

USING A SPLIT MODEL IMPROVES THE SIMULATION OF INDUSTRIAL ENVIRONMENT PROPAGATION CONDITIONS

Sabri Benferhat, Michel Misson

LIMOS-CNRS, Network and Protocols Team, Blaise Pascal University B.P. 86, 63172 Aubiere Cedex, France

{Sabri, Misson}@sancy.univ-bpclermont.fr

ISART 2-4 JUNE 2008

Outline

- Industrial Environment
- Measurement Process
- Obtained Measurements
- Results per Track
 - ☐ Pr Vs D Model per Track
- Comparison with ITU R-1238
- Results per Link Type
 - ☐ Pr Vs D Model per Link
- Simulation and Results

- Lack of information about industrial environments
 - □ Not much information available about performance of wireless technologies in industrial environments.
 - □ In most literature only office use is considered.
- The purpose of our study
 - □ Wireless LAN deployment in an industrial environment
 - □ Developing propagation models reflecting our environment for simulation tools
 - □ Determining coverage area of different transmitter
 - □ Compare measured performances and those given by a simulation process
- The goal of the study is to propose a way to simulate traffic conditions within an 802.11 cell overlapping an industrial area.

Industrial environments

- □ Harsh
- □ Obstructions
- ☐ Steel constructions
- □ Extreme temperature
- □ Nearby machinery, vibration

Results

- □ interference
- □ Heavy multi-path fading
- □ Fast/slow fading
- Local variations in received power
- □ Hidden node problems

- Deployment by positioning Access point
- Cell depend on propagation
- Cartography the received power
- Ensure QoS (throughput, delay,...)
- Performance measured very different from those obtained from simulation
- Impact of physical layer on higher layer in simulation

- **802.11**
- Infrastructure mode
- Access Point (AP)
- L1 range of AP at 11Mbps ReceiveSensitivity = -82 dBm
- L2 detection activityCCA_threshold = -95dBm
- Any activity is detected by station
- Impact of machinery on propagation conditions

Stations on ground are able to detect any activity on channel?

Measurement Process

- Difference in propagation conditions
- The CCA (-95 dBm) is defined with a model other than the one which defines receive threshold (-82 dBm)
- Study the conditions of propagation
 - □ Path loss effects between mobile and 2 fixed stations
 - ☐ High station (STA_H) located at 2.5m
 - □ Low and mobile station at 50cm above ground.
 - Measure received power strength at both fixed point

Measurement Environment

Obtained Measurements

Results per Track

M

Results per Track

Obtained Measurements

- Adjusting the parameters of the generic formula:
 Pr = Pt+Gt+Gr-(Ctv+N*Log10(D)+X(δ))
 - □ Pr received power
 - □ Pt transmitted power in dBm (in our case 20 dBm)
 - Gt and Gr transmitter and receiver antenna Gain
 - Ctv takes into account the frequency used, antenna cable losses ...
 - □ D distance between the transmitter and the receiver
 - \square X(δ) random component with δ standard deviation to take into account shadowing effect
- D and Pr are known
- N and δ depend on the type of building
- Use linear regression evaluate path loss exponent N and Ctv
- Evaluate standard deviation δ

SMALLER VALUE OF δ INDICATES BETTER ACCURACY OF THE PATH LOSS MODEL

Pr Vs D Model per Track

	δ

- Path loss coefficient N is between 2 and 4
- Great value for 5

Comparison with ITU R-1238

■ $Pr = Pt - (20 \text{ Log} 10 \text{ f} + \text{N Log} 10 \text{ (D)} + \text{Lf} - 28 + \text{X}(\delta))$

Where:

- □ N: distance power loss coefficient, depend on the type of building
- ☐ f: frequency (MHz)
- □ D: separation distance (m) and D >1m
- □ Lf: floor penetration loss factor (dB)
- \square X(δ) random component

ÞΑ

Comparison with ITU R-1238

■ Pr = Pt – (20 Log10 f +N Log10 (D) + Lf– 28)

Obtained Measurements

Results per link type

Results per Link Type

ÞΑ

Results per Link Type

Pr Vs D Model per Link

		δ
AP-Mobile	$Pr = 20 - (47.80 + 28.91 \text{ Log}_{10}(D) + X(3.36))$	2.61 ^{E-13}
Mobile-Mobile	$Pr = 20 - (44.85 + 37.54 \text{ Log}_{10}(D) + X(3.87))$	-1.76 ^{E-12}

- Great difference between path loss exponent (2.891,3.754)
- Small value for δ
- Split model to describe path loss effect on different links

Simulation and Results

Simulation and Results

- OPNET simulation
- Use of ITU-R1238
 - Same propagation condition
- Split model
 - □ Links AP/Mobiles and Mobiles/Mobiles

Simulation and Results

Conclusion

- The same model of path loss is used for all the stations
 - □ no hidden station phenomenon
 - □ hidden area appears when n exceeds 4.32
- The split model
 - □ show the hidden station phenomenon

Questions