

Diffraction Model Comparisons using the

ITU-R 3K1 Correspondence Group Database

Ken Craig, Mike Willis, Nick Thomas, Sarah Callaghan

Rutherford Appleton Laboratory UK

Data

- Used "cleaned" 3K1 Correspondence Group measurement database as described in preceeding presentation
- The subset of data used in this model testing used 26 datasets
 - 15 EBU, 2 US, ABU, Swiss, COST210, 6 Sandell
- 5316 links/data files accepted as defined by the data flags:
 - IsValid = 1
 - IsWorstMonth = 0
 - IsTopHeightInGroup = 1
 - InputsValid = 1
 - IsLongTerm = 0 and 1

Models

- P.1546-3
- P.1812 as published (3-edge diffraction model)
- P.1812, but using the Bullington diffraction model (including the empirical, path length dependent, correction term and the line-ofsight taper, as described in Document CGD-05)
- P.1812, but using 3 variations of the US FCC PTP diffraction model that incorporates corrections for rounded obstacles. This model is described below.
- P.1812, but using the long path distance correction to the Bullington method given in 3K1 Correspondence Group Document CGD-16.

PTP Model

- H K Wong, 2002: "Field Strength Prediction in Irregular Terrain—the PTP Model"
 - 1998 FCC Notice of Proposed Rulemaking for FM service
 - Blends knife-edge and smooth-Earth diffraction losses in a way that takes account of the terrain roughness
- PTP Edge Loss = $J(v) + R \times (S(v) J(v))$
 - v and J(v) are as defined in P.1812
 - S(v) = max(21.66 + 27.35v, 0)
 - $R = 75/(\Delta H + 75)$
 - ΔH is 90% of standard deviation of the terrain heights about the line of least squares fit to all available points within 10km of the edge
 - Here, three different assumptions have been made about the edges to which to apply the knife-edge/smooth-Earth blend

Metrics

- In the "raw", unfiltered datasets, the probability density functions of the model-minus-measured path loss errors were often non-Gaussian (sometimes bimodal)
 - Implies that mean and standard deviation are not adequate as metrics

Normality tests on raw data

- Different statistical tests give different (and often contradictory) results
- Table shows
 "normality" test
 on statistics of
 difference
 between P.1812
 model and
 unfiltered
 measurements

Dataset	Points	Kstest	Lilliefors	Jarque-Bera	Chi-square
BBC	70	Υ	Υ	Υ	N
BBCL	68	Υ	Υ	Υ	Υ
BBCn	274	Υ	N	N	N
ERT	31	Υ	N	Υ	Υ
HOL	73	Υ	Υ	N	Υ
IRT	600	Υ	N	N	Υ
IRTL	156	Υ	N	N	N
IRTs	63	Υ	Υ	Y	Υ
ORF	497	Υ	N	N	Υ
RAI	87	Υ	Υ	Υ	Υ
S	107	Υ	Υ	N	Υ
SUI	1247	Υ	N	N	Υ
Swiss	435	Υ	N	N	N
TDF	72	Υ	N	Y	Υ
USPhase1	13639	N	N	N	N
USPhase2	11092	N	N	N	N
YLE	100	Υ	Υ	Υ	Υ
YLEs	51	Υ	N	Υ	N

Metrics

- However, the "cleaned", filtered datasets are generally consistent with a Gaussian distribution (Doc 3K/30, this ITU-R meeting)
 - So can limit our metrics to mean and standard deviation

- Calculated mean and SD of each of the 26 datasets for all 7 models
- Calculated mean and SD of complete dataset with data combined in 3 ways

Metrics

- Three ways of combining the 19 individual datasets into one dataset were used
 - "ALL": all data points combined with equal weight, irrespective of data source. Assumes a single distribution
 - Appropriate if all data are equally good and unbiased
 - "Mean of datasets": "average" obtained by simply taking the mean of the individual dataset means and standard deviations
 - Gives equal weight to each dataset, rather than to each measurement
 - "Corrected mean" (standard deviation only): obtained by (a) "correcting" the individual measurement values by removing the mean error of each dataset and calculating the standard deviation of aggregated dataset
 - Corrects for measurement biases to first order

3-Edge/Bull/P.1546

PTP + Variations

3-Edge/Bull/P.1546

PTP + Variations

Points to Note

- Mean errors vary greatly from dataset to dataset (cf. CGD-05)
 - Dataset-to-dataset variation in mean error is greater than model-tomodel variation!
 - But all terrain-based diffraction models show the same trends/biases
 - So, conclude that variations are probably due to measurement biases
- Conclusions are supported by
 - Standard deviations
 - Scatter plots
 - Histograms of prediction errors

Two examples

IRTL: model over-prediction; high SD => calibration issue?

USPhase1: model under-prediction; low SD => missing clutter

3-Edge/Bull/CGD-16

3-Edge/Bull/CGD-16

Clutter

Clutter

Conclusions 1

- Can't make best choice decision on mean errors
 - Well-known fact, and most "practical" models have empirical corrections
 - But Bullington generally underpredicts 3-edge and both underpredict
 P.1546
- All PTP model variations give similar results
 - Smooth-Earth corrections don't make much difference on these datasets
- Standard deviations similar across datasets
 - SD is a better metric than mean
 - SD of Bullington is generally less than 3-edge and P.1546

Conclusions 2

- Long- path distance correction model of Document CGD-16
 - Overall mean errors similar to 3-edge and smaller than Bullington
 - Overall SD is better than either 3-edge or Bullington

Clutter

- Including clutter in the models does increase the loss ©
- But it increases the SD of the error ⁽³⁾
- Too few datasets have clutter information for firm conclusions

Recommendation

 On the basis of these model-measurement comparisons, the CGD-16 model should be used