Significantly Influence Quality

Advantages of Direct Method

- Measurement System Can Be Made Technology Independent
 - Coder/Decoder Design
 - e.g., Error Concealment in Decoder
 - Transmission Method
- To Be Accurate (i.e., Track Subjective),
 In-Service Measurements are Required

Three Direct Objective Methods (ITU-T Recommendation J.143)

- Full Access to Source Video
- Accurate But Not Useful for In-Service
- Scene and Technology Independent
- No Reference (NR)
 - No Access to Source Video
 - In-Service But Not Accurate
 - "Like Measuring Voltage without a Ground Wire"
 - Not Scene or Technology Independent

Three Direct Objective Methods (ITU-T Recommendation J.143)

- Uses Low Bandwidth Quality Features
 Extracted From Source and Destination
 Video Streams
- In-Service Monitoring
- Scene and Technology Independent
- Accurate as FR, Degrades Gracefully as RR Bandwidth is Reduced

Reduced-Reference (RR) Measurement Paradigm

Outline of Presentation

- New Measurements Required
- Subjective Video Performance
- Objective Video Performance
- Video Standardization Efforts
- Extensions of Technology
- Demonstration of Tools

Subjective Testing Methods

- Truth Data for Objective Methods
- Standardized Test Procedures
 - ITU-R BT.500 (TV)
 - ITU-T P.910 (Multimedia)
- Controlled Test Environments
 - Monitor Setup, Viewing Distance, Lighting, etc.
- Controlled Test Methods
 - Training
 - Subject and Material Selection, Presentation, Scales

Subjective Testing Methods

- Single Stimulus (SS) vs. Double Stimulus (DS)
 - Explicit or Hidden Reference for DS
 - DS More Robust (Context, Bias)
- Discrete vs. Continuous Assessment
- Randomization and Balance Over Test
 Variables is Very Important

Absolute Subjective Ratings

- For Practical Reasons, They Don't Exist!
 - Viewer Pool Variability, Criticality, Cultural Differences
 - Overall Range of Quality in Experiment
 - Application Dependencies
 - Laboratory Setup and Methodology
- Relative Ratings are Stable

Absolute Subjective Ratings

- Video Quality Expert's Group (VQEG)
 - Phase 1, Identical Experiment, 4 Labs
 - Significant Gain and Offset Issues

ITS-Developed Data Mapping

- Observations Led to the Development of Mathematical Data Mapping Method
- Iterative Nested Least Squares Algorithm (INLSA)
 - Linear Transformation of Subjective Data Sets
 - Simultaneous Minimization of Objective Estimation Error
- Produces Large Coherent Subjective Data Base
 - Better Video Quality Models (VQMs)

Recent Papers on INLSA and Subjective Video Testing Issues

- July, 2003, "An Objective Method for Combining Multiple Subjective Data Sets," SPIE Video Communications and Image Processing Conference, Lugano, Switzerland.
- July, 2003, "Comparing Subjective Video Quality Testing Methodologies," SPIE Video Communications and Image Processing Conference, Lugano, Switzerland.
- "spie03obj.pdf" and "spie03subj.pdf"
 - http://www.its.bldrdoc.gov/n3/video/documents.htm

ITS Subjective Test Facilities

- Two Sound Isolated Rooms
 - Interactive Tests
 - Configurable (A, V, A/V)
- Fully Automated
 - A/V Playback
 - Subjective Scores

ITS Subjective Test Facilities

Uncompressed HDTV Equipment

HDTV Viewing Room

- 19 SD Data Sets (2651 Video Clips) + 1 HD Data Set
- 392 SD Scenes
 - Wide Range of Spatial Detail, Motion, Contrast, Brightness, Color
- 272 SD HRCs (Video Systems)
 - Wide Range of Bit Rates, Coders, Transmission Channels, including Analog
- National Archive

Outline of Presentation

- New Measurements Required
- Subjective Video Performance
- Objective Video Performance
- Video Standardization Efforts
- Extensions of Technology
- Demonstration of Tools

- Remove Perceptually-Irrelevant Systematic Errors from Destination Signal
- Report Separately From Perception-Based Quality
- Step 1: Feature Extraction
 - Extract Perceptually-Relevant, Quality-Related Attributes from Source and Destination Signals
 - .00001 < (Feature Bit-Rate/Signal Bit-Rate) < 1
 - "Reduced Reference" In-Service Measurements

Step 2: Distance Measures

- Calculate a Perceptually-Relevant Distance Between the Source and Destination Feature Streams
- Step 3: Quality Mapping
 - Relate Perceptual Distances to Estimates of Perceived Quality

- Most Step 0 to 3 Algorithms
 - Documented in NTIA Report 02-392, "Video Quality Measurement Techniques"
 - "vqm_techniques_v2.pdf" available at: http://www.its.bldrdoc.gov/n3/video/documents.htm
 - Sept, 2004, "A New Standardized Method for Objectively Measuring Video Quality," *IEEE Transactions on Broadcasting*, v. 50, n. 3, pp. 312-322.
 - "ieee04.pdf" also available at: http://www.its.bldrdoc.gov/n3/video/documents.htm
- Additional Documentation Will Be Presented When Covered

Step 0: Calibration

- Estimate and Remove (Order is Important)
 - Temporal Shifts (Video Delay)
 - Spatial Scaling (Horizontal and Vertical)
 - Spatial Shifts (Horizontal and Vertical)
 - Valid Region Reduction
 - Gain and Level Offset
- Importance Depends Upon Objective Measurement Technique
 - PSNR is Highly Sensitive
 - RR Measurements are Much Less Sensitive

Step 0: Calibration

- Most Calibration Quantities are Fixed for a Given Hypothetical Reference Circuit (HRC) – i.e., system under test.
 - Except Temporal Registration
- Need Only Estimate Once or Infrequently at System Setup
- Spatial Scaling and Spatial Registration are CPU and Bandwidth Intensive

Frame Based

- Slow, High RR Bandwidth, Sensitive to Calibration
- Laboratory, Bench-Top, Out-of-Service
- Produces Delay Estimate for Each Frame

Sequence Based

- Fast, Low RR Bandwidth, In-Sensitive to Calibration
- In-Service
- Produces Delay Estimate for Each Sequence
- Works Well with RR Quality Measurements

Sequence Based Temporal Registration

Uses Motion, Luma (Y') Features

Sequence Based Temporal Registration

 Correlation to Align Source (Blue) and Destination (Red) Feature Streams

Spatial Scaling Estimation

- More Applicable to Multimedia than TV
 - Has Been Observed For TV (Rare)
- Uses H and V Image Profiles
 - Average of Image Columns (H), Rows (V)
 - Reduces Scaling Estimation Complexity
- Use Smart Search to Find Optimal Stretch or Shrinkage
- Use Several Scenes & Filter Results

Spatial Registration Estimation

 Special Test Signals Can Be Useful for Out-of-Service Measurements

Spatial Registration Estimation

- In-Service Methods Must Utilize Real Video Scenes
- Multi-Dimensional Search (Expensive)
 - Utilize Temporal Registration Results
 - Random Sampling of Pixels (e.g., 0.2%)
 - Sub-Sample Temporally (e.g., every ½ sec)
- Use Several Scenes & Filter Results

Spatial Registration Estimation

- Spatial Registration Uses Field Processing
 - Some Video Systems "Re-Frame"

0 1	frame line	<u>field line</u>	
6—————————————————————————————————————	0—————————————————————————————————————	— 0 — 0 — 1 — 1 — 2 — 2 — 3 — 3 — 4	 field two (later) field one (earlier)

- NTIA Technical Report TR-06-433, "Reduced Reference Video Calibration Algorithms"
- "ntia_tr_06_433.pdf" available at:
 - http://www.its.bldrdoc.gov/n3/video/documents.htm

Valid Region Reduction

- Video Systems Often Reduce Picture Area
 - Mechanism to Save Bits
- Use Mean Value of Columns & Rows
 - Transitions (Ramps) Not Included
- Referenced to Source, Accounting for Spatial Scaling and Shifts

Gain and Level Offset – Independent Color Components

- Temporally & Spatially Scaled & Registered
- Treat Each Component (e.g., Y', Cb, Cr)
 Separately
- Divide Valid Region into N Sub-Regions
 - Take Mean of Each Sub-Region
 - Solve Least Squares Problem

$$\underline{D} = g\underline{S} + l$$

Gain and Level Offset – Dependent Color Components

- Required for Complex Color Errors (e.g., Hue)
- Estimate and Remove Arbitrary Color Component Mixing Plus DC Shift
 - Must Solve for 12 Unknowns
 - e.g., For RGB Color Space, Red Color Component of 1st Corrected Sample is

$$\hat{S}_{R_1} = A_{1,1} + A_{2,1} * D_{R_1} + A_{3,1} * D_{G_1} + A_{4,1} * D_{B_1}$$

Gain and Level Offset – Dependent Color Components

Original

Corrected

Gain and Level Offset – Dependent Color Components

- NTIA TM-04-406, "Color Correction Matrix for Digital Still and Video Imaging Systems"
- "ntia406.pdf" available at:
 - http://www.its.bldrdoc.gov/n3/video/documents.htm
- Excellent Practical Video Color Space Reference "ColorFAQ.pdf" available at:
 - http://www.poynton.com/PDFs/ColorFAQ.pdf

Step 1: Feature Extraction

- ITU-R Rec. BT.601 Sampling
 - 4:2:2, 13.5 MHz
 - Color-Difference (Cb, Cr) Half Bandwidth
 - Gamma Pre-Corrected (Approximates HVS)
- Luma (Y') Features Characterize
 - Spatial Gradients (Edges, Angles)
- Color-Difference (Cb, Cr) Feature
 - Treated as Two-Dimensional Vector
- Temporal Gradients (Motion) of Y', Cb, Cr

Overview of Spatial Gradient Feature Extraction

Spatial Gradient Filters

- Edge Enhancement Filters (C = 2)
- Lowpass / Bandpass

$$\mathbf{w}_{\mathbf{X}} = \mathbf{k} * \left(\frac{\mathbf{x}}{\mathbf{c}}\right) * \exp \left\{-\left(\frac{1}{2}\right)\left(\frac{\mathbf{x}}{\mathbf{c}}\right)^{2}\right\}$$

Bandpass Filter Weights

Pixels (Rec. 601)

Two Spatial Gradient Features

- SI13
 - Spatial Gradient Magnitude
 - Blurring
- HV13
 - Spatial Gradient Angular Distribution
 - Blocking/Tiling

Graphical Depiction of Spatial Gradient Features

• SI13 $\{\operatorname{stdev}[R(i,j,t)]\}_{P}$

HV13

 $\frac{\left\{\text{mean}\left[R_{HV}(i,j,t)\right]\right\}\big|_{P}}{\left\{\text{mean}\left[R_{\overline{HV}}(i,j,t)\right]\right\}\big|_{P}}$

Spatial Gradient Feature Examples

- Missing Edges Blurring, Smearing
- Added Edges Tiling, Edge Busyness, Lines

Spatial Information (SI)

Blurring

Tiling / Blocking

Temporal Gradient Features

- Absolute Value of Frame Differences
- Missing Motion Frame Freezes, Dropped Frames
- Added Motion Error Blocks, Noise

Frame n Frame n-1 Information (ATI)

Frame Freezes, Dropped Frames

Error Blocks

Frame n

Frame n-1

For Noise & Errors

- ATI = RMS { $Y'C_bC_r(t) - Y'C_bC_r(t-0.2s)$ }

0.2s Makes Feature Insensitive to Frame Repeats Present in Low Frame Rate Multimedia Systems

Feature Extraction From S-T Regions

Summary Statistics Extracted from S-T Regions
 After Perceptual Filtering (e.g., Mean, Stdev)

- Optimal S-T Region Size
 - 8 x 8 x 0.2 Seconds (Used in General VQM)
 - Shorter Temporal Extents => Poorer Correlation
- Correlation Falls Off Slowly For Increasing Temporal Extents
 - 32 x 32 x 1 Second Lowbw (10kbits/s) VQM

HV Loss (General VQM Error Pooling)

Objective to Subjective Correlation: S-T Region Size

- SCI / ISAS 2001 paper, "The Relationship Between Performance and Spatial-Temporal Region Size for Reduced-Reference, In-Service Video Quality Monitoring Systems"
- "iiis01.pdf" available at:
 - http://www.its.bldrdoc.gov/n3/video/documents.htm

Feature Quantization

 Logarithmic Quantizers Minimize Errors in Distance Measures – 9 bits is Sufficient

Step 2: Distance Measures - Quality Parameters

- Convert Feature Streams To Quality Parameters
- Measure Perceptual Impairments For Each S-T Region
- Apply Perceptibility Threshold
 - Clip Features at Low End

- Apply Visual Masking Functions
 - (Out-In)/In, log (Out/In)
 - Separate Gain and Loss (i.e., Positive Part, Negative Part)
- Error Pooling (Over Space and Time)
 - Normally Worst Case (e.g., 5%)
 - Depends on Feature and S-T Region Size

Improved Error Pooling Lowbw (10 kbits/s) VQM

- Macroblocks (MB) (e.g., 3r x 3c x 2t)
 - Worse Case Processing Within MB
 - Localized S-T Impairments
- Generalized Minkowski
 - Removes Non-Linearity Before Fitting

•
$$Minkowski(P,R) = \sqrt[R]{\frac{1}{N} \sum_{i=1}^{N} |v_i|^P}$$

Step 3: Video Quality Mapping or Model (VQM)

- Depends on Subjective Testing Methodology
 - e.g., DSCQS, SSCQE (See ITU-R Rec. 500)
 - Expert/Non-Expert Viewers
- Depends on Video Application
 - Television
 - Videoconferencing

INLSA-Based VQMs

- ITS General VQM
 - 11 Subjective Data Sets (1563 Video Clips)
 - 7 Quality Parameters
- Lowbw (10 kbits/s) VQM
 - 19 Subjective Data Sets (2651 Video Clips)
 - 8 Quality Parameters
 - "vpqm05.pdf" available at:
 - http://www.its.bldrdoc.gov/n3/video/documents.htm

- Clip Performance (Scene x System)
 - ITS General VQM vs. PSNR VQM

- Average Video System (HRC) Performance
 - ITS General Model vs. PSNR

Lowbw (10 kbits/s) VQM Performance - Training Data

- Clip Performance
- $\rho = .927$
- RMS Error
 - **0.096**
 - (0, 1) Scale

Lowbw (10 kbits/s) VQM Performance – Training Data

- HRCPerformance
- $\rho = .967$
- RMS Error
 - **0.066**
 - (0, 1) Scale

Continuous VQM Performance 10 kbits/s Prototype

Single Stimulus Continuous Quality Evaluation (SSCQE)

Outline of Presentation

- New Measurements Required
- Subjective Video Performance
- Objective Video Performance
- Video Standardization Efforts
- Extensions of Technology
- Demonstration of Tools

Objective Metrics and Standards – 1990's Summary

- ANSI T1.801.01-1995 (Test Scenes)
- ANSI T1.801.02-1996 (Terms and Definitions)
- ANSI T1.801.03-1996 (Objective Metrics)
 - Test Signals and Patterns Did Not Correlate with Subjective (Spinning Wheel, 3D Sine waves. etc.)
 - ITS Measurements Yielded 0.88 Correlation Suitable for Quality Monitoring (Not System Comparison)
 - Spatial-Temporal Metrics Incorporated in ITU-T Rec. P.910 (Annex A) for Objectively Quantifying Scene Criticality
- ANSI T1.801.04-1997 (Multimedia Delay, Synch, FR)
 - Later Standardized by ITU-T (P.931)

Objective Metrics and Standards – 1990's Summary

- Hardware Feasibility Demonstrated (Real-Time, In-Service, Perception-Based)
- Reduced Reference (RR) Measurement Paradigm Adopted by the ITU
 - ITU-T Rec. J.143

Video Quality Expert's Group (VQEG)

- Founded and Co-Chaired by ITS Staff (1997)
 - ITU-T SG 9 & 12, and ITU-R WP 6Q Experts
- ITS Manages
 - Website (www.vqeg.org)
 - Doc Server (ftp://ftp.its.bldrdoc.gov/dist/ituvidq/)
 - Video File Server (ftp://vqeg.its.bldrdoc.gov/)
- Mission Validate Objective Video Quality Metrics & Forward Test Reports to ITU
 - Independent Lab Group (ILG) Conducts Tests
- ITU Writes and Approves Recommendations

Video Quality Expert's Group (VQEG) Full Reference TV (FRTV) Phase 1

- From 1997 to 2000
- 8 Subjective Labs, 10 Objective Proponents
- 20 Source Sequences (split 525 & 625)
- 32 Video Systems
- No Clear "Winner"
 - ITU-T J.144 (March 2001)
 - VQEG Phase 1 Report

Committee T1 Technical Reports

- From 2000 2002
- Jointly Developed by ITS and Sarnoff
 - VQEG Phase 1 Spin-off
- Five Committee T1 Technical Reports
 - T1.TR.72 Specifying Accuracy and Cross Calibration of Video Quality Metrics
 - T1.TR.73, 74, 75, 77 Calibration, PSNR, JND, Test Code and Data

Committee T1 Technical Reports

Resolving Power & Classification Errors

Resolving Power

Classification Errors

Committee T1 Technical Reports

Revised For Clarity

 T1.TR.72-2003 (Approved Dec., 2003) "Methodological Framework for Specifying Accuracy and Cross-Calibration of Video Quality Metrics."

International Recommendation

 ITU-T Recommendation J.149 (Approved Mar., 2004) "Method for Specifying Accuracy and Cross-Calibration of Video Quality Metrics (VQM)."

Video Quality Expert's Group (VQEG) Full Reference TV (FRTV) Phase 2

- From 2000 to 2004
- 3 Subjective Labs, 8 Objective Proponents (2 Withdrew)
- 26 Source Sequences (split 525 & 625)
- 24 Video Systems
- Four Systems Were Recommended
 - ITU-T J.144 (March 2004)
 - ITU-R BT.1683
 - VQEG Phase 2 Report

ITS General VQM

- Submitted to VQEG Phase II FRTV Tests
- Designed for Wide Range of Video Systems
 - Hence the name "General" VQM
- High Bandwidth RR VQM
 - Mbits/s of Reference Information
- Top Performing VQM in VQEG Tests
 - Only VQM in Top Performing Group (at 99% Level) for Both 525-line and 625-line TV Standards
 - Only VQM with an Average Correlation to Subjective Score > 0.9 (Over 525-line and 625-line Tests)
 - 0.94 Correlation to 525-line Subjective Test

ITS General VQM

North American Standardization

- ANSI T1.801.03-2003 (Approved Sept. 2003)
 "Digital Transport of One-Way Video Signals
 - Parameters for Objective Performance Assessment."
- Only Method Approved by ANSI for Video System Comparisons
- Scope Does Not Include Transmission Errors

VQEG Timeline and Future Activities

FRTV-I

Joint Rapporteur Group on Multimedia Quality Assessment (JRG-MMQA)

- Recently Founded (2004)
 - Audio Experts from ITU-T SG12
 - Video Experts From ITU-T SG9
 - First Several Meetings Revised
 Multimedia Test Plan

Outline of Presentation

- New Measurements Required
- Subjective Video Performance
- Objective Video Performance
- Video Standardization Efforts
- Extensions of Technology
- Demonstration of Tools

Multimedia to High Definition

180 x 120, e.g., Cell Phone

360 x 240, e.g., PDA, Video Phone

720 x 480, e.g., Standard TV

1920 x 1080, e.g., High Definition TV

Multimedia

- Different than TV
- Small, Low Resolution Screens (LCDs)
- Different Physics
 - Farther Viewing Distances (in terms of Picture Height)
 - Less Pixels per Degree
- Spatial Scaling Issues
- Different Applications
 - Access to Video Signals

- Different than TV
- Large High Resolution Screens
- Different Physics
 - Closer Viewing Distances (in terms of Picture Height)
 - Same Pixels Per Degree but Greater Viewing Angle
 - Subject Focus, Object/Scene Tracking Issues

Challenges / Questions

- Localized Errors (in space and/or time)
 can Have a Large Perceptual Impact
 - Very Small % of Video Stream
 - Thus, Difficult to Measure Robustly
- How Much Human Behavior Should We Really Model?
 - SSCQE Thought Experiment

SSCQE Thought Experiment

Outline of Presentation

- New Measurements Required
- Subjective Video Performance
- Objective Video Performance
- Video Standardization Efforts
- Extensions of Technology
- Demonstration of Tools

- Designed for Bench Top Evaluation
 - Source and Destination Video Signals / files available at one PC
- UNIX (Batch) and PC (Interactive)
 Versions
 - PC Version Jointly Developed by ITS and Intel
 - Focus on PC Version Here

Laboratory VQM Tool Overview

- Two Software Flows
- Test Video Sequence (TVS)
 - Calibration Assisted by Special Test Pattern
 - U.S. Patent Pending
- Original (Source) and Processed (Destination) Library of Video Clips
 - Calibration Uses Scenes
 - All Clips Must be From Same HRC

WW.

Laboratory VQM Tool Overview

- Includes Calibration Root Cause Analysis
- Five VQMs (General, Video Conferencing, TV, and Developers – Fast, PSNR)
 - Includes Impairment Root Cause Analysis
- Hierarchical Presentation of Results
 - HRC VQM -> Clip VQM -> Clip Parameter -> Parameter Time Histories -> Perceptual Features

Laboratory VQM Tool Overview

- VQM Calculation is Multi-threaded
- VFW Frame Capture Included
- Video Conversion Tools Included
 - UYVY is Native Tool Format

Laboratory VQM Tool User's Manuals

- UNIX NTIA Handbook 02-01, "Video Quality Measurement User Manual," Feb., 2002.
- PC Web PDF Document, "Video Quality Measurement PC User's Manual," Nov., 2002.

Laboratory VQM Tool

Calibration Results

View Original and Processed Video

- Perform End-to-End In-Service VQM (IVQM) Measurements
 - Requires Two PCs (Source and Destination)
 - RR Features Communicated over Internet
- Passive Monitoring of Video Stream
 - Attach Video Capture Probes at Two Points
 - Plot Measured Quality
- MATLAB-Based

IVQM Tool Overview

- Supports Real Time Video Capture
 - e.g., USB2 Video Capture on Laptops
 - Large RAM Requirements
- Includes Full Calibration
 - e.g., Temporal Registration, Spatial Scaling, Spatial Registration, Valid Region, Gain / Level Offset
 - Video Delay with Synchronized Clocks
- Currently Implements 4 VQMs
 - General, Developer (Fast Version of General)
 - Lowbw, Fastlowbw

IVQM Tool Overview

- Non-Real Time Measurements
 - Depends on VQM and Image Resolution
- Captures Sequence -> Analyzes
 Sequence -> Captures Next Sequence
- User's Manual
 - NTIA Handbook, "In-Service Video Quality Metric (IVQM) User's Manual", Dec, 2005.

IVQM Tool Setup Screen

End-to-End Communication Medium		Video Source	
FTP	-	Video Capture Device	-
Local FTP Site Path:		Video Capture Device:	
c:\ftp\ivqm		WinFast TV USB II	*
FTP Host:		Image Size & Color Space:	
jvqm1.its.bldrdoc.gov		YUY2_720x480	٣
FTP Username:		Video Source:	
anonymous		composite	٠
FTP Password:		Capture Interlaced or Progressive:	
		Interlace, upper field first	¥
FTP sub-directory:		Directory for Temporary Storage:	
İvqm		C:\temp\	
Validate FTP Communication		Preview Video Stream	
Calibration Combined Temporal Registration Uncertainty		Video Quality Model	
3 sec	•	Low Bandwidth Model	+
Delay Between Source & Destination Capture	-	Video Sequence Length	
Scale, Shift, Gain/Offset & Valid Region		10 sec	·
Calculate at the beginning & combine all results	-		
Number of Sequences Used:		Accept Setup	

- Command-line VQM (CVQM)
 - Simple Window's Command Line Interface
- Batch VQM (BVQM)
 - GUI Interface
 - Greatly Simplify Batch Processing on PC
- Dynamically Linked Library (DLL)
 - Standard Interface for Third Party Applications